Tag: wanted (page 3 of 9)

Did Michelangelo conceal brain stem in painting of the Separation of Light from Darkness?






Excerpt from livescience.com

Michelangelo's depiction of God's throat in one panel of his Sistine Chapel fresco is awkward, which is odd for an artist so devoted to the study of anatomy. Now researchers have a theory to explain why: Michelangelo embedded an image of a human brain stem in God’s throat, they find.
The Renaissance artist is known to have studied human anatomy by dissecting cadavers when he was a young man, and continued until late in his 89 years. This practice informed his powerful depictions of the human and the divine. 

But one panel of his Sistine Chapel frescoes contains an oddly lit and awkward image of God's neck and head as seen from below. The light illuminating the neck was different from that of the rest of the painting. Also, God's beard is foreshortened and appears to roll up along the sides of his jaw, and his bulbous neck has prompted speculation that Michelangelo intended to portray God with a goiter, or abnormally enlarged thyroid gland. 

Two researchers – one a neurosurgeon, the other a medical illustrator – writing in the May issue of the journal Neurosurgery have another, more flattering theory. In this panel, which portrays the Separation of Light from Darkness, from the Book of Genesis, Michelangelo embedded a ventral view of the brainstem, they wrote. 

Using a digital analysis, they compared the shadows outlining the features of God’s neck and a photograph of a model of this section of the brain, which connects with the spinal cord, and found a close correspondence. 

This is not the first anatomical image found hidden in the frescoes of the Sistine Chapel. In an article published in 1990, Frank Lynn Meshberger, a gynecologist, identified an outline of the human brain in the Creation of Adam. Among other details, he noted that the shroud surrounding God had the shape of the cerebrum, or the upper part of the brain. A decade later, another researcher pointed out a kidney motif. 

"We speculated that having used the brain motif successfully in the Creation of Adam almost a year earlier, Michelangelo wanted to once again associate the figure of God with a brain motif in the iconographically critical Separation of Light from Darkness," wrote authors Ian Suk, a medical illustrator, and neurosurgeon Rafael Tamargo, both of the Johns Hopkins School of Medicine.

They do point out "the perils of overinterpreting a masterpiece," saying that not all art historians and other viewers will agree with their conclusions. Even so, they say their analysis, along with historical records, backs the interpretation.


View Article Here Read More

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me


Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.

Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin


Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

View Article Here Read More

Scientists Slow Down The Speed Of Light in Lab


Photon race rendering
Two photons, or particles of light approach a finish line used to determine if light can travel at different speeds through the air. Illustration courtesy University of Glasgow

Excerpt from popsci.com


Light passes through air at about 299,000,000 meters per second, an accepted constant that hasn’t been challenged—until now. By manipulating a single particle of light as it passed through free space, researchers have found a way to slow down the speed of light through air.

Scientists have known for a while how fast light passes through different mediums, such as water or glass, and how to slow that speed down. But researchers at the University of Glasgow and Heriot-Watt University decided to take this concept further and see if the speed of light could be changed as it passes through gases.
To make that happen, the team decided to look at individual light particles, or photons. “Measuring with single photons is the cleanest experiment you can get,” Jacquiline Romero, one of the study’s lead authors and a physics professor at the University of Glasgow, tells Popular Science. The group wanted to explicitly establish that different photons have different velocities depending on their placement within a light beam's structure. Depending on where a photon is in a light beam, it has either a slower or faster relative speed. It's similar to a group of runners: Even as the group stays together, the one at the front has to constantly be moving faster than the ones at the side or in the back. Daniel Giovannini, another study lead author from the University of Glasgow, says that researchers have known this for a while, but the team wanted to know just how slow the photons in the 'back of the pack' are moving.

The experiment set out to measure the arrival times of single photons, Romero says. To do that, the researchers passed one photon through a filter, which changed the photon's structure. They then compared the velocity of this photon to an unstructured photon. The researchers were able to decrease the velocity of the structured photon through air by 0.001 percent, which seems quite small, but the amount was not accidental. “We had to try it out and convince ourselves that it can be done and that it’s real,” Giovannini says. He and Romero say they anticipate the results will be divisive, between people who think the conclusion is obvious and those who think it’s a groundbreaking experiment.

The study was published January 23 in Science Express.

View Article Here Read More

Stem Cell Success Raises Hopes of Type 1 Diabetes Cure

In laboratory, researchers have developed insulin-producing beta cellsExcerpt fromnlm.nih.gov THURSDAY, Oct. 9, 2014 (HealthDay News) -- In what may be a step toward a cure for type 1 diabetes, researchers say they've developed a large-scale met...

