Tag: chemistry (page 1 of 3)

How TV Affects Your Brain Chemistry For The Worst

by Heather Callaghan,Have you ever overheard an intense or heart-wrenching discussion only to find out the talkers were actually hashing out the lives of fictional TV characters? Do you ever wonder why people are so easily beguiled into trusting the talking heads?It might not be such a mystery when you find out how easy it is for TV programming– the waves it emits, the storytelling – to override basic brain function and even damage your body.Reported earlier by  [...]

View Article Here Read More

Gluten-Free: “Fad” or Not? Studies Suggest Most Gluten Sensitivity Is Imagined

Makia Freeman, ContributorGluten-free food is now very common and available, whether you are in a restaurant, cafe or grocery store. Although there are definitely people who suffer from celiac disease and other diseases triggered by gluten, the entire gluten-free movement has left many health experts and nutritionalists scratching their heads in bewilderment. Since when did large chunks of populations used to eating bread, pasta and other wheat products suddenly suffer from [...]

View Article Here Read More

Is an Abundance of Arsenic Found in Rice Increasing Risk of Cancer?

Brett Wilbanks, Staff WriterArsenic is a common element found in nature. It occurs naturally in a variety of sources, from soil and water, to foods that we eat on a regular basis. There are several forms of arsenic, and some, particularly certain inorganic forms, are more harmful than others.According to the International Agency for Research on Cancer, two compounds found in inorganic arsenic are known carcinogenic substances and are associated with a number of devastating health eff [...]

View Article Here Read More

Water may have been abundant a short billion years after Big Bang





Excerpt from thespacereporter.com

The formation of water vapor after the Big Bang was constrained by the lack of oxygen; it and other elements heavier than hydrogen and helium were created only later on, in the death throes of the first generation of massive stars. Oxygen created by the demises of early stars was swept out in to space by the explosions of supernovae and stellar winds, eventually joining with hydrogen to form water.

This process created islands of gas replete with heavy elements, such as oxygen; these regions were more bereft of oxygen than gaseous regions in the modern Milky Way galaxy. However, a new study by Tel Aviv University and the Harvard-Smithsonian Center for Astrophysics (CfA) has determined that, in certain islands, water vapor might have been as plentiful as it is today, only a billion years after the Big Bang.

According to a CfA statement, the researchers looked at whether water could form in the primordial molecular clouds, which were deficient in oxygen. Their analysis indicated that large quantities of water could form at around 80 degrees Fahrenheit. Water molecules would have been shattered by ultraviolet light emitted by stars; however, after hundreds of millions of years, an equilibrium between water creation and destruction would be reached.

“We looked at the chemistry within young molecular clouds containing a thousand times less oxygen than our Sun. To our surprise, we found we can get as much water vapor as we see in our own galaxy,” said astrophysicist Avi Loeb of CfA.

The new study has been accepted for publication in the Astrophysical Journal and is accessible online.


View Article Here Read More

For the first time, scientists find complex organic molecules in an infant star system



Artist impression of the protoplanetary disk surrounding the young star MWC 480. ALMA has detected the complex organic molecule methyl cyanide in the outer reaches of the disk in the region where comets are believed to form. This is another indication that complex organic chemistry, and potentially the conditions necessary for life, is universal. (B. Saxton/NRAO/AUI/NSF)



Excerpt from washingtonpost.com

We're not special. Or our complex organic molecules aren't, anyway. And that's good news in the hunt for extraterrestrial life.

In a new study published Wednesday in Nature, astronomers found the first signs of the complex, carbon-based molecules that make life possible on Earth in a protoplanetary disk; the region where cosmic building blocks gather to create planets in a brand-new star system. The cyanides found there are essential to life as we know it: without them, there would be no proteins.

"We know when our own solar system was very young, it was rich in water and complex organics. We know that from observing comets," explained study author Karin Öberg, an assistant professor of astronomy at Harvard. Comets have kept the molecules of our solar system's early days locked up tight ever since, which is why scientists are so eager to study them for clues about Earth's formation. These comets show us that certain organic molecules were common in our solar system's pre-planetary days.

