Category: VARIABLES (page 2 of 4)

Ramblings of an Insomniac Sagittarius ~ Virtual Reality & the Light at the End of the Tunnel ~ By Greg Giles





Ramblings of an Insomniac Sagittarius


So what's keeping me up tonight?


Well, it's this light; you know the one, the bright light at the end of the tunnel that so many report after a near-death experience. I think about that light a lot, and it's no wonder really as, although our world is full of countless mysteries, there aren’t too many that are as incredible to think about then the question of life after death. One of my favorite pastimes is to try to picture just what it is exactly that awaits us at the end of our current lives, and at the end of that lighted tunnel. 


Firstly, let's take a cursory look at the odds that there is something for us after this lifetime. At minimum it's a 50-50 shot, as either there is something after here or there isn't. But we can go beyond that and adjust those odds a bit by adding variables to our equation.

Let's consider the countless reports of an afterlife witnessed during a near-death experience. If just one of these reports is accurate-just one mind you, then the odds that something awaits us after this lifetime shifts dramatically, wouldn't you say?


Aside from that, we can add as a variable the incredible long shots necessary for life as we know it to come into being. These long shots certainly shift our odds considerably, and I must say it’s quite refreshing and enjoyable to stand on the short-shot side for once.

Another piece of evidence we would be remiss not to examine is a piece of evidence that is certainly the largest and for me, the most obvious, yet I believe it is the single piece of evidence that is more commonly overlooked when examining the life after death question; our visible universe itself. Just think about it for a moment; does this incredible, remarkable, miraculous, gorgeous, mysterious and seemingly boundless kingdom resemble in any way an accident? Or does it resemble more a product of conscious and purposeful creation? 


When I look around, especially when I look up, I am left with absolutely no doubt that all and everything is a product of intelligent design. So for me, the odds are astoundingly good there awaits us something incredible, something miraculous, and for me, something so exciting to think about. I think a lot of us may lose sight of that sometimes.


So, what is it then that awaits us? Let's start off with what is, for me, but perhaps not you, the most hellish possibility. If the bright light at the end of the tunnel is a hospital delivery room and we are immediately born right back into this world, well then, I would have to say that all those biblical stories about hell are true. 


But moving on to more positive possibilities of the white light at the end of the tunnel, I feel a very good possibility would be that the white light that we are seeing is actually our eyes filling with light as we remove a virtual reality headset. You may feel that this is kind of an odd possibility, but I feel it is a very real possible that all of us are playing an Earth-sized virtual reality game, an MMORPG, or massively multiplayer online role-playing game, not unlike World of Warcraft. 
Playing World of Warcraft



Can you imagine that? Just imagine, at the end of your life here, you experience the sensation of someone somewhere helping you pull from your head a virtual reality headset as your eyes fill with the bright light of a room, possibly even your very own bedroom, somewhere, sometime. Where could that possibly be, and what can our reallives possibly be like?  


Just think about for a moment. If our lives are constructs of a super advanced virtual reality game, just imagine what our genuine reality could be like. It could be absolutely unidentifiable to the lives we are now living. We could be living eternal and incredible lives humans currently reserve only for gods. Wouldn't that be wonderful? Wouldn't that be miraculous? And I see all this as a very plausible possibility. I even see this possibility as the most plausible, as amazing as that may seem.  


Now, if we are currently living a reality that is completely removed from our true reality, then how would we have entered this virtual state? We must enter it somehow, and we aren’t getting hit over the head with a brick like in an Ignatz and Krazy Kat cartoon. No, there must be some kind of process we go through to enter this state of reality, and I feel it’s likely we utilize some kind of virtual reality technology, even if that technology is largely natural, meaning we utilize our minds more than we rely on technology. Nonetheless, I believe that we are using some kind of virtual reality to enter this reality, this MMORPG. 

Ignatz & Krazy Kat ~ Probably one of the reasons we are playing this virtual reality game


Just sitting here at the computer sharing my thoughts about this with you causes my mind to stir, and I see I’m going to be up very late tonight as I lie in bed pondering all of this, but I can't think of a better reason to miss a little sleep.