View Article Here Read More

Move Over Predator Alien: The human eye can see ‘invisible’ infrared light too


The eye can detect light at wavelengths in the visual spectrum. Other wavelengths, such as infrared and ultraviolet, are supposed to be invisible to the human eye, but Washington University scientists have found that under certain conditions, it’s possible for us to see otherwise invisible infrared light. Image: Sara Dickherber

Excerpt from
news.wustl.edu
By Jim Dryden

Any science textbook will tell you we can’t see infrared light. Like X-rays and radio waves, infrared light waves are outside the visual spectrum. 

But an international team of researchers co-led by scientists at Washington University School of Medicine in St. Louis has found that under certain conditions, the retina can sense infrared light after all. 

Using cells from the retinas of mice and people, and powerful lasers that emit pulses of infrared light, the researchers found that when laser light pulses rapidly, light-sensing cells in the retina sometimes get a double hit of infrared energy. When that happens, the eye is able to detect light that falls outside the visible spectrum.

The findings are published Dec. 1 in the Proceedings of the National Academy of Sciences (PNAS) Online Early Edition. The research was initiated after scientists on the research team reported seeing occasional flashes of green light while working with an infrared laser. Unlike the laser pointers used in lecture halls or as toys, the powerful infrared laser the scientists worked with emits light waves thought to be invisible to the human eye.

“They were able to see the laser light, which was outside of the normal visible range, and we really wanted to figure out how they were able to sense light that was supposed to be invisible,” said Frans Vinberg, PhD, one of the study’s lead authors and a postdoctoral research associate in the Department of Ophthalmology and Visual Sciences at Washington University. 

Vinberg, Kefalov and their colleagues examined the scientific literature and revisited reports of people seeing infrared light. They repeated previous experiments in which infrared light had been seen, and they analyzed such light from several lasers to see what they could learn about how and why it sometimes is visible.

“We experimented with laser pulses of different durations that delivered the same total number of photons, and we found that the shorter the pulse, the more likely it was a person could see it,” Vinberg explained. “Although the length of time between pulses was so short that it couldn’t be noticed by the naked eye, the existence of those pulses was very important in allowing people to see this invisible light.”



Robert Boston

Kefalov’s team developed this adapter that allowed scientists to analyze retinal cells and photopigment molecules as they were exposed to infrared light. The device already is commercially available and in use at several vision research centers around the world.
“The visible spectrum includes waves of light that are 400-720 nanometers long,” explained Kefalov, an associate professor of ophthalmology and visual sciences. “But if a pigment molecule in the retina is hit in rapid succession by a pair of photons that are 1,000 nanometers long, those light particles will deliver the same amount of energy as a single hit from a 500-nanometer photon, which is well within the visible spectrum. That’s how we are able to see it.”

Robert Boston

Frans Vinberg, PhD (left), and Vladimir J. Kefalov, PhD, sit in front of a tool they developed that allows them to detect light responses from retinal cells and photopigment molecules.

View Article Here Read More

NASA Is Building a Sustainable ‘Highway’ for Unprecedented Deep Space Exploration

Excerpt from huffingtonpost.comIn early December, NASA will take an important step into the future with the first flight test of the Orion spacecraft -- the first vehicle in history capable of taking humans to multiple destinations in deep space. An...

View Article Here Read More

Magnetic Fields of an Ancient Meteorite Give Clues to the Formation of Our Universe


Ancient meteorite's magnetic fields gives clues to the formation of the universe
Photo courtesy of Mila Zinkova


Excerpt from
savingadvice.com 

A better understanding of how the universe was formed comes from what is left of a meteorite. The meteorite is named Semarkona, and it touched down in India in the 1940′s. Arizona State University’s School of Earth and Space Exploration wanted to measure the magnetic levels of the meteorite, and in doing so, they have shown we are closer to understanding how the solar system was formed.

It would seem rather insignificant given its size of just one and a half pounds, but it was formed over four and a half billion years ago. Researchers admit the magnetic flux of the rock mimics the magnetic forces here on the planet.

Every magnetic fluctuation of Semarkona has been mapped and the fluctuations of the magnetic field recorded in a study that is the first of its kind. This has given researchers more insight into the magnetic fields that were pivotal in forming the universe.

The study, aptly named Solar nebula magnetic fields recorded in the Semarkona meteorite was published in the November 13 issue of the journal Science.