But this is the first time we've seen evidence of such molecules ready to seed another star system with planets that could support life.
"We're finding that we're not that special," Öberg said. "Other young solar systems in the making are also rich in the same volatiles, and in similar proportions."

And in this case, she said, being not-special is a great thing: If other solar systems formed just the way ours did, we can hope that they formed some kind of life, too.

Öberg and her colleagues found the molecules using the Atacama Large Millimeter/submillimeter Array (ALMA), a radio telescope with some pretty sweet resolution. They spotted the complex organics as much as 15 billion kilometers from the star itself, which they believe is right smack dab in the middle of the system's comet-forming region. That means the organics could get locked away in comets, just as the ones in our solar system were, and go out to seed future planets with them (as some believe was the case with Earth).

"It was kind of a chance discovery, because we weren't targeting this specific molecule," Öberg said. So she and her team need to go back and look more systematically. She also hopes they'll be able to find more systems to look at. The star they've observed -- MWC 480, located some 455 light-years away in the Taurus star-forming region -- is twice the mass of the sun, so they also hope to find some that are more similar to our host star.

 "We of course want to know whether this is a really common thing or if we just lucked out on this one," Öberg said.

View Article Here Read More

Frustrated magnets showing features of Hall Effect stun Princeton University researchers


Frustrated-Magnets



Excerpt from worldtechtoday.com

A group of researchers at the Princeton University has found that frustrated magnets, inspite of not possessing any magnetic feature at low temperatures, do exhibit features of Hall Effect. ‘Frustrated’ magnets are so called because of their inability of getting a long range magnetic order inspite of a huge exchange between the spins of their elementary particles.

The Hall Effect suggests that when magnetic field is applied to electric current carried by charged particles present in a conductor, it causes magnet to bend to the other side of semi-conductor. They are of great interest in physics and material science. Appreciating that frustrated magnets are capable of producing Hall Effect could hold the key to future advances in computing and the creation of devices such as quantum computers.

“To talk about the Hall Effect for neutral particles is an oxymoron, a crazy idea,” said N. Phuan Ong, one of the authors of the study and Eugene Higgins Professor of Physics at Princeton.

Inspite of that, he together with his colleague, Princeton’s Russell Wellman Moore Professor of Chemistry as well as their graduate students Max Hirschberger and Jason Krizan witnessed this unusual behavior in frustrated magnets.

“All of us were very surprised because we work and play in the classical, non-quantum world. Quantum behavior can seem very strange, and this is one example where something that shouldn’t happen is in reality there. It really exists,” said Ong in a statement.
The researchers wanted to find out the reason underlying “discontent” nature of Hall Effect.

In this particular case, the team led by Ong and Moore studied pyrochlores, a class of magnets ‘which should have orderly “spins” at very low temperature, but have been found to have spins that point in random directions, thus rendering them with magnetic frustration properties.’ They attached small electrodes to both sides of crystals and later passed heat through them using microheaters at extremely low temperatures.

The outcome of the experiment, states Ong, stunned the entire team.

View Article Here Read More

Could Saturn’s moon Titan host an alternate type of life?


Titan


Excerpt from mashable.com

In a world first, chemical engineers have taken a different look at a question astronomers and biologists have been pondering for decades: Does Saturn moon Titan host life?

Of course, Titan is way too hostile for life as we know it to eke out an existence — it is a frigid world awash with liquid methane and ethane and a noxious atmosphere devoid of any liquid water. But say if there is a different kind of biology, a life as we don't know it, thriving on the organic chemistry that is abundant on Titan's surface?

Normally, astrobiologists combine what we know about Earth's biosphere and astronomers zoom in on other stars containing exoplanets in the hope that some of those alien world have some similarities to Earth. By looking for small rocky exoplanets orbiting inside their star's habitable zones, we are basically looking for a "second Earth" where liquid water is at least possible. Where there's liquid water on Earth, there's inevitably life, so scientists seeking out alien life 'follow the water' in the hope of finding life with a similar terrestrial template on other planets.

