Tag: weigh (page 1 of 4)

Göbekli Tepe: The Burying Of An Ancient Megalithic Site

Dr. Rita Louise, GuestWhy Did Our Ancestors Inter This Ancient Massive Architectural Wonder?Located at the highest point of the Germus range in the southeastern Anatolia region of Turkey is the mysterious site of Göbekli Tepe. Excavations at Göbekli Tepe commenced in 1995 after German archaeologist Klaus Schmidt realized what was thought to be a Byzantine cemetery was actually a prehistoric site. Schmidt quickly unearthed a number of T-shaped pillars, which set th [...]

View Article Here Read More

Aliens Might Weigh As Much As Polar Bears And Be Taller Than The Tallest Man Who Ever Lived





Excerpt from huffingtonpost.com

No one really knows whether we're alone or if the universe is brimming with brainy extraterrestrials. But that hasn't stopped scientists from trying to figure out what form intelligent aliens might take. 

And as University of Barcelona cosmologist Dr. Fergus Simpson argues in a new paper, most intelligent alien species would likely exceed 300 kilograms (661 pounds)--with the median body mass "similar to that of a polar bear."

If such a being had human proportions, Simpson told The Huffington Post in an email, it would be taller than Robert Wadlow, who at 8 feet, 11 inches is believed to have been the tallest human who ever lived.

robert wadlowRobert Wadlow (1918-1940), the tallest man who ever lived.


Simpson's paper, which is posted on the online research repository arXiv.org, is chockablock with formidable-looking mathematical equations. But as he explained in the email, his starting point was to consider the relationship between the number of individuals in a population on Earth and the body mass of those individuals:
"Ants easily outnumber us because they are small. Our larger bodies require a much greater energy supply from the local resources, so it would be impossible for us to match the ant population. Now apply this concept to intelligent life across the universe. On average, we should expect physically larger species to have fewer individuals than the smaller species. And, just like with countries, we should expect to be in one of the bigger populations. In other words, we are much more likely to find ourselves to be the ants among intelligent species."

Or, as Newsweek explained Simpson's argument, there are probably more planets with relatively small animals than planets with relatively large animals. It makes sense to assume that Earth is in the former category, so we can assume that humans are probably among the smaller intelligent beings.


What do other scientists make of Simpson's paper?

“I think the average size calculation is reasonable,” Dr. Duncan Forgan, an astrobiologist at the University of St. Andrews in Scotland who wasn't involved in the research, told Newsweek.
But to Dr. Seth Shostak, senior astronomer at the SETI Institute in Mountain View, Calif., the argument is suspect.

"There is an assumption here that intelligence can come in all (reasonable) sizes, and does so with more or less equal likelihood," Shostak told The Huffington Post in an email. "That may be true, but on Earth bigger has not always been better, at least in the brains department. Dolphins have higher IQs than whales, and crows are smarter than eagles. Octopuses are cleverer than giant squids, and obviously we’re smarter than polar bears."

Ultimately, Shostak said, we can’t know whether "little green men are actually big green men" before we actually make contact.
Until then!

View Article Here Read More

Top Secret Government Programs That Your Not Supposed To Know About

Originally Posted at in5d.com The following is the alleged result of the actions of one or more scientists creating a covert, unauthorized notebook documenting their involvement with an Above Top Secret government program. Government publications and information obtained by the use of public tax monies cannot be subject to copyright. This document is released into the public domain for all citizens of the United States of America. THE ‘MAJIC PROJECTS’ SIGMA is the project whic [...]

View Article Here Read More

Rosetta Coming Closer to Comet 67P ~ Philae Lander Still Snoozing Away


Rosetta photo of Comet 67P/C-G.
March 9 Rosetta was 45 miles from Comet 67P/C-G when it photographed the comet’s head ringed with a halo of gas and dust. These jets extend from active areas of the comet’s surface and will become much more prominent over the next few months as the comet approaches the sun.


Excerpt from dailytimesgazette.com

Astronomers have been on a mission to tail a slow moving comet in the outer space. Their mission started early last 2014, and they are getting better observations than they thought they would.
The comet, Comet 67P, would take 12.4 hours to complete one rotation in the circular path it’s moving in. Controllers of Rosetta are noticing that the icy ball approximately a second every day before it completes a rotation. The flight director of Rosetta – Andrea Accomazzo, said that, “The gas jets coming out of the comet, are acting like thrusters and are slowing down the comet.”
During the Royal Aeronautical Society in London earlier this week, the European Space Agency officially revealed some juicy details on how their team learned to maneuver Rosetta to fly precisely around the massive astral body. Comet 67P is said to weigh 10-billion tons with 4-km size in width.

The controllers and navigators use the landmark-method on the comet to understand its rotation. The team is moving around the outer space relying only on the information provided by the model. Both the model and information guides them in accurately projecting the trajectory of the satellite in the best position.