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

Extraordinary’ 5,000-Year-Old Human Footprints Discovered

An ancient human footprint.
A 5,000-year-old human footprint discovered on the Danish island of Lolland.
Credit: Lars Ewald Jensen/Museum Lolland-Falster


Excerpt from livescience.com

When a pair of fishermen waded into the frigid waters of the southern Baltic Sea about 5,000 years ago, they probably didn't realize that the shifting seabed beneath their feet was recording their every move. But it was.




The long-lost evidence of that prehistoric fishing trip — two sets of human footprints and some Stone Age fishing gear — was recently discovered in a dried up fjord, or inlet, on the island of Lolland in Denmark. There, archaeologists uncovered the prints alongside a so-called fishing fence, a tool that dates back to around 3,000 B.C.


Archaeologists have found fishing fences before, but the footprints are the first of their kind discovered in Denmark, according to Terje Stafseth, an archaeologist with the Museum Lolland-Falster, who helped excavate the ancient prints. 


"This is really quite extraordinary, finding footprints from humans," Stafseth said in a statement. "Normally, what we find is their rubbish in the form of tools and pottery, but here, we suddenly have a completely different type of trace from the past, footprints left by a human being."


The Stone Age footprints were likely formed sometime between 5,000 B.C. and 2,000 B.C., Jensen said. At that time, the water level of the Baltic Sea was rising due to melting glaciers in northern Europe. Also at that time, prehistoric people were using these inlets as fishing grounds.

These individuals constructed elaborate traps, called fishing fences, to catch their prey. The wooden fences were built in sections several feet wide — thin switches of hazel suspended between two larger sticks — and the sections were lined up consecutively to form one long, continuous trap. The trap was placed in the shallow water of the fjord, which would be flooded with the incoming tide, the archaeologists said. When the fishermen wanted to move their gear, they would pluck the sections of the fence from the claylike floor of the fjord and move the whole apparatus to a new location.

"What seems to have happened was that at some point they were moving out to the [fish fence], perhaps to recover it before a storm," Jensen said. "At one of the posts, there are footprints on each side of the post, where someone had been trying to remove it from the sea bottom."



The archaeologists said the footprints must have been made by two different people, since one set of prints is significantly smaller than the other. Jensen and his team are now making imprints, or flat molds, of the footprints to preserve these ancient signs of life.

In addition to the human tracks, the team uncovered several skulls belonging to domestic and wild animals on the beach near the fjord.

The researchers said the skulls were likely part of offerings made by local farmers, who inhabited the region from around 4,000 B.C.

"They put fragments of skulls from different kinds of animals [on the sea floor], and then around that they put craniums from cows and sheep," Jensen said. "At the outermost of this area, they put shafts from axes. All in all, it covers about 70 square meters [83 square yards]. It's rather peculiar."

View Article Here Read More

Are we sending aliens the right messages?


(Nasa)


bbc.com

Artist Carrie Paterson has long dreamed of beaming messages far out to the emptiness of space. Except her messages would have an extra dimension – smell.

By broadcasting formulae of aromatic chemicals, she says, aliens could reconstruct all sorts of whiffs that help to define life on Earth: animal blood and faeces, sweet floral and citrus scents or benzene to show our global dependence on the car. This way intelligent life forms on distant planets who may not see or hear as we do, says Paterson, could explore us through smell, one of the most primitive and ubiquitous senses of all.
(Wikipedia)
It is nearly 40 years since the Arecibo facility sent messages out into space (Wikipedia)

Her idea is only the latest in a list of attempts to hail intelligent life outside of the Solar System. Forty years ago this month, the Arecibo radio telescope in Puerto Rico sent an iconic picture message into space – and we’ve arguably been broadcasting to aliens ever since we invented TV and radio.

However in recent years, astronomers, artists, linguists and anthropologists have been converging on the idea that creating comprehensible messages for aliens is much harder than it seems. This week, Paterson and others discussed the difficulties of talking to our cosmic neighbours at a conference called Communicating Across the Cosmos, held by Seti (Search for Extraterrestrial Intelligence). It seems our traditional ways of communicating through pictures and language may well be unintelligible – or worse, be catastrophically misconstrued. So how should we be talking to ET?

Lost in translation?

We have always wanted to send messages about humanity beyond the planet. According to Albert Harrison, a space psychologist and author of Starstruck: Cosmic Visions in Science, Religion and Folklore, the first serious designs for contacting alien life appeared two centuries ago, though they never got off the ground.


