Excerpt from washingtonpost.com

We’re not special. Or our complex organic molecules aren’t, anyway. And that’s good news in the hunt for extraterrestrial life.

In a new study published Wednesday in Nature, astronomers found the first signs of the complex, carbon-based molecules that make life possible on Earth in a protoplanetary disk; the region where cosmic building blocks gather to create planets in a brand-new star system. The cyanides found there are essential to life as we know it: without them, there would be no proteins.

“We know when our own solar system was very young, it was rich in water and complex organics. We know that from observing comets,” explained study author Karin Öberg, an assistant professor of astronomy at Harvard. Comets have kept the molecules of our solar system’s early days locked up tight ever since, which is why scientists are so eager to study them for clues about Earth’s formation. These comets show us that certain organic molecules were common in our solar system’s pre-planetary days.

But this is the first time we’ve seen evidence of such molecules ready to seed another star system with planets that could support life.
“We’re finding that we’re not that special,” Öberg said. “Other young solar systems in the making are also rich in the same volatiles, and in similar proportions.”

And in this case, she said, being not-special is a great thing: If other solar systems formed just the way ours did, we can hope that they formed some kind of life, too.

Öberg and her colleagues found the molecules using the Atacama Large Millimeter/submillimeter Array (ALMA), a radio telescope with some pretty sweet resolution. They spotted the complex organics as much as 15 billion kilometers from the star itself, which they believe is right smack dab in the middle of the system’s comet-forming region. That means the organics could get locked away in comets, just as the ones in our solar system were, and go out to seed future planets with them (as some believe was the case with Earth).

“It was kind of a chance discovery, because we weren’t targeting this specific molecule,” Öberg said. So she and her team need to go back and look more systematically. She also hopes they’ll be able to find more systems to look at. The star they’ve observed — MWC 480, located some 455 light-years away in the Taurus star-forming region — is twice the mass of the sun, so they also hope to find some that are more similar to our host star.

 “We of course want to know whether this is a really common thing or if we just lucked out on this one,” Öberg said.