As they were trying out the model, the ESA team noticed that the landmarks were not following the usual track at the expected time.
During September 2014, the team were determined and very convinced that comet’s rotation period lengthen by 33 milliseconds per day. At present, the comet is approaching the Sun. As it does, it releases great volumes of gas and dust as a result of the so-called Spin-Down effect; further lengthening the rotation period to a second per day.

Accomazzo clarified that Comet 67P is not going to slow down in a slow motion. But its current speed allows them achieve the great magnitude of accuracy in navigating the spacecraft around the comet.

Rosetta made significant observations of the comet last December and January as it moves like an orbit within 30 km distance from the comet. However, this movement is no longer going to happen because Rosetta has retreated from the comet as the gas and dust are being released.

But it does them well as Accomazzo said that, “The aerodynamic effects are now more and more important. The jets are getting stronger and stronger… To give you an idea, these gases come out of the comet for a few kilometers and are moving at 800 meters per second. We definitely have to take this into account. We are a big spacecraft with 64 square meter s of solar panels. We’re like a big sail.”

The trackers were confused during the recent weeks because they have mistaken the dust particles for stars. It was due to the fact that the dusts in the atmosphere were moving around the comet.

Now, Rosetta is using its propulsion system to move in a hyperbolic orbital rotation around Comet 67P. It approaches the comet no closer than 60 to 70 km. With the slowdown of the comet, the ESA team is planning to fly closer.

They were estimating a flight as close as 20 km to get a better look at the surface of the comet and find their lost landing probe, Philae. They lost contact with the robotic probe since November 12 due to lost battery power only days after it successfully landed on the comet.

The slowdown gives them an opportunity to search for Philae. As it moves closer to the Sun, lighting conditions are definitely better than their previous runs. The controllers are now calling onto Philae using radio shout outs.

Philae is solar powered so the team hopes that enough solar energy falls on the panels awaking the probe. But one problem still persist, “The problem is that even if Philae hears Rosetta, it has to have enough charge to turn on its radio transmitter.”

The flight director is quite doubtful if Philae will be awakening. Andrea suggested, “I put it at 50-50, but I will be the happiest person in the world if it happens,”

Their mission achieved great progress and observation of a comet. The team is wishing for better things as the 67P slow down leaving them with more advantage

View Article Here Read More

Biologists fear DNA editing procedure can alter human DNA




Excerpt from themarketbusiness.com

A group of biologists was alarmed with the use a new genome-editing technique to modify human DNA in a way that it can become hereditary.
The biologists worry that the new technique is so effective and easy to use that some physicians may push ahead with it before its safety can be weigh up. They also want the public to understand the ethical issues surrounding the technique, which could be used to cure genetic diseases, but also to enhance qualities like beauty or intelligence. The latter is a path that many ethicists believe should never be taken.


“You could exert control over human heredity with this technique, and that is why we are raising the issue,” said David Baltimore, a former president of the California Institute of Technology and a member of the group whose paper on the topic was published in the journal Science.

Ethicists have been concerned for decades about the dangers of altering the human germ line — meaning to make changes to human sperm, eggs or embryos that will last through the life of the individual and be passed on to future generations. Until now, these worries have been theoretical. But a technique invented in 2012 makes it possible to edit the genome precisely and with much greater ease. The technique has already been used to edit the genomes of mice, rats and monkeys, and few doubt that it would work the same way in people.

The new genome-editing technique holds the power to repair or enhance any human gene. “It raises the most fundamental of issues about how we are going to view our humanity in the future and whether we are going to take the dramatic step of modifying our own germline and in a sense take control of our genetic destiny, which raises enormous peril for humanity,” said George Daley, a stem cell expert at Boston Children’s Hospital and a member of the group.

The biologists writing in Science support continuing laboratory research with the technique, and few if any scientists believe it is ready for clinical use. Any such use is tightly regulated in the United States and Europe. American scientists, for instance, would have to present a plan to treat genetic diseases in the human germline to the Food and Drug Administration.

The paper’s authors, however, are concerned about countries that have less regulation in science. They urge that “scientists should avoid even attempting, in lax jurisdictions, germ line genome modification for clinical application in humans” until the full implications “are discussed among scientific and governmental organizations.”

Though such a moratorium would not be legally enforceable and might seem unlikely to exert global sway, there is a precedent. In 1975, scientists worldwide were asked to refrain from using a method for manipulating genes, the recombinant DNA technique, until rules had been established.

“We asked at that time that nobody do certain experiments, and in fact nobody did, to my knowledge,” said Baltimore, who was a member of the 1975 group. “So there is a moral authority you can assert from the U.S., and that is what we hope to do.”