In the 1800s, mathematician Carl Gauss proposed cutting down lines of trees in a densely forested area and replanting the strips with wheat or rye, Harrison wrote in his book. “The contrasting colours would form a giant triangle and three squares known as a Pythagoras figure which could be seen from the Moon or even Mars.” Not long after, the astronomer Joseph von Littrow proposed creating huge water-filled channels topped with kerosene. “Igniting them at night showed geometric patterns such as triangles that Martians would interpret as a sign of intelligence, not nature.”

But in the 20th Century, we began to broadcast in earnest. The message sent by Arecibo hoped to make first contact on its 21,000 year journey to the edge of the Milky Way. The sketches it contained, made from just 1,679 digital bits, look cute to us today, very much of the ‘Pong’ video game generation.  Just before then, Nasa’s Pioneer 10 and 11 space probes each carried a metal calling card bolted onto their frame with symbols and drawings on the plaque, showing a naked man and woman.

Yet it’s possible that these kinds of message may turn out to be incomprehensible to aliens; they might find it as cryptic as we find Stone Age etchings.

Antique tech

“Linear drawings of a male and a female homo sapiens are legible to contemporary humans,” says Marek Kultys, a London-based science communications designer. ”But the interceptors of Pioneer 10 could well assume we are made of several separate body parts (i.e. faces, hair and the man’s chest drawn as a separate closed shapes) and our body surface is home for long worm-like beings (the single lines defining knees, abdomens or collarbones.).”

Man-made tech may also be an issue. The most basic requirement for understanding Voyager’s Golden Record, launched 35 years ago and now way out beyond Pluto, is a record player. Aliens able to play it at 16 and 2/3 revolutions a minute will hear audio greetings in 55 world languages, including a message of ‘Peace and Friendship’ from former United Nations Secretary General Kurt Waldheim. But how many Earthlings today have record players, let alone extraterrestrials?
(Nasa)
Our sights and sounds of Earth might be unintelligible to an alien audience (Nasa)



Time capsule

Inevitably such messages become outdated too, like time capsules. Consider the case of the Oglethorpe Atlanta Crypt of Civilization – a time capsule sealed on Earth in 1940, complete with a dry martini and a poster of Gone With the Wind. It was intended as a snapshot of 20th Century life for future humans, not aliens, but like an intergalactic message, may only give a limited picture to future generations. When, in 61,000 years, the Oglethorpe time capsule is opened, would Gone With The Wind have stood the test of time?


(Nasa)
This message was taken into the stars by Pioneer - but we have no idea if aliens would be able to understand it (Nasa)

Kultys argues that all these factors should be taken into account when we calculate the likelihood of communicating with intelligent life. The astronomer Frank Drake’s famous equation allows anyone to calculate how many alien species are, based on likely values of seven different factors. At a UK Royal Society meeting in 2010 Drake estimated there are roughly 10,000 detectable civilisations in the galaxy. Yet Kultys points out that we should also factor in how many aliens are using the same channel of communications as us, are as willing to contact us as we are them, whose language we hope to learn, and who are physically similar to us.

Another barrier we might consider is the long distance nature of trans-cosmos communication. It means that many years ‒ even a thousand ‒ could pass between sending a message and receiving a reply. Paterson sees romance in that. “Our hope for communication with another intelligent civilisation has a melancholic aspect to it. 
We are on an island in a vast, dark space. Imagine if communication… became like an exchange of perfumed love letters with the quiet agony of expectation... Will we meet? Will we be as the other imagined? Will the other be able to understand us?”

Ready for an answer?

Anthropologist John Traphagan of the University of Texas in Austin has been asking the same question, though his view is more cautious. "When it comes to ET, you'll get a signal of some kind; not much information and very long periods between ‘Hi, how are you?’ and whatever comes back. We may just shrug our shoulders and say 'This is boring’, and soon forget about it or, if the time lag wasn't too long, we might use the minimal information we get from our slow-speed conversation to invent what we think they're like and invent a kind concept of what they're after.”

(20th Century Fox)
The aliens in Independence Day (1996) did not come in peace (20th Century Fox)
While we have been sending out messages, we have not been preparing the planet for what happens when we get an interstellar return call. First contact could cause global panic. We might assume those answering are bent on galactic domination or, perhaps less likely, that they are peaceful when in fact they’re nasty.

Consider how easy it is to mess up human-to-human communications; I got Traphagan’s first name wrong when I e-mailed him for this article. An apology within minutes cleared up the confusion, yet if he had been an alien anthropologist on some distant planet it would have taken much longer to fix. He later confessed: "I could have thought this is a snooty English journalist and our conversation might never have happened."