Greg Giles

View Article Here Read More

Mysteries of the Early Human Ancestors #1 ~ Why did we grow large brains?

Human brains are about three times as large as those of our early australopithecines ancestors that lived 4 million to 2 million years ago, and for years, scientists have wondered how our brains got so big. A new study suggests social competition could be behind the increase in brain size. Credit NIH, NADA

livescience.com

There are many ways to try to explain why human brains today are so big compared to those of early humans, but the major cause may be social competition, new research suggests. 

But with several competing ideas, the issue remains a matter of debate. 

Compared to almost all other animals, human brains are larger as a percentage of body weight. And since the emergence of the first species in our Homo genus (Homo habilis) about 2 million years ago, the human brain has doubled in size. And when compared to earlier ancestors, such as australopithecines that lived 4 million to 2 million years ago, our brains are three times as large. For years, scientists have wondered what could account for this increase.

The three major hypotheses have focused on climate change, the demands of ecology, and social competition. A new statistical analysis of data on 175 fossil skulls supports the latter hypothesis. 

Behind the hypotheses

The climate idea proposes that dealing with unpredictable weather and major climate shifts may have increased the ability of our ancestors to think ahead and prepare for these environmental changes, which in turn led to a larger, more cognitively adept brain.
The ecology hypothesis states that, as our ancestors migrated away from the equator, they encountered environmental changes, such as less food and other resources. "So you have to be a little bit more clever to figure it out," said David Geary, a professor from the University of Missouri. Also, less parasite exposure could have played a role in the makings of a bigger brain. When your body combats parasites, it cranks up its immune system, which uses up calories that could have gone to boost brain development. Since there are fewer parasites farther away from the equator, migrating north or south could have meant that our predecessors had more opportunity to grow a larger brain because their bodies were not fighting off as many pathogens.


Finally, other researchers think that social competition for scarce resources influenced brain size. As populations grow, more people are contesting for the same number of resources, the thinking goes. Those with a higher social status, who are "a little bit smarter than other folks" will have more access to food and other goods, and their offspring will have a higher chance of survival, Geary said.


Those who are not as socially adept will die off, pushing up the average social "fitness" of the group. "It's that type of process, that competition within a species, for status, for control of resources, that cycles over and over again through multiple generations, that is a process that could easily explain a very, very rapid increase in brain size," Geary said.

Weighing the options

To examine which hypothesis is more likely, Geary and graduate student Drew Bailey analyzed data from 175 skull fossils — from humans and our ancestors — that date back to sometime between 10,000 ago and 2 million years ago.


The team looked at multiple factors, including how old the fossils were, where they were found, what the temperature was and how much the temperature varied at the time the Homo species lived, and the level of parasites in the area. They also looked at the population density of the region in order to measure social competition, "assuming that the more fossils you find in a particular area at a particular time, the more likely the population was larger," Geary said.


They then used a statistical analysis to test all of the variables at once to see how well they predicted brain size. "By far the best predictor was population density," Geary said. "And in fact, it seemed that there was very little change in brain size across our sample of fossil skulls until we hit a certain population size. Once that population density was hit, there was a very quick increase in brain size," he said.


Looking at all the variables together allowed the researchers to "separate out which variables are really important and which variables may be correlated for other reasons," added Geary. While the climate variables were still significant, their importance was much lower than that of population density, he said. The results were published in the March 2009 issue of the journal Human Nature.


Questions linger

The social competition hypothesis "sounds good," said Ralph Holloway, an anthropologist at Columbia University, who studies human brain evolution. But, he adds: "How would you ever go about really testing that with hard data?" 

He points out that the sparse cranium data "doesn’t tell you anything about the differences in populations for Homo erectus, or the differences in populations of Neanderthals." For example, the number of Homo erectus crania that have been found in Africa, Asia, Indonesia and parts of Europe is fewer than 25, and represent the population over hundreds of thousands of years, he said. 

"You can't even know the variation within a group let alone be certain of differences between groups," Holloway said. Larger skulls would be considered successful, but "how would you be able to show that these were in competition?" 

However, Holloway is supportive of the research. "I think these are great ideas that really should be pursued a little bit more," he said. 