Recombinant DNA was the first in a series of ever-improving steps for manipulating genetic material. The chief problem has always been one of accuracy, of editing the DNA at precisely the intended site, since any off-target change could be lethal. Two recent methods, known as zinc fingers and TAL effectors, came close to the goal of accurate genome editing, but both are hard to use. The new genome-editing approach was invented by Jennifer Doudna of the University of California, Berkeley, and Emmanuelle Charpentier of Umea University in Sweden.

Their method, known by the acronym Crispr-Cas9, co-opts the natural immune system with which bacteria remember the DNA of the viruses that attack them so they are ready the next time those same invaders appear. Researchers can simply prime the defense system with a guide sequence of their choice and it will then destroy the matching DNA sequence in any genome presented to it. Doudna is the lead author of the Science article calling for control of the technique and organized the meeting at which the statement was developed.

Though highly efficient, the technique occasionally cuts the genome at unintended sites. The issue of how much mistargeting could be tolerated in a clinical setting is one that Doudna’s group wants to see thoroughly explored before any human genome is edited.

Scientists also say that replacing a defective gene with a normal one may seem entirely harmless but perhaps would not be.
“We worry about people making changes without the knowledge of what those changes mean in terms of the overall genome,” Baltimore said. “I personally think we are just not smart enough — and won’t be for a very long time — to feel comfortable about the consequences of changing heredity, even in a single individual.”
Many ethicists have accepted the idea of gene therapy, changes that die with the patient, but draw a clear line at altering the germline, since these will extend to future generations. The British Parliament in February approved the transfer of mitochondria, small DNA-containing organelles, to human eggs whose own mitochondria are defective. But that technique is less far-reaching because no genes are edited.

There are two broad schools of thought on modifying the human germline, said R. Alta Charo, a bioethicist at the University of Wisconsin and a member of the Doudna group. One is pragmatic and seeks to balance benefit and risk. The other “sets up inherent limits on how much humankind should alter nature,” she said. 
Some Christian doctrines oppose the idea of playing God, whereas in Judaism and Islam there is the notion “that humankind is supposed to improve the world.” She described herself as more of a pragmatist, saying, “I would try to regulate such things rather than shut a new technology down at its beginning.”

Other scientists agree with the Doudna group’s message.
“It is very clear that people will try to do gene editing in humans,” said Rudolf Jaenisch, a stem cell biologist at the Whitehead Institute in Cambridge, Massachusetts, who was not a member of the Doudna group. “This paper calls for a moratorium on any clinical application, which I believe is the right thing to do.”
Writing in Nature last week, Edward Lanphier and other scientists involved in developing the rival zinc finger technique for genome editing also called for a moratorium on human germline modification, saying that use of current technologies would be “dangerous and ethically unacceptable.”

The International Society for Stem Cell Research said Thursday that it supported the proposed moratorium.

The Doudna group calls for public discussion but is also working to develop some more formal process, such as an international meeting convened by the National Academy of Sciences, to establish guidelines for human use of the genome-editing technique.

“We need some principled agreement that we want to enhance humans in this way or we don’t,” Jaenisch said. “You have to have this discussion because people are gearing up to do this.”

View Article Here Read More

Is playing ‘Space Invaders’ a milestone in artificial intelligence?





Excerpt from latimes.com

Computers have beaten humans at chess and "Jeopardy!," and now they can master old Atari games such as "Space Invaders" or "Breakout" without knowing anything about their rules or strategies.

Playing Atari 2600 games from the 1980s may seem a bit "Back to the Future," but researchers with Google's DeepMind project say they have taken a small but crucial step toward a general learning machine that can mimic the way human brains learn from new experience.

Unlike the Watson and Deep Blue computers that beat "Jeopardy!" and chess champions with intensive programming specific to those games, the Deep-Q Network built its winning strategies from keystrokes up, through trial and error and constant reprocessing of feedback to find winning strategies.

Image result for space invaders

“The ultimate goal is to build smart, general-purpose [learning] machines. We’re many decades off from doing that," said artificial intelligence researcher Demis Hassabis, coauthor of the study published online Wednesday in the journal Nature. "But I do think this is the first significant rung of the ladder that we’re on." 
The Deep-Q Network computer, developed by the London-based Google DeepMind, played 49 old-school Atari games, scoring "at or better than human level," on 29 of them, according to the study.
The algorithm approach, based loosely on the architecture of human neural networks, could eventually be applied to any complex and multidimensional task requiring a series of decisions, according to the researchers. 

The algorithms employed in this type of machine learning depart strongly from approaches that rely on a computer's ability to weigh stunning amounts of inputs and outcomes and choose programmed models to "explain" the data. Those approaches, known as supervised learning, required artful tailoring of algorithms around specific problems, such as a chess game.