Even if Earth’s interstellar messaging committees weeded out the typos, cultural gaffes are always a possibility. These can only be avoided by understanding the alien’s culture – something that’s not easy to do, especially when you’ve never met those you’re communicating with.

Rosy picture

So, what is the best way to communicate? This is still up for grabs – perhaps it’s via smell, or some other technique we haven’t discovered yet. Clearly, creating a message that is timeless, free of cultural bias and universally comprehensible would be no mean feat.


But for starters, being honest about who we are is important if we want to have an extra-terrestrial dialogue lasting centuries, says Douglas Vakoch, director of interstellar message composition at Seti. (Otherwise, intelligent civilisations who’ve decoded our radio and TV signals might smell a rat.)

(Nasa)
The golden discs aboard the Voyager spacecraft require aliens to understand how to play a record (Nasa)

“Let's not try to hide our shortcomings,” says Vakoch. “The message we should send to another world is straightforward: We are a young civilisation, in the throes of our technological adolescence. We're facing a lot of problems here on Earth, and we're not even sure that we'll be around as a species when their reply comes in. But in spite of all of these challenges, we humans also have hope – especially hope in ourselves."


Yet ultimately what matters, says Paterson, is that they stop and consider the beings who sent them a message; the people who wanted to say: “Here are some important things. Here’s our DNA, here is some maths and universal physics. And here is our longing and desire to say “I’m like you, but I’m different.”

View Article Here Read More

Kermit the Frog maybe, but are we really suppossed to believe humans evolved from this guy? Greg Giles


An artist's rendition of the amphibious Cartorhynchus lenticarpus. (Stefano Broccoli)


In a Nov. 5th article penned by Rachel Feltman(washingtonpost.com) entitled Newly discovered fossil could prove a problem for creationists (But apparently not a really big problem), a report published in the journal Nature claims to have discovered the missing link proving that modern man has evolved from a sometimes aquatic, sometimes not, (he apparently changed his mind once or twice about which direction he wanted to evolve) little green fish/frog/alligator/lizardy type character named Cartorhynchus lenticarpus. Although I chuckled all through the unsubstantiated claims of the report's lead author Ryosuke Motani, one of my favorite moments had to be when Motani describes his brainstorming activity. "Initially I was really puzzled by this fossil. I could tell it was related [to ichthyosaurs], but I didn't know how to place it. It took me about a year before I was sure I had no doubts." (Wait Ryosuke, go back to that moment in time while you were kicking an empty soda can around your neighborhood while trying to figure out how you could pound a square green peg into a round hole. I think that's where your theory may have gone slightly askew.)

My absolute favorite moment of the study though had to be the team's conclusion that the foot and a half long green amphibian "probably had a happy life". I could see now a room full of white lab coats concurring with one another. "Yes yes, happy indeed. I concur." A young lab technician then sheepishly speaks up. "I must disagree sirs. My research shows its not easy being green." "Oh yes, yes," the group of senior scientists now concede. "Indeed, it's not easy being green." 

Motani's statement that his team now hopes to find the preceding evolutionary ancestor to Cartorhynchus lenticarpus as their next major breakthrough is the part of this report that I can't get out of my mind. What would the odds be that this small group of researchers not only find one crucial missing link, but will also discover the very next missing piece of the long evolutionary puzzle chain, evidence countless archeologists, scientists and researchers have been, for centuries, turning over stones in search of. Something smells fishy here, and it isn't the great, great, great grandfather of Kermit the Frog.  
Greg Giles

Excerpts from the washingtonpost.com article by Rachel Feltman:

Researchers report that they've found the missing link between an ancient aquatic predator and its ancestors on land. Ichthyosaurs, the dolphin-like reptiles that lived in the sea during the time of the dinosaurs, evolved from terrestrial creatures that made their way back into the water over time.

But the fossil record for the lineage has been spotty, without a clear link between land-based reptiles and the aquatic ichthyosaurs scientists know came after. Now, researchers report in Nature that they've found that link — an amphibious ancestor of the swimming ichthyosaurs named  Cartorhynchus lenticarpus.

"Many creationists have tried to portray ichthyosaurs as being contrary to evolution," said lead author Ryosuke Motani, a professor of earth and planetary sciences at the University of California Davis. "We knew based on their bone structure that they were reptiles, and that their ancestors lived on land at some time, but they were fully adapted to life in the water. So creationists would say, well, they couldn't have evolved from those reptiles, because where's the link?"