Titan, however, does not fall into this category, it is about as un-Earth-like as you can get. So, chemical molecular dynamics expert Paulette Clancy and James Stevenson, a graduate student in chemical engineering, from Cornell University, Ithaca, New York, have looked at Titan in a different light and created a theoretical model of a methane-based, oxygen-free life form that could thrive in that environment.

There is no known template for this kind of life on Earth, but the researchers have studied what chemicals are in abundance on Titan and worked out how a very different kind of life could be sparked.

As a collaborator on the NASA/ESA Cassini-Huygens mission, Lunine, professor in the Physical Sciences in the College of Arts and Sciences’ Department of Astronomy, has been fascinated with the possibility of methane-based life existing on Titan for some time, so he joined forces with Clancy and Stevenson to see what this hypothetical life form might look like.

In their research published in the journal Science Advances on Feb. 27, Clancy and Stevenson focused on building a cell membrane "composed of small organic nitrogen compounds and capable of functioning in liquid methane temperatures of 292 degrees below zero (Fahrenheit; or 94 Kelvin)," writes a Cornell press release. On Earth, water-based molecules form phospholipid bilayer membranes that give cells structure, housing organic materials inside while remaining permeable. On Titan, liquid water isn't available to build these cell membranes.

"We're not biologists, and we're not astronomers, but we had the right tools," said Clancy, lead researcher of the study. "Perhaps it helped, because we didn't come in with any preconceptions about what should be in a membrane and what shouldn't. We just worked with the compounds that we knew were there and asked, 'If this was your palette, what can you make out of that?'"

The researchers were able to model the ideal cell that can do all the things that life can do (i.e. support metabolism and reproduction), but constructed it from nitrogen, carbon and hydrogen-based molecules that are known to exist in Titan's liquid methane seas. This chemical configuration gives this theoretical alien cell stability and flexibility in a similar manner to Earth life cells.
"The engineers named their theorized cell membrane an 'azotosome,' 'azote' being the French word for nitrogen. 'Liposome' comes from the Greek 'lipos' and 'soma' to mean 'lipid body;' by analogy, 'azotosome' means 'nitrogen body.'" — Cornell
"Ours is the first concrete blueprint of life not as we know it," said lead author Stevenson, who also said that he was inspired, in part, by Isaac Asimov, who wrote the 1962 essay "Not as We Know It" about non-water-based life.

Having identified a possible type of cell membrane chemistry that functions in the Titan environment as a cell on Earth might, the next step is to model how such a hypothetical type of biology would function on Titan. In the long run, we might also be able to model what kinds of observable indicators we should look for that might reveal that alien biology's presence.

That way, should a mission be eventually sent to Titan's seas, sampling the chemical compounds in the soup of organics may reveal a biology of a very alien nature.
Scientists have been trying to know if life could exist on Titan, the largest moon of Saturn. According to scientists, there are possibilities that life could survive amidst methane-based lakes of Titan. After conducting many studies, they have found signs of life on Titan, but the scientists also said that life will not be like life on earth.
As per some scientific reports, Titan is the only object other than earth which has clear evidence of stable bodies of surface liquid. Like earth, the moon has mountains, islands, lakes and storms, but it doesn’t have oxygen, which is a major element to support life. It means that only oxygen-free and methane-based can exist on Titan.
According to lead researcher Paulette Clancy, “We didn’t come in with any preconceptions about what should be in a membrane and what shouldn’t. We just worked with the compounds that, we knew were there and asked, ‘If this was your palette, what can you make out of that”.
Clancy said although they are not biologists or astronomers, they had the right tools to find life on Saturn’s largest moon. Adding to that, the researchers didn’t know what should be in a membrane and what should be not. They worked with compounds and found that life can exist on Titan, but would be very different from earth’s life, Clancy added.
According to reports, the researchers had used a molecular dynamics method to know about Titan. They screened for suitable candidate compounds from methane for self-assembly into membrane-like structures. As per the researchers, the most promising compound they discovered was an acrylonitrile azotosome, which is present in the atmosphere of Titan.
As per the researchers, acrylonitrile has shown good stability and flexibility similar to that of phospholipid membranes on Earth. It means that the Saturn largest has atmosphere and conditions to support life in a different way than earth.
- See more at: http://perfscience.com/content/2141391-life-titan-would-be-different-earth#sthash.2Kqc3Ewf.dpuf

View Article Here Read More

NASA creates ingredients of life in harsh simulated space conditions


The machine NASA scientists used to zap out three components of our hereditary material from a chunk of ice.