The computer instead relies on random exploration of keystrokes bolstered by human-like reinforcement learning, where a reward essentially takes the place of such supervision.
“In supervised learning, there’s a teacher that says what the right answer was," said study coauthor David Silver. "In reinforcement learning, there is no teacher. No one says what the right action was, and the system needs to discover by trial and error what the correct action or sequence of actions was that led to the best possible desired outcome.”

The computer "learned" over the course of several weeks of training, in hundreds of trials, based only on the video pixels of the game -- the equivalent of a human looking at screens and manipulating a cursor without reading any instructions, according to the study.

Over the course of that training, the computer built up progressively more abstract representations of the data in ways similar to human neural networks, according to the study.
There was nothing about the learning algorithms, however, that was specific to Atari, or to video games for that matter, the researchers said.
The computer eventually figured out such insider gaming strategies as carving a tunnel through the bricks in "Breakout" to reach the back of the wall. And it found a few tricks that were unknown to the programmers, such as keeping a submarine hovering just below the surface of the ocean in "Seaquest."

The computer's limits, however, became evident in the games at which it failed, sometimes spectacularly. It was miserable at "Montezuma's Revenge," and performed nearly as poorly at "Ms. Pac-Man." That's because those games also require more sophisticated exploration, planning and complex route-finding, said coauthor Volodymyr Mnih.

And though the computer may be able to match the video-gaming proficiency of a 1980s teenager, its overall "intelligence" hardly reaches that of a pre-verbal toddler. It cannot build conceptual or abstract knowledge, doesn't find novel solutions and can get stuck trying to exploit its accumulated knowledge rather than abandoning it and resort to random exploration, as humans do. 

“It’s mastering and understanding the construction of these games, but we wouldn’t say yet that it’s building conceptual knowledge, or abstract knowledge," said Hassabis.

The researchers chose the Atari 2600 platform in part because it offered an engineering sweet spot -- not too easy and not too hard. They plan to move into the 1990s, toward 3-D games involving complex environments, such as the "Grand Theft Auto" franchise. That milestone could come within five years, said Hassabis.

“With a few tweaks, it should be able to drive a real car,” Hassabis said.

DeepMind was formed in 2010 by Hassabis, Shane Legg and Mustafa Suleyman, and received funding from Tesla Motors' Elon Musk and Facebook investor Peter Thiel, among others. It was purchased by Google last year, for a reported $650 million. 

Hassabis, a chess prodigy and game designer, met Legg, an algorithm specialist, while studying at the Gatsby Computational Neuroscience Unit at University College, London. Suleyman, an entrepreneur who dropped out of Oxford University, is a partner in Reos, a conflict-resolution consulting group.

View Article Here Read More

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me


Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.

Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin


Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

View Article Here Read More

Ripples in Space-Time Could Reveal ‘Strange Stars’


Two Neutron Stars Collide
Scene from a NASA animation showing two neutron stars colliding.



Excerpt from
space.com 

By looking for ripples in the fabric of space-time, scientists could soon detect "strange stars" — objects made of stuff radically different from the particles that make up ordinary matter, researchers say.

The protons and neutrons that make up the nuclei of atoms are made of more basic particles known as quarks. There are six types, or "flavors," of quarks: up, down, top, bottom, charm and strange. Each proton or neutron is made of three quarks: Each proton is composed of two up quarks and one down quark, and each neutron is made of two down quarks and one up quark.

In theory, matter can be made with other flavors of quarks as well. Since the 1970s, scientists have suggested that particles of "strange matter" known as strangelets — made of equal numbers of up, down and strange quarks — could exist. In principle, strange matter should be heavier and more stable than normal matter, and might even be capable of converting ordinary matter it comes in contact with into strange matter. However, lab experiments have not yet created any strange matter, so its existence remains uncertain. 


One place strange matter could naturally be created is inside neutron stars, the remnants of stars that died in catastrophic explosions known as supernovas. Neutron stars are typically small, with diameters of about 12 miles (19 kilometers) or so, but are so dense that they weigh as much as the sun. A chunk of a neutron star the size of a sugar cube can weigh as much as 100 million tons.

Under the extraordinary force of this extreme weight, some of the up and down quarks that make up neutron stars could get converted into strange quarks, leading to strange stars made of strange matter, researchers say.

A strange star that occasionally spurts out strange matter could quickly convert a neutron star orbiting it in a binary system into a strange star as well. Prior research suggests that a neutron star that receives a seed of strange matter from a companion strange star could transition to a strange star in just 1 millisecond to 1 second.
Now, researchers suggest they could detect strange stars by looking for the stars' gravitational waves — invisible ripples in space-time first proposed by Albert Einstein as part of his theory of general relativity.

Gravitational waves are emitted by accelerating masses. Really big gravitational waves are emitted by really big masses, such as pairs of neutron stars merging with one another.