Alternative hypotheses

Holloway has another hypothesis for how our brains got so big. He thinks that perhaps increased gestation time in the womb or increased dependency time of children on adults could have a played role. The longer gestation or dependency time "would have required more social cooperation and cognitive sophistication on the part of the parents," he said. Males and females would have needed to differentiate their social roles in a complementary way to help nurture the child. The higher level of cognition needed to perform these tasks could have led to an increase in brain size.


Still other hypotheses look at diet as a factor. Some researchers think that diets high in fish and shellfish could have provided our ancestors with the proper nutrients they needed to grow a big brain.
And another idea is that a decreased rate of cell death may have allowed more brain neurons to be synthesized, leading to bigger noggins. 

Ultimately, no theory can be absolutely proven, and the scant fossil record makes it hard to test hypotheses. "If you calculate a generation as, let's say, 20 years, and you know that any group has to have a minimal breeding size, then the number of fossils that we have that demonstrates hominid evolution is something like 0.000001 percent," Holloway said. "So frankly, I mean, all hypotheses look good."

View Article Here Read More

David Wilcock – The Solar System Is Moving Into A New Area Of Vibration

According to the research of David Wilcock, there is an impending shift going on within our solar system that will give us all the opportunity to make a quantum leap in consciousness.I was watching a "Contact In The Desert" video featuringDavid Wilcock and he brought up some information that is quite fascinating.The following is an excerpt from "The Brown Notebook" which is a channeling from Walt Rogers that was done in the 1950's.   Much of what was channeled is proving to be tr [...]

View Article Here Read More

Results of the Facebook Psychological Experiment





The following research paper was published online June 2, 2014

Experimental evidence of massive-scale emotional contagion through social networks

pnas.org

  1. Adam D. I. Kramera,1,
  2. Jamie E. Guillory,2, and
  3. Jeffrey T. Hancock,c
  1. aCore Data Science Team, Facebook, Inc., Menlo Park, CA 94025; and
  2. Departments of Communication and
  3. cInformation Science, Cornell University, Ithaca, NY 14853
  1. Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved March 25, 2014 (received for review October 23, 2013) 


Significance

We show, via a massive ( = 689,003) experiment on Facebook, that emotional states can be transferred to others via emotional contagion, leading people to experience the same emotions without their awareness. We provide experimental evidence that emotional contagion occurs without direct interaction between people (exposure to a friend expressing an emotion is sufficient), and in the complete absence of nonverbal cues.

Abstract

Emotional states can be transferred to others via emotional contagion, leading people to experience the same emotions without their awareness. Emotional contagion is well established in laboratory experiments, with people transferring positive and negative emotions to others. Data from a large real-world social network, collected over a 20-y period suggests that longer-lasting moods (e.g., depression, happiness) can be transferred through networks [Fowler JH, Christakis NA (2008) BMJ 337:a2338], although the results are controversial. In an experiment with people who use Facebook, we test whether emotional contagion occurs outside of in-person interaction between individuals by reducing the amount of emotional content in the News Feed. When positive expressions were reduced, people produced fewer positive posts and more negative posts; when negative expressions were reduced, the opposite pattern occurred. These results indicate that emotions expressed by others on Facebook influence our own emotions, constituting experimental evidence for massive-scale contagion via social networks. This work also suggests that, in contrast to prevailing assumptions, in-person interaction and nonverbal cues are not strictly necessary for emotional contagion, and that the observation of others’ positive experiences constitutes a positive experience for people.


Emotional states can be transferred to others via emotional contagion, leading them to experience the same emotions as those around them. Emotional contagion is well established in laboratory experiments (1), in which people transfer positive and negative moods and emotions to others. Similarly, data from a large, real-world social network collected over a 20-y period suggests that longer-lasting moods (e.g., depression, happiness) can be transferred through networks as well (2, 3).