Excerpt from cnet.com

We know a whole lot about life on our planet, but one mystery persists: how it got here.

NASA scientists working at the Ames Astrochemistry Laboratory in California and the Goddard Space Flight Center in Maryland may have just found a clue to that mystery. They've determined that some of the chemical components of our DNA can be produced in the harsh crucible of space.


To reach their conclusion, they created a chunk of ice in their lab containing molecules known as pyrimidine. These molecules, which consist of carbon and nitrogen, form the core of three chemicals found in DNA and RNA, the genetic composition of all Earth-based life.

Pyrimidine is also found on meteorites, which prompted the researchers to explore how it reacts when frozen in water in space.
So they put their chunk of ice in a machine that reproduces the vacuum of space, along with temperatures around -430°F and harsh radiation created by high-energy ultraviolet (UV) photons from a hydrogen lamp.

They found that not only could the pyrimidine molecules survive these brutal conditions, but the radiation actually morphed some of them into three chemical components found in DNA and RNA: uracil, cytosine and thymine. 

"We are trying to address the mechanisms in space that are forming these molecules," Christopher Materese, a NASA researcher working on these experiments, said in a statement. "Considering what we produced in the laboratory, the chemistry of ice exposed to ultraviolet radiation may be an important linking step between what goes on in space and what fell to Earth early in its development."
Added Scott Sandford, a space science researcher at Ames, "Our experiments suggest that once the Earth formed, many of the building blocks of life were likely present from the beginning. Since we are simulating universal astrophysical conditions, the same is likely wherever planets are formed."

While this research might help fill in a piece of the puzzle of our cosmic origins, another mystery remains. Scientists don't exactly know where meteoric pyrimidine comes from in the first place, although they theorize that it could arise when giant red stars die. And the search continues...

View Article Here Read More

Strange find on Titan sparks chatter about life


Titan


Excerpt from nbcnews.com

Studies may suggest methane-based organic processes ... but maybe not  
New findings have roused a great deal of hoopla over the possibility of life on Saturn's moon Titan, which some news reports have further hyped up as hints of extraterrestrials.
However, scientists also caution that aliens might have nothing to do with these findings.

All this excitement is rooted in analyses of chemical data returned by NASA's Cassini spacecraft. One study suggested that hydrogen was flowing down through Titan's atmosphere and disappearing at the surface. Astrobiologist Chris McKay at NASA's Ames Research Center speculated that this could be a tantalizing hint that hydrogen is getting consumed by life.

"It's the obvious gas for life to consume on Titan, similar to the way we consume oxygen on Earth," McKay said.

Another study investigating hydrocarbons on Titan's surface found a lack of acetylene, a compound that could be consumed as food by life that relies on liquid methane instead of liquid water to live.
"If these signs do turn out to be a sign of life, it would be doubly exciting because it would represent a second form of life independent from water-based life on Earth," McKay said.
However, NASA scientists caution that aliens might not be involved at all.

"Scientific conservatism suggests that a biological explanation should be the last choice after all non-biological explanations are addressed," said Mark Allen, principal investigator with the NASA Astrobiology Institute Titan team. "We have a lot of work to do to rule out possible non-biological explanations. It is more likely that a chemical process, without biology, can explain these results."
McKay told Space.com that "both results are still preliminary."

To date, methane-based life forms are only speculative, with McKay proposing a set of conditions necessary for these kinds of organisms on Titan in 2005. Scientists have not yet detected this form of life anywhere, although there are liquid-water-based microbes on Earth that thrive on methane or produce it as a waste product. 

On Titan, where temperatures are around minus-290 degrees Fahrenheit (-179 degrees Celsius), any organisms would have to use a substance that is liquid as its medium for living processes. Water itself cannot do, because it is frozen solid on Titan's surface. The list of liquid candidates is very short — liquid methane and related molecules such as ethane. Previous studies have found Titan to have lakes of liquid methane.