Pairs of strange stars should give off gravitational waves that are different from those emitted by pairs of "normal" neutron stars because strange stars should be more compact, researchers said. For instance, a neutron star with a mass one-fifth that of the sun should be more than 18 miles (30 km) in diameter, whereas a strange star of the same mass should be a maximum of 6 miles (10 km) wide.
The researchers suggest that events involving strange stars could explain two short gamma-ray bursts — giant explosions lasting less than 2 seconds — seen in deep space in 2005 and 2007. The Laser Interferometer Gravitational-Wave Observatory (LIGO) did not detect gravitational waves from either of these events, dubbed GRB 051103 and GRB 070201.

Neutron star mergers are the leading explanations for short gamma-ray bursts, but LIGO should, in principle, have detected gravitational waves from such mergers. However, if strange stars were involved in both of these events, LIGO would not have been able to detect any gravitational waves they emitted, researchers said. (The more compact a star is within a binary system of two stars, the higher the frequency of the gravitational waves it gives off.)

View Article Here Read More

Think You Could Live on Mars? Think Again



Excerpt from
time.com

A new analysis of Mars One's plans to colonize the Red Planet finds that the explorers would begin dying within 68 days of touching down


Hear that? That’s the sound of 200,000 reservations being reconsidered. Two hundred thousand is the announced number of intrepid folks who signed up last year for the chance to be among the first Earthlings to colonize Mars, with flights beginning as early as 2024. The catch: the trips will be one way, as in no return ticket, as in farewell friends, family, charbroiled steaks and vodka martinis, to say nothing of such everyday luxuries as modern hospitals and, you know, breathable air.
But the settlers in Jamestown weren’t exactly volunteering for a weekend in Aspen either, and in both cases, the compensations—being the first people on a distant shore—seemed attractive enough. Now, however, the Mars plan seems to have run into a teensy snag. According to a new analysis by a team of grad students at MIT, the new arrivals would begin dying within just 68 days of touching down.


An artist concept of NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Launched in November 2013, the mission will explore the Red Planet’s upper atmosphere, ionosphere and interactions with the sun and solar wind.
The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)
NASA's MAVEN spacecraft, inside a payload fairing, is hoisted to the top of a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Cape Canaveral Air Force Station's Space Launch Complex 41 on Nov. 8, 2013.
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians perform a spin test of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The operation is designed to verify that MAVEN is properly balanced as it spins during the initial mission activities.
Lockheed Martin/NASA

The organizers of the burn-your-boats expedition is a group called Mars One, headed by Bas Lansdorp, a Dutch entrepreneur and mechanical engineer. As Lansdorp sees things, habitat modules and other hardware would be sent to the Red Planet in advance of any astronauts, who would arrive in four-person crews at two-year intervals—when Mars and Earth make their closest approach, which holds the outbound journey to a brief (relatively speaking) eight months. The crew-selection process would be part of (yes) a sponsored reality show, which would ensure a steady flow of cash—and since the settlers would grow their own food onsite, there would be little to carry along with them. All that would keep the overall cost of the project to a shoestring (relative again) $6 billion.

So what could go wrong? That’s what the four MIT students set out to find out, and the short answer is: a lot.

The biggest problem, the students discovered, concerns that business of breathable air. One of the things that’s always made Earth such a niftily habitable place to live is that what animals exhale, plants inhale, and vice versa. Since the Martian astronauts and their crops would be living and respiring in the same enclosed habitats, a perfect closed loop should result in which we provide them all the carbon dioxide they need and they return the favor with oxygen.

Only it doesn’t, the MIT students found. The problem begins with the lettuce and the wheat, both of which are considered essential crops. As lettuce matures, peaking about 30 days after planting, it pushes the 02 level past what’s known as .3 molar fractions, which, whatever it means, doesn’t sound terribly dangerous — except it’s also the point at which the threat of fire rises to unacceptable levels. That risk begins to tail off as the crop is harvested and eaten, but it explodes upward again, far past the .3 level, at 68 days when the far gassier wheat matures.

A simple answer would be simply to vent a little of the excess O2 out, which actually could work, except the venting apparatus is not able to distinguish one gas from another. That means that nitrogen—which would, as on Earth, make up the majority of the astronauts’ atmosphere—would be lost too. That, in turn, would lower the internal pressure to unsurvivable levels—and that’s what gets your 68-day doomsday clock ticking.

There is some question too about whether the hardware that Mars One is counting on would even be ready for prime time. The mission planners make much of the fact that a lot of what they’re planning to use on Mars has already been proven aboard the International Space Station (ISS), which is true enough. But that hardware is built to operate in microgravity—effectively zero g—while Mars’s gravity is nearly 40% of Earth’s. So a mechanical component that would weigh 10 lbs. on Earth can be designed with little concern about certain kinds of wear since it would weigh 0 lbs. in orbit. But on Mars it would be 4 lbs., and that can make all the difference.