The interpretation of this network effect as contagion of mood has come under scrutiny due to the study’s correlational nature, including concerns over misspecification of contextual variables or failure to account for shared experiences (4, 5), raising important questions regarding contagion processes in networks. An experimental approach can address this scrutiny directly; however, methods used in controlled experiments have been criticized for examining emotions after social interactions. Interacting with a happy person is pleasant (and an unhappy person, unpleasant). As such, contagion may result from experiencing an interaction rather than exposure to a partner’s emotion. Prior studies have also failed to address whether nonverbal cues are necessary for contagion to occur, or if verbal cues alone suffice. Evidence that positive and negative moods are correlated in networks (2, 3) suggests that this is possible, but the causal question of whether contagion processes occur for emotions in massive social networks remains elusive in the absence of experimental evidence. Further, others have suggested that in online social networks, exposure to the happiness of others may actually be depressing to us, producing an “alone together” social comparison effect (6).

Three studies have laid the groundwork for testing these processes via Facebook, the largest online social network. This research demonstrated that (i) emotional contagion occurs via text-based computer-mediated communication (7); (ii) contagion of psychological and physiological qualities has been suggested based on correlational data for social networks generally (7, 8); and (iii) people’s emotional expressions on Facebook predict friends’ emotional expressions, even days later (7) (although some shared experiences may in fact last several days). To date, however, there is no experimental evidence that emotions or moods are contagious in the absence of direct interaction between experiencer and target.

On Facebook, people frequently express emotions, which are later seen by their friends via Facebook’s “News Feed” product (8). Because people’s friends frequently produce much more content than one person can view, the News Feed filters posts, stories, and activities undertaken by friends. News Feed is the primary manner by which people see content that friends share. Which content is shown or omitted in the News Feed is determined via a ranking algorithm that Facebook continually develops and tests in the interest of showing viewers the content they will find most relevant and engaging. One such test is reported in this study: A test of whether posts with emotional content are more engaging.

The experiment manipulated the extent to which people ( = 689,003) were exposed to emotional expressions in their News Feed. This tested whether exposure to emotions led people to change their own posting behaviors, in particular whether exposure to emotional content led people to post content that was consistent with the exposure—thereby testing whether exposure to verbal affective expressions leads to similar verbal expressions, a form of emotional contagion. People who viewed Facebook in English were qualified for selection into the experiment. Two parallel experiments were conducted for positive and negative emotion: One in which exposure to friends’ positive emotional content in their News Feed was reduced, and one in which exposure to negative emotional content in their News Feed was reduced. In these conditions, when a person loaded their News Feed, posts that contained emotional content of the relevant emotional valence, each emotional post had between a 10% and 90% chance (based on their User ID) of being omitted from their News Feed for that specific viewing. It is important to note that this content was always available by viewing a friend’s content directly by going to that friend’s “wall” or “timeline,” rather than via the News Feed. Further, the omitted content may have appeared on prior or subsequent views of the News Feed. Finally, the experiment did not affect any direct messages sent from one user to another.

Posts were determined to be positive or negative if they contained at least one positive or negative word, as defined by Linguistic Inquiry and Word Count software (LIWC2007) (9) word counting system, which correlates with self-reported and physiological measures of well-being, and has been used in prior research on emotional expression (7, 8, 10). LIWC was adapted to run on the Hadoop Map/Reduce system (11) and in the News Feed filtering system, such that no text was seen by the researchers. As such, it was consistent with Facebook’s Data Use Policy, to which all users agree prior to creating an account on Facebook, constituting informed consent for this research. Both experiments had a control condition, in which a similar proportion of posts in their News Feed were omitted entirely at random (i.e., without respect to emotional content). Separate control conditions were necessary as 22.4% of posts contained negative words, whereas 46.8% of posts contained positive words. So for a person for whom 10% of posts containing positive content were omitted, an appropriate control would withhold 10% of 46.8% (i.e., 4.68%) of posts at random, compared with omitting only 2.24% of the News Feed in the negativity-reduced control.

The experiments took place for 1 wk (January 11–18, 2012). Participants were randomly selected based on their User ID, resulting in a total of ∼155,000 participants per condition who posted at least one status update during the experimental period.

For each experiment, two dependent variables were examined pertaining to emotionality expressed in people’s own status updates: the percentage of all words produced by a given person that was either positive or negative during the experimental period (as in ref. 7). In total, over 3 million posts were analyzed, containing over 122 million words, 4 million of which were positive (3.6%) and 1.8 million negative (1.6%).