Missing hydrogen? 

The dearth of hydrogen Cassini detected is consistent with conditions that could produce methane-based life, but do not conclusively prove its existence, cautioned researcher Darrell Strobel, a Cassini interdisciplinary scientist based at Johns Hopkins University in Baltimore. Strobel wrote the paper on hydrogen appearing online in the journal Icarus.


Strobel looked at densities of hydrogen in different parts of the atmosphere and at the surface. Previous models from scientists had predicted that hydrogen molecules, a byproduct of ultraviolet sunlight breaking apart acetylene and methane molecules in the upper atmosphere, should be distributed fairly evenly throughout the atmospheric layers.

Strobel's computer simulations suggest a hydrogen flow down to the surface at a rate of about 10,000 trillion trillion molecules per second. 

"It's as if you have a hose and you're squirting hydrogen onto the ground, but it's disappearing," Strobel said. "I didn't expect this result, because molecular hydrogen is extremely chemically inert in the atmosphere, very light and buoyant. It should 'float' to the top of the atmosphere and escape."

Strobel said it is not likely that hydrogen is being stored in a cave or underground space on Titan. An unknown mineral could be acting as a catalyst on Titan's surface to help convert hydrogen molecules and acetylene back to methane.

Although Allen commended Strobel, he noted "a more sophisticated model might be needed to look into what the flow of hydrogen is."

Consumed acetylene? 

Scientists had expected the sun's interactions with chemicals in the atmosphere to produce acetylene that falls down to coat Titan's surface. But when Cassini mapped hydrocarbons on Titan's surface, it detected no acetylene on the surface, according to findings appearing online in the Journal of Geophysical Research.


Instead of alien life on Titan, Allen said one possibility is that sunlight or cosmic rays are transforming the acetylene in icy aerosols in the atmosphere into more complex molecules that would fall to the ground with no acetylene signature.

In addition, Cassini detected an absence of water ice on Titan's surface, but loads of benzene and another as-yet-unidentified material, which appears to be an organic compound. The researchers said that a film of organic compounds is covering the water ice that makes up Titan's bedrock. This layer of hydrocarbons is at least a few millimeters to centimeters thick, but possibly much deeper in some places. 

"Titan's atmospheric chemistry is cranking out organic compounds that rain down on the surface so fast that even as streams of liquid methane and ethane at the surface wash the organics off, the ice gets quickly covered again," said Roger Clark, a Cassini team scientist based at the U.S. Geological Survey in Denver. "All that implies Titan is a dynamic place where organic chemistry is happening now."

All this speculation "is jumping the gun, in my opinion," Allen said.

"Typically in the search for the existence of life, one looks for the presence of evidence -- say, the methane seen in the atmosphere of Mars, which can't be made by normal photochemical processes," Allen added. "Here we're talking about absence of evidence rather than presence of evidence — missing hydrogen and acetylene — and oftentimes there are many non-life processes that can explain why things are missing."

These findings are "still a long way from evidence of life," McKay said. "But it could be interesting."

View Article Here Read More

NASA Wants to Send a Submarine to Titan’s Seas ~ Video



Titan


Excerpt from news.discovery.com

In a sneak peek of a possible future mission to Saturn’s moon Titan, NASA has showcased their vision of a robotic submersible that could explore the moon’s vast lakes of liquid methane and ethane.

Studying Titan is thought to be looking back in time at an embryonic Earth, only a lot colder. Titan is the only moon in the solar system to have a significant atmosphere and this atmosphere is known to possess its own methane cycle, like Earth’s water cycle. Methane exists in a liquid state, raining down on a landscape laced with hydrocarbons, forming rivers, valleys and seas.

Several seas have been extensively studied by NASA’s Cassini spacecraft during multiple flybys, some of which average a few meters deep, whereas others have depths of over 200 meters (660 feet) — the maximum depth at which Cassini’s radar instrument can penetrate.


So, if scientists are to properly explore Titan, they must find a way to dive into these seas to reveal their secrets.

At this year’s Innovative Advanced Concepts (NIAC) Symposium, a Titan submarine concept was showcased by NASA Glenn’s COMPASS Team and researchers from Applied Research Lab.