“The introduction of a partial gravity environment,” the grad students write, “will inevitably lead to different [environmental] technologies.”

For that and other reasons, technical breakdowns are a certainty. The need for replacement parts is factored into Mars One’s plans, but probably not in the way that they should be. According to the MIT team, over the course of 130 months, spare parts alone would gobble up 62% of the payload space on resupply missions, making it harder to get such essentials as seeds, clothes and medicine—to say nothing of other crew members—launched on schedule.

Then too, there is the question of habitat crowding. It’s easy to keep people alive if you feed them, say, a single calorie-dense food product every day. But energy bars forever means quickly losing your marbles, which is why Mars One plans for a variety of crops—just not a big enough variety. “Given that the crop selection will significantly influence the wellbeing of the crew for the entirety of their lives after reaching Mars,” the authors write, “we opt for crop variety over minimizing growth area.”

Then there is the question of cost—there’s not a space program in history whose initial price tag wasn’t badly lowballed—to say nothing of maintaining that biennial launch schedule, to say nothing of the cabin fever that could soon enough set the settlers at one another’s throats. Jamestown may not have been a picnic, but when things got to be too much you could always go for a walk by the creek.

No creeks here, nor much of anything else either. Human beings may indeed colonize Mars one day, and it’s a very worthy goal. But as with any other kind of travel, the best part of going is often coming home.

View Article Here Read More

What Would You Take With You to the Afterlife? – Life, Death, Out-of-Body Experiences & the Journey of Consciousness




beforeitsnews.com
By Matthew Butler 

People save up for retirement, but how well do we prepare for the journey after? Ancient cultures put great emphasis on the afterlife, because they knew consciousness continued after death. They were right: Out-of-body experiences reveal we really do exist beyond the body. Knowing this truth should inspire us to seek in life what really matters and remains after death – awakened consciousness.

What is the greatest mystery of life? According to a legendary Q&A in the Indian spiritual epic the Mahabharata, the greatest wonder is that countless people die every day, yet those left behind believe they will live forever.
There is a well-known saying that the only certainty in life is death, but our hyper-connected modern society is not exactly inspiring much reflection on what lies beyond the transient.
People put aside savings for retirement, and some take out life insurance to take care of the loved ones they leave behind. This looks after physical needs, but what about the needs of consciousness which continues without the body? What preparations are made for its journey after death – the ultimate journey of a lifetime?
Religious institutions offer a solution to their followers that usually depends on adopting a set of beliefs rather than personal spiritual discovery.  On the other hand, some scientists will tell you with equal conviction that nothing comes after death, so don’t worry about it. Both of these points of view depend on belief, but what if, when the final moment comes, you realise you wasted the great opportunity your life provided? An alternative option is to discover for ourselves why we are here, and what  our place in the universe is, while we are alive and have the opportunity to do something with the knowledge we gain.
Ancient spiritual cultures almost universally placed importance on the individual’s preparations and journey into the afterlife. They clearly understood our existence extended beyond our bodies, and that life and death were best seen with the bigger picture of creation in mind – as part of an ongoing journey of consciousness – with life presenting an amazing opportunity for conscious evolution that we take the fruits from after death.
This was bought home to me in an interesting way during a trip to a museum exhibition showcasing ancient Egyptian afterlife cosmology; it reminded me of the universal nature of the afterlife, and how Near-Death Experiences and Out-of-Body Experiences offer us a glimpse into the reality of existence beyond the body, revealing that awakening consciousness is what creation is really all about.
With our modern culture drifting more and more into shallow short-sighted materialism and faux metaphysics, the need to re-discover and live this deeper purpose to life, so cherished by the ancients, is more important than ever.

A Journey into the Ancient Egyptian Afterlife

A while back I was fortunate to have the opportunity to take a one-way self-guided tour through the ancient Egyptian afterlife, thanks to a special museum exhibition featuring artefacts from the British Museum collection.
The local museum was packed, and we had to wait in a queue before being allowed in. Finally we entered a dimly-lit passage thronging with people, winding past ancient Egyptian artefacts, artworks, tools, scriptures, and mummies.

Geb_Nut_Shu-300x202The exhibit started with depictions of ancient Egyptian cosmology like this. Here the sky goddess is held up above the earth.