If affective states are contagious via verbal expressions on Facebook (our operationalization of emotional contagion), people in the positivity-reduced condition should be less positive compared with their control, and people in the negativity-reduced condition should be less negative. As a secondary measure, we tested for cross-emotional contagion in which the opposite emotion should be inversely affected: People in the positivity-reduced condition should express increased negativity, whereas people in the negativity-reduced condition should express increased positivity. Emotional expression was modeled, on a per-person basis, as the percentage of words produced by that person during the experimental period that were either positive or negative. Positivity and negativity were evaluated separately given evidence that they are not simply opposite ends of the same spectrum (8, 10). Indeed, negative and positive word use scarcely correlated [r = −0.04, t(620,587) = −38.01, < 0.001].

We examined these data by comparing each emotion condition to its control. After establishing that our experimental groups did not differ in emotional expression during the week before the experiment (all t < 1.5; all > 0.13), we examined overall posting rate via a Poisson regression, using the percent of posts omitted as a regression weight. Omitting emotional content reduced the amount of words the person subsequently produced, both when positivity was reduced (z = −4.78, < 0.001) and when negativity was reduced (z = −7.219, < 0.001). This effect occurred both when negative words were omitted (99.7% as many words were produced) and when positive words were omitted (96.7%). An interaction was also observed, showing that the effect was stronger when positive words were omitted (z = −77.9, < 0.001).

As such, direct examination of the frequency of positive and negative words would be inappropriate: It would be confounded with the change in overall words produced. To test our hypothesis regarding emotional contagion, we conducted weighted linear regressions, predicting the percentage of words that were positive or negative from a dummy code for condition (experimental versus control), weighted by the likelihood of that person having an emotional post omitted from their News Feed on a given viewing, such that people who had more content omitted were given higher weight in the regression. When positive posts were reduced in the News Feed, the percentage of positive words in people’s status updates decreased by B = −0.1% compared with control [t(310,044) = −5.63, < 0.001, Cohen’s d = 0.02], whereas the percentage of words that were negative increased by B = 0.04% (t = 2.71, = 0.007, d = 0.001). Conversely, when negative posts were reduced, the percent of words that were negative decreased by = −0.07% [t(310,541) = −5.51, < 0.001, d = 0.02] and the percentage of words that were positive, conversely, increased by = 0.06% (t = 2.19, < 0.003, d = 0.008).

The results show emotional contagion. As Fig. 1 illustrates, for people who had positive content reduced in their News Feed, a larger percentage of words in people’s status updates were negative and a smaller percentage were positive. When negativity was reduced, the opposite pattern occurred. These results suggest that the emotions expressed by friends, via online social networks, influence our own moods, constituting, to our knowledge, the first experimental evidence for massive-scale emotional contagion via social networks (3, 7, 8), and providing support for previously contested claims that emotions spread via contagion through a network.


Fig. 1.


Fig. 1.
Mean number of positive (Upper) and negative (Lower) emotion words (percent) generated people, by condition. Bars represent standard errors.

These results highlight several features of emotional contagion. First, because News Feed content is not “directed” toward anyone, contagion could not be just the result of some specific interaction with a happy or sad partner. Although prior research examined whether an emotion can be contracted via a direct interaction (1, 7), we show that simply failing to “overhear” a friend’s emotional expression via Facebook is enough to buffer one from its effects. Second, although nonverbal behavior is well established as one medium for contagion, these data suggest that contagion does not require nonverbal behavior (7, 8): Textual content alone appears to be a sufficient channel. This is not a simple case of mimicry, either; the cross-emotional encouragement effect (e.g., reducing negative posts led to an increase in positive posts) cannot be explained by mimicry alone, although mimicry may well have been part of the emotion-consistent effect. Further, we note the similarity of effect sizes when positivity and negativity were reduced. This absence of negativity bias suggests that our results cannot be attributed solely to the content of the post: If a person is sharing good news or bad news (thus explaining his/her emotional state), friends’ response to the news (independent of the sharer’s emotional state) should be stronger when bad news is shown rather than good (or as commonly noted, “if it bleeds, it leads;” ref. 12) if the results were being driven by reactions to news. In contrast, a response to a friend’s emotion expression (rather than news) should be proportional to exposure. A post hoc test comparing effect sizes (comparing correlation coefficients using Fisher’s method) showed no difference despite our large sample size (z = −0.36, = 0.72).