Envisaged as a possible mission to Titan’s largest sea, Kracken Mare, the autonomous submersible would be designed to make a 90 day, 2,000 kilometer (1,250 mile) voyage exploring the depths of this vast and very alien marine environment. As it would spend long periods under the methane sea’s surface, it would have to be powered by a radioisotope generator; a source that converts the heat produced by radioactive pellets into electricity, much like missions that are currently exploring space, like Cassini and Mars rover Curiosity.

Communicating with Earth would not be possible when the vehicle is submerged, so it would need to make regular ascents to the surface to transmit science data.

But Kracken Mare is not a tranquil lake fit for gentle sailing — it is known to have choppy waves and there is evidence of tides, all contributing to the challenge. Many of the engineering challenges have already been encountered when designing terrestrial submarines — robotic and crewed — but as these seas will be extremely cold (estimated to be close to the freezing point of methane, 90 Kelvin or -298 degrees Fahrenheit), a special piston-driven propulsion system will need to be developed and a nitrogen will be needed as ballast, for example.

This study is just that, a study, but the possibility of sending a submersible robot to another world would be as unprecedented as it is awesome.

Although it’s not clear at this early stage what the mission science would focus on, it would be interesting to sample the chemicals at different depths of Kracken Mare.

“Measurement of the trace organic components of the sea, which perhaps may exhibit prebiotic chemical evolution, will be an important objective, and a benthic sampler (a robotic grabber to sample sediment) would acquire and analyze sediment from the seabed,” the authors write (PDF). “These measurements, and seafloor morphology via sidescan sonar, may shed light on the historical cycles of filling and drying of Titan’s seas. Models suggest Titan’s active hydrological cycle may cause the north part of Kraken to be ‘fresher’ (more methane-rich) than the south, and the submarine’s long traverse will explore these composition variations.”

A decade after the European Huygens probe landed on the surface of Titan imaging the moon’s eerily foggy atmosphere, there have been few plans to go back to this tantalizing world. It would be incredible if, in the next few decades, we could send a mission back to Titan to directly sample what is at the bottom of its seas, exploring a region where the molecules for life’s chemistry may be found in abundance.



View Article Here Read More

Scientists discover organism that hasn’t evolved in more than 2 billion years



Nonevolving bacteria
These sulfur bacteria haven't evolved for billions of years.
Credit: UCLA Center for the Study of Evolution and the Origin of Life

Excerpt from natmonitor.com
By Justin Beach

If there was a Guinness World Record for not evolving, it would be held by a sulfur-cycling microorganism found off the course of Australia. According to research published in the Proceedings of the National Academy of Sciences, they have not evolved in any way in more than two billion years and have survived five mass extinction events.
According to the researchers behind the paper, the lack of evolution actually supports Charles Darwin’s theory of evolution by natural selection.
The researchers examined the microorganisms, which are too small to see with the naked eye, in samples of rocks from the coastal waters of Western Australia. Next they examined samples of the same bacteria from the same region in rocks 2.3 billion years old. Both sets of bacteria are indistinguishable from modern sulfur bacteria found off the coast of Chile.





“It seems astounding that life has not evolved for more than 2 billion years — nearly half the history of the Earth. Given that evolution is a fact, this lack of evolution needs to be explained,” said J. William Schopf, a UCLA professor of earth, planetary and space sciences in the UCLA College who was the study’s lead author in a statement.
Critics of Darwin’s theory of evolution might be tempted to jump on this discovery as proof that Darwin was wrong, but that would be a mistake.
Darwin’s work focused more on species that changed, rather than species that didn’t. However, there is nothing in Darwin’s work that states that a successful species that has found it’s niche in an ecosystem has to change. Unless there is change in the ecosystem or competition for resources there would be no reason for change.
“The rule of biology is not to evolve unless the physical or biological environment changes, which is consistent with Darwin. These microorganisms are well-adapted to their simple, very stable physical and biological environment. If they were in an environment that did not change but they nevertheless evolved, that would have shown that our understanding of Darwinian evolution was seriously flawed.” said Schopf, who also is director of UCLA’s Center for the Study of Evolution and the Origin of Life.
It is likely that there were genetic mutations in the organisms. Mutations are fairly random and happen in all species, but unless those mutations are improvements that help the species function better in the environment, they usually do not get passed on.
Schopf said that the findings provide further proof that Darwin’s ideas were right.
The oldest fossils analyzed for the study date back to the Great Oxidation Event. This event, which occurred between 2.2 and 2.4 billion years ago, saw a substantial increase in Earth’s oxygen levels. That period also saw an increase in sulfates and nitrates, which is all that the microorganisms would have needed to survive and reproduce.
Shopf and his team used Raman spectroscopy, which allows scientists to examine the composition and chemistry of rocks as well as confocal laser scary microscopy to generate 3-D images of fossils embedded in rock.
The research was funded by NASA Astrobiology Institute, in the hope that it will help the space agency to find life elsewhere.