It was arranged so that you went on an afterlife “journey” vicariously, stage by stage, in the way the ancient Egyptians understood it. It began with displays showing ancient Egyptian depictions of the world’s creation, and culminated with the judgement of the soul and its journey after death. In between you were shown artefacts demonstrating how ancient Egyptians understood and prepared for death.
There were ancient scrolls of the pyramid texts on display, and ancient art depicting the soul’s journey through the afterlife. A major theme in their art was judgement and the “weighing of the heart”, where a deceased person’s heart was weighed against a feather, and their fate was dependent on their inner qualities and the sum of their actions while alive. Toward the end of the exhibition they had a mockup display of this, with a large set of scales on which you could weigh your “heart” against a feather, while Egyptian Gods looked on from a mural.
After that, you passed into a depiction of the Egyptian paradise before stepping outside into the sunlight. I doubt the effect was intentional on the part of the exhibitors, but after passing through the exhibition’s dark passageway with its ordered depictions of the afterlife, judgment and then stepping into the light, I couldn’t help but think of accounts of near-death experiences, in which people often report passing through a dark tunnel toward the light, and experiencing a life review where they see the consequences of all their actions.

BD_Hunefer_cropped_1-300x231Depiction of the “weighing of the heart”

The exhibit really brought home to me how the ancient Egyptians understood they existed for a purpose that went beyond everyday life. Death was a doorway to the next stage of existence, and their lives were an opportunity to prepare for it. They knew we do not cease to exist when we die, and saw the quest for immortality through awakening consciousness as the real purpose to creation.
From looking at artefacts from different periods, it was apparent the ancient Egyptian understanding of death changed over time. It seemed to me that originally, the emphasis was on living spiritually and obtaining an immortality of the soul, while in later periods their understanding declined into more literal interpretations of preparing the body (rather than consciousness) for the afterlife through mummification, and a preoccupation with the arrangement of one’s burial and tomb with the right spells and amulets.
But I was vividly struck by how through that civilisation’s long and varied existence, the importance of the afterlife always reigned supreme, and being prepared for life after death was absolutely central to existence. Death, and therefore life, was taken very seriously.

I couldn’t help but notice a stark contrast between our modern culture and theirs. It was a bit like being in some kind of time warp, where two very different cultures collided. The artefacts of the Egyptians gave a sense of the sacredness of life and creation, but the bustling, noisy crowds of modern onlookers apparently saw this ancient preoccupation with the afterlife as mere novelty and amusement. How different ancient Egypt was to our modern society where the reality, and inevitability, of death is given little thought or preparation, and the understanding that consciousness continues after death is often summarily discounted and ridiculed.
I highly doubt that many people who attended the exhibition paused to reflect on whether they would continue to exist after death and, if so, how? And why are we here anyway? This was driven home when, just prior to reaching the scales of “judgement”, I noticed a whiteboard, styled with papyrus veneer, with a pertinent question written at the top.

What would you take with you to the afterlife?

Good question. A pen hung from the board, inviting people to write their response underneath. The answers ranged from the sentimental, to the mundane, to the silly.

WP_000293-EDIT1-1024x845How would you answer the question?

Some wanted to take their friends and family with them, while others wanted to take things like their iPhone, make-up, favourite band, football team, favourite rock star, chocolate, alcohol, and so forth.
A “time machine” was perhaps the only clever response. I could see the benefit of that if you realised you had wasted your life. I don’t think it’s really an option however.
This brought home how we don’t take death and the meaning of our lives anywhere near as seriously as we should today. The ancients knew a lot more about life and death than we do. We have lost their ancient wisdom, and with it the understanding of the amazing opportunity our existence in this universe presents.
This is a serious problem. Our consciousness will continue to exist without the body. But if we don’t question our existence and why we are here, we will not awaken consciousness and we will never reach our true potential.

Near-Death Experiences and the Reality of Existence Beyond the Body

Existence after death is not something the ancient Egyptians invented. Concepts of an afterlife are so common across geographically isolated cultures around the world that it cannot simply be dismissed as a coincidence. There may be cultural differences in the details, but the understanding that we continue existing without the body has been pretty much universal for thousands of years.
In fact, the burial of the dead and the realisation of an afterlife are considered some of the most important hallmarks of cultural development in Stone Age people. It was a sign of intelligence distinguishing people from animals, and paved the way for the development of more sophisticated civilisations.

Hieronymus_Bosch_013The medieval painting ‘Ascent of the Blessed’ by Hieronymus Bosch shows the light at the end of the tunnel common to NDE accounts