We also observed a withdrawal effect: People who were exposed to fewer emotional posts (of either valence) in their News Feed were less expressive overall on the following days, addressing the question about how emotional expression affects social engagement online. This observation, and the fact that people were more emotionally positive in response to positive emotion updates from their friends, stands in contrast to theories that suggest viewing positive posts by friends on Facebook may somehow affect us negatively, for example, via social comparison (6, 13). In fact, this is the result when people are exposed to less positive content, rather than more. This effect also showed no negativity bias in post hoc tests (z = −0.09, = 0.93).

Although these data provide, to our knowledge, some of the first experimental evidence to support the controversial claims that emotions can spread throughout a network, the effect sizes from the manipulations are small (as small as d = 0.001). These effects nonetheless matter given that the manipulation of the independent variable (presence of emotion in the News Feed) was minimal whereas the dependent variable (people’s emotional expressions) is difficult to influence given the range of daily experiences that influence mood (10). More importantly, given the massive scale of social networks such as Facebook, even small effects can have large aggregated consequences (14, 15): For example, the well-documented connection between emotions and physical well-being suggests the importance of these findings for public health. Online messages influence our experience of emotions, which may affect a variety of offline behaviors. And after all, an effect size of d = 0.001 at Facebook’s scale is not negligible: In early 2013, this would have corresponded to hundreds of thousands of emotion expressions in status updates per day.

Acknowledgments

We thank the Facebook News Feed team, especially Daniel Schafer, for encouragement and support; the Facebook Core Data Science team, especially Cameron Marlow, Moira Burke, and Eytan Bakshy; plus Michael Macy and Mathew Aldridge for their feedback. Data processing systems, per-user aggregates, and anonymized results available upon request.

Footnotes

  • 1To whom correspondence should be addressed. Email: akramer@fb.com.
  • 2Present address: Center for Tobacco Control Research and Education, University of California, San Francisco, CA 94143.
  • Author contributions: A.D.I.K., J.E.G., and J.T.H. designed research; A.D.I.K. performed research; A.D.I.K. analyzed data; and A.D.I.K., J.E.G., and J.T.H. wrote the paper.
  • The authors declare no conflict of interest.
  • This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

View Article Here Read More

Languages Are Going Extinct Even Faster Than Species Are



 huffingtonpost.com

The world's roughly 7000 known languages are disappearing faster than species, with a different tongue dying approximately every 2 weeks. Now, by borrowing methods used in ecology to track endangered species, researchers have identified the primary threat to linguistic diversity: economic development. Though such growth has been shown to wipe out language in the past on a case-by-case basis, this is the first study to demonstrate that it is a global phenomenon, researchers say.

Many people know about the threatened polar bear and extinct passenger pigeon, but few have heard of endangered and extinct languages such as Eyak in Alaska, whose last speaker died in 2008, or Ubykh in Turkey, whose last fluent speaker died in 1992, says Tatsuya Amano, a zoologist at the University of Cambridge in the United Kingdom and lead author of the new study. It’s well known that economic growth or the desire to achieve it can drive language loss, he notes—dominant languages such as Mandarin Chinese and English are often required for upward mobility in education and business, and economic assistance often encourages recipients to speak dominant languages. Whereas specific case studies demonstrate such forces at work, such as the transition from Cornish to English in the United Kingdom and from Horom to English in Nigeria, this is the first study to examine losses worldwide and rank economic growth alongside other possible influences, he says.

Data on the number and location of surviving fluent speakers of endangered languages are scant, but Amano and colleagues used the most complete source available—an online repository called Ethnologue—for their analysis, he says. From the database, the group was able to calculate the geographical range, number of speakers, and rate of speaker decline for languages worldwide and map that data within square grid cells roughly 190 km across, spanning the entire globe. Although they were able to obtain information about the range and number of speakers for more than 90% of the world’s estimated 6909 languages, they could only glean details about the rate of decline or growth for 9%, or 649, of those languages, Amano notes.