View Article Here Read More

Why Bill Nye ‘The Science Guy’ Calls Evolution ‘Undeniable’ and Creationism ‘Inane’



Picture of thousands of galaxies
Gazing at galaxy clusters like Abell 2218, it's hard to imagine how we fit into the cosmos. Evolution can help with that, says Bill Nye.
Photograph by NASA, ESA, and Johan Richard (Caltech, USA)


Darwin's theory explains so much of the world, from bumblebees to human origins, says the Science Guy.


Excerpt from
By Jane J. Lee

With a jaunty bow tie and boyish enthusiasm, Bill Nye the Science Guy has spent decades decoding scientific topics, from germs to volcanoes, for television audiences. Last February, the former engineer defended the theory of evolution in a televised debate with young-Earth creationist Ken Ham, a vocal member of a group that believes the Earth is only 6,000 years old. Nye's decision to engage Ham kicked up plenty of criticism from scientists and creationists alike.

The experience prompted the celebrity science educator to write a "primer" on the theory of evolution called Undeniable: Evolution and the Science of Creation. In his new book, Nye delights in how this fundamental discovery helps to unlock the mysteries of everything from bumblebees to human origins to our place in the universe.

Who do you hope will read this book?
Grown-ups who have an interest in the world around them, people coming of age who have an interest in science, people who still want to know how the world works.

This is the big concern of mine with respect to the organization Answers in Genesis and Ken Ham and all those guys: their relentless, built-in attempts to indoctrinate a generation of science students on a worldview that is obviously wrong.

I worry about these kids—they're part of my society. We can't raise a generation of students who don't understand the fundamental idea in all of life science, any more than you want to raise a generation of kids who don't understand chemistry or physics or arithmetic.

How and when did you first encounter creationism?
About 20 years ago. I was a member of the Northwest Skeptics, which is the Seattle-based skeptics organization. We met people who insisted that the Earth was 6,000 years old. The inanity took my breath away. When you understand anything about astronomy or have just a rudimentary understanding of radioactivity, the Earth is patently not 6,000 years old. It's silly.

It's been said that a good way of convincing people of something is to appeal to their emotions. What do you think?
That's my business! In the book, I purposely spend a lot of time in the first person. The reason is, we find stories compelling. Stories are how we remember things, how we organize things.

By telling a story in the first person, it's hard to dismiss. If I say, "I remember the time I met Ivan the gorilla," it's really difficult for the listener or reader to go, "No, you don't!"

When you say, "I feel," it's really hard for the reader to say, "No, you don't." Yes, I do. I did a lot of that in the book...

Picture of a sweat bee pollinating a deadly nightshade flower
A fascination with bees and flight drew a young Bill Nye into the world of science and evolution.
Photograph by Mark W Moffett, National Geographic



Picture of the Earth seen from the International Space Station
One of the most fundamental ideas in explaining life on Earth is the theory of evolution, says Nye.
Photograph by NASA Earth Observatory

View Article Here Read More

Science Increasingly Makes the Case for God



Excerpt from  wsj.com
By Eric Metaxas


The odds of life existing on another planet grow ever longer. Intelligent design, anyone?