Near-Death Experiences (NDEs) provide compelling anecdotal evidence that the afterlife mythologies of the world share a real common source and that consciousness exists beyond the brain. In NDEs, people who are clinically dead or close to death go through experiences that follow a pattern with universal traits, which they recall after being revived.
These include an out of body experience, where they leave their body and realise they are separate from it, perhaps seeing their body lying beneath them. Then they may go on a journey, which may feature common aspects like travelling through a tunnel, and a life review, where a person is shown everything they have done, and feels the effects of their actions toward others, whether good or bad.
Although some scientists speculate that these phenomena may be caused by the brain, the reality is that these experiences have occurred when patients are clinically brain dead, and it has not been proven these experiences are produced biologically. Furthermore, there is no ultimate proof that consciousness is produced by the brain anyway, although this is a strongly-held assumption among those entrenched in materialistic beliefs.
NDEs challenge rigid materialistic beliefs about life. In light of the prevalence and commonality of NDEs, some scientists now suggest that consciousness interacts with the brain rather than being produced by it. Rather, the brain is a conduit through which consciousness can express itself, much like the way a computer is a conduit for the internet, but the internet continues to exist when the computer is switched off.
NDEs are increasingly reported in the modern world due to improvements in health care leading to more people being revived, but they are also an ancient phenomenon. Research by the scholar Gregory Shushan found there are universal afterlife experiences which underpinned both modern NDE accounts and ancient afterlife mythologies. His research involved an in-depth comparative analysis of afterlife conceptions of five ancient civilisations (Old and Middle Kingdom Egypt, Sumerian and Old Babylonian Mesopotamia, Vedic India, pre-Buddhist China, and pre-Columbian Mesoamerica) and compared them to modern NDE accounts. He demonstrated that, although there were some variations in the details based on the cultural origin, there were specific recurring similarities that reappeared too consistently to be mere coincidence, suggesting that, “afterlife conceptions are not entirely culturally-determined and… appear to be universal or quasi-universal to some degree”.

Life is an Opportunity to Awaken Consciousness

Realising that you are consciousness, and continue to exist without the body, awakens you to the bigger picture of life. It puts your whole life in perspective.
In an NDE life review, people tend to see that what really matters in life is not how much money they made or what they achieved in a given field, but how they treated other people, and whether they acted with love. These experiences tend to change people’s lives, inspiring them to be more spiritual.
afterlife
Discovering you exist beyond the body can be a life-changing revelation

We do not need to have an NDE to verify that we exist without the body, or to have life-changing experiences. Through astral projection, we can have wilful out of body experiences and use these mystical experiences to learn about ourselves and make positive changes in our lives.
Realising that we exist beyond the body can open the door to awakening. You realise that what really matters in life is not what we gain physically, but developing consciousness. Then the question, “what will you take with you to the afterlife” becomes much more meaningful. You can’t take physical things with you when you die like your iPhone, but you can take consciousness. Then you see that the focus on the afterlife in ancient cultures was not a preoccupation with death, but a deep understanding of life, and how to live it in the most meaningful way to bring spiritual benefits to yourself and others, the effects of which continue after death.
States like anger, greed and hatred have their consequences in the world which are bad enough, but who wants to take these states with them to afterlife? If these states don’t bring happiness here, why drag them along after death? Expressions of consciousness like love, wisdom and inner peace are much  better qualities to carry within. By awakening and expressing consciousness in a world filled with ignorance, hatred and darkness, we not only help to make the world a better place, but continue to carry these spiritual qualities in our consciousness when our body is left behind.
Understanding this is so important today. We live in a society bombarded with elite-controlled propaganda and entertainment that not only hides the darker agendas working in the world, but blankets people in ignorance, keeping us from uncovering the deeper potential of our consciousness and empowering ourselves by striving to awaken – which enables us to break free of the grip of darkness that exerts its influence over humanity. Failing to wake up to this agenda has it implications in the world, and also for our consciousness, and it’s consciousness that really counts, both in life and beyond.
So what would you take with you to the afterlife?

View Article Here Read More

What Would You Take With You to the Afterlife? – Life, Death, Out-of-Body Experiences and the Journey of Consciousness

Matthew Butler, GuestPeople save up for retirement, but how well do we prepare for the journey after? Ancient cultures put great emphasis on the afterlife, because they knew consciousness continued after death. They were right: Out-of-body experiences reveal we really do exist beyond the body. Knowing this truth should inspire us to seek in life what really matters and remains after death – awakened consciousness.What is the greatest mystery of life? According to a legendar [...]

View Article Here Read More

Galactic Federation of Light Hathors May-21-2013

The Hathors of Earth’s Solar Astral Planes: Ascension-Effects, A Rapid Evolution and Fourth Dimensional Growth
by Wes Annac
http://aquariusparadigm.com/2013/05/21/the-hathors-of-earths-solar-astral-planes-ascension-effects-a-rapid-evolution-and-fourth-dimensional-growth/#more-23104

View Article Here Read More

Galactic Federation of Light Hilarion April-21-2013

Hilarion — April 21-28, 2013
Thanks to Oracles and Healers
http://oraclesandhealers.wordpress.com/2013/04/21/hilarion-april-21-28-2013/
Original Link: http://www.therainbowscribe.com/hilarion2013.htm

Beloved Ones,

The times that you are living in are wrought with both the greatest

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