Next, they looked for correlations between language loss and factors such as a country's gross domestic product and levels of globalization as calculated by an internationally recognized index. In addition, they examined environmental factors such as altitude, which might contribute to language loss by affecting how easily communities can communicate and travel.

Of all the variables tested, economic growth was most strongly linked to language loss, Amano says. Two types of language loss hotspots emerged from the study, published online today in the Proceedings of the Royal Society B. One was in economically well developed regions such as northwestern North America and northern Australia; a second was in economically developing regions such as the tropics and the Himalayas. Certain aspects of geography seemed to act as a buffer or threat, Amano says. For example, recent declines appear to occur faster in temperate climates than in the tropics or mountainous regions—perhaps because it is easier to travel in and out of temperate regions, Amano says. More research is necessary to determine precisely what it is about economic development that kills languages, he adds. Figuring out how growth interacts with other factors such as landscape is the next step, he says.

"This is the first really solid statistical study I've seen which shows principles about language decline that we've know about, but hadn't been able to put together in a sound way," says Leanne Hinton, a linguist at the University of California, Berkeley. Economics is far from the whole story, however, she says. In the United States, for example, current attitudes toward endangered tongues stem in large part from historical policies that forced young American Indians to eschew their native tongues in order to learn English, she says. Generations of disease, murder, and genocide—both historic and present, in some regions—have also played an important role and were not included in the new study's analysis, she says.

Although the study is silent on the subject of interventions to help preserve endangered languages, there is a range of revitalization efforts that can serve as examples, such as the incorporation of the Hawaiian language into school curricula and daily government operations, she says.
This story has been provided by AAAS, the non-profit science society, and its international journal, Science.

View Article Here Read More

Kris Won: Sasha, from the spaceship "Tulya"

{mainvote}

Kris Won, March 4, 2012

Sasha, from the spaceship "Tulya"

Greetings to all our brothers and sisters of Mother Earth.

We come from another, more or less distant, planet; for some it may be very far, for others we ...

View Article Here Read More

Message from the Councils of Light 2/17/12

{mainvote}

Posted: 17 Feb 2012

Hold to Howard Hughes’ ‘A few Principles of Thought’. There are 21 councils that exist and take a leading role in the affairs of your planet. We, in turn, voice our concerns and our opi...

View Article Here Read More

Message from the Galactic Federation of Light 2/2/12

{mainvote}

The way in which humanity handles their time in the coming days ahead will affect how they will experience the days between now and ascension. Be that as many variables are in place, humanity is in the position to alter their exp...

View Article Here Read More

Saturday’s Joyride

{mainvote}

By Greg Giles

Friday, February 3, 2012  

By now you may have heard about the possibility of a Saturday rendezvous that may see over one hundred Earth citizens board the Starship Neptune for a ten day field trip through ...

View Article Here Read More

Empathy and Energetic Transmutation – Processing Emotion for the Collective – In Response to Occupy Wall Street

{mainvote}

22 October 2011

Channeler: Rachael Ehrlund

Stepping into our Strength by Acknowledging our Challenges.

-

My introduction into the realm of “all that is” was the exploration of my empathic ability. Upon refl...

View Article Here Read More

It is not enough to “look” for wisdom. Wisdom comes only when you stop looking for it and start truly living the life the Creator intended for you.

It is not enough to “look” for wisdom.  Wisdom comes only when you stop looking for it and start truly living the life the Creator intended for you.

View Article Here Read More

HATONN: Recognizing YOUR Purpose Helps The Larger Plan

HATONN: Recognizing YOUR Purpose Helps The Larger Plan 7/31/99 – Gyeorgos Ceres Hatonn Good afternoon, my scribe. It is I, Gyeorgos Ceres Hatonn, come in Service to The One Light, Creator God. I have … Continue reading

View Article Here Read More

VIOLINIO GERMAIN AND GYEORGOS CERES HATONN/ATON I ask that you stamp these next words upon your Consciousness with indelible ink:

VIOLINIO GERMAIN AND GYEORGOS CERES HATONN/ATON I ask that you stamp these next words upon your Consciousness with indelible ink: 1. The MOST IMPORTANT THING in life is what you … Continue reading

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