In 1966 Time magazine ran a cover story asking: Is God Dead? Many have accepted the cultural narrative that he’s obsolete—that as science progresses, there is less need for a “God” to explain the universe. Yet it turns out that the rumors of God’s death were premature. More amazing is that the relatively recent case for his existence comes from a surprising place—science itself.
Here’s the story: The same year Time featured the now-famous headline, the astronomer Carl Sagan announced that there were two important criteria for a planet to support life: The right kind of star, and a planet the right distance from that star. Given the roughly octillion—1 followed by 27 zeros—planets in the universe, there should have been about septillion—1 followed by 24 zeros—planets capable of supporting life.
With such spectacular odds, the Search for Extraterrestrial Intelligence, a large, expensive collection of private and publicly funded projects launched in the 1960s, was sure to turn up something soon. Scientists listened with a vast radio telescopic network for signals that resembled coded intelligence and were not merely random. But as years passed, the silence from the rest of the universe was deafening. Congress defunded SETI in 1993, but the search continues with private funds. As of 2014, researches have discovered precisely bubkis—0 followed by nothing.
What happened? As our knowledge of the universe increased, it became clear that there were far more factors necessary for life than Sagan supposed. His two parameters grew to 10 and then 20 and then 50, and so the number of potentially life-supporting planets decreased accordingly. The number dropped to a few thousand planets and kept on plummeting.
Even SETI proponents acknowledged the problem. Peter Schenkel wrote in a 2006 piece for Skeptical Inquirer magazine: “In light of new findings and insights, it seems appropriate to put excessive euphoria to rest . . . . We should quietly admit that the early estimates . . . may no longer be tenable.”
As factors continued to be discovered, the number of possible planets hit zero, and kept going. In other words, the odds turned against any planet in the universe supporting life, including this one. Probability said that even we shouldn’t be here.
Today there are more than 200 known parameters necessary for a planet to support life—every single one of which must be perfectly met, or the whole thing falls apart. Without a massive planet like Jupiter nearby, whose gravity will draw away asteroids, a thousand times as many would hit Earth’s surface. The odds against life in the universe are simply astonishing.
Yet here we are, not only existing, but talking about existing. What can account for it? Can every one of those many parameters have been perfect by accident? At what point is it fair to admit that science suggests that we cannot be the result of random forces? Doesn’t assuming that an intelligence created these perfect conditions require far less faith than believing that a life-sustaining Earth just happened to beat the inconceivable odds to come into being?
There’s more. The fine-tuning necessary for life to exist on a planet is nothing compared with the fine-tuning required for the universe to exist at all. For example, astrophysicists now know that the values of the four fundamental forces—gravity, the electromagnetic force, and the “strong” and “weak” nuclear forces—were determined less than one millionth of a second after the big bang. Alter any one value and the universe could not exist. For instance, if the ratio between the nuclear strong force and the electromagnetic force had been off by the tiniest fraction of the tiniest fraction—by even one part in 100,000,000,000,000,000—then no stars could have ever formed at all. Feel free to gulp.
Multiply that single parameter by all the other necessary conditions, and the odds against the universe existing are so heart-stoppingly astronomical that the notion that it all “just happened” defies common sense. It would be like tossing a coin and having it come up heads 10 quintillion times in a row. Really?
Fred Hoyle, the astronomer who coined the term “big bang,” said that his atheism was “greatly shaken” at these developments. He later wrote that “a common-sense interpretation of the facts suggests that a super-intellect has monkeyed with the physics, as well as with chemistry and biology . . . . The numbers one calculates from the facts seem to me so overwhelming as to put this conclusion almost beyond question.”
Theoretical physicist Paul Davies has said that “the appearance of design is overwhelming” and Oxford professor Dr. John Lennox has said “the more we get to know about our universe, the more the hypothesis that there is a Creator . . . gains in credibility as the best explanation of why we are here.”
The greatest miracle of all time, without any close seconds, is the universe. It is the miracle of all miracles, one that ineluctably points with the combined brightness of every star to something—or Someone—beyond itself.

Mr. Metaxas is the author, most recently, of “Miracles: What They Are, Why They Happen, and How They Can Change Your Life” ( Dutton Adult, 2014).

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