Now the gap has been filled, he said.

The creature is about a foot and a half long and lived 248 million years ago.

"Initially I was really puzzled by this fossil," Motani said. "I could tell it was related [to ichthyosaurs], but I didn't know how to place it. It took me about a year before I was sure I had no doubts."

One of the most important differences between this new ichthyosaur and its supposed descendants comes down to being big boned: When other vertebrates have evolved from land to sea living, they've gone through stages where they're amphibious and heavy. Their thick bones probably allowed them to fight the power of strong coastal waves and stay grounded in shallow waters. Sure enough, this new fossil has much thicker bones than previously examined ichthyosaurs.

"This animal probably had a happy life. It was in the tropics, and it was probably a bottom feeder that fed on soft-bodied things like squid and animals like shrimp," Motani said. "And for a predator like that to exist, there has to be plenty of prey. This was probably one of the first predators to appear after that extinction."

This single fossil hasn't revealed all of the ichthyosaurs' secrets. Motani hopes to find the preceding evolutionary ancestor next — one that was also amphibious, but spent slightly more of its time on land. "We're looking for that one now," Motani said.

View Article Here Read More

Branson vows to find out cause of spacecraft crash




Excerpt from
sfgate.com 

MOJAVE, Calif. (AP) — Billionaire Virgin Galactic founder Richard Branson vowed Saturday to find out what caused the crash of his prototype space tourism craft that killed one of two test pilots, adding that while he remains committed to civilian space travel "we are not going to push on blindly."

In grim remarks at the Mojave Air and Space Port, where the craft known as SpaceShipTwo was under development, Branson gave no details of Friday's accident and deferred to the National Transportation Safety Board, whose team had just arrived.


"We are determined to find out what went wrong," he said, asserting that safety has always been the top priority of the program that envisions taking wealthy tourists six at a time to the edge of space for a brief experience of weightlessness and a view of Earth below.

"Yesterday, we fell short," he said. "We'll now comprehensively assess the results of the crash and are determined to learn from this and move forward."

He also criticized early speculation about crash causes. "To be honest, I find it slightly irresponsible that people who know nothing about what they're saying can be saying things before the NTSB makes their comments."

The pilot killed in the test flight was identified Saturday as Michael Tyner Alsbury, 39, of nearby Tehachapi. The surviving pilot is Peter Siebold, 43, who parachuted to safety and was hospitalized.
Both worked for Scaled Composites, the company developing the spaceship for Virgin Galactic. Scaled Composite said Alsbury was the co-pilot for the test flight. Siebold, who was piloting SpaceShipTwo, "is alert and talking with his family and doctors," the company said in a statement.

More than a dozen investigators in a range of specialties were forming teams to examine the crash site, collect data and interview witnesses, NTSB Acting Chairman Christopher A. Hart told a press conference at Mojave Air and Space Port.

"This will be the first time we have been in the lead of a space launch (accident) that involved persons onboard," said Hart, noting that the NTSB did participate in investigations of the Challenger and Columbia space shuttle disasters.

Virgin Galactic — owned by Branson's Virgin Group and Aabar Investments PJS of Abu Dhabi — plans to fly passengers to altitudes more than 62 miles above Earth. The company sells seats on each prospective journey for $250,000.

The company says that "future astronauts," as it calls customers, include Stephen Hawking, Justin Bieber, Ashton Kutcher and Russell Brand. The company reports receiving $90 million from about 700 prospective passengers.

On Saturday, Branson said none of that money has been spent and that anyone who wanted a refund could get it. However, he said, no one has asked, and instead someone signed up on the day of the accident in a show of support.


Friday's flight marked the 55th for SpaceShipTwo, which was intended to be the first of a fleet of craft. This was only the fourth flight to include a brief rocket firing. The rocket fires after the spacecraft is released from the underside of a larger carrying plane. During other flights, the craft either was not released from its mother ship or functioned as a glider after release.

The NTSB investigators were expected to head to an area about 20 miles from the Mojave airfield where debris from SpaceShipTwo fell over a wide area of uninhabited desert Friday morning. The spacecraft broke up after being released from a carrier aircraft at high altitude, according to Ken Brown, a photographer who witnessed the accident.

Friday's accident was the second this week involving private space flight. On Tuesday, an unmanned commercial supply rocket bound for the International Space Station exploded moments after liftoff in Virginia.

SpaceShipTwo is based on aerospace design maverick Burt Rutan's award-winning SpaceShipOne prototype, which became the first privately financed manned rocket to reach space in 2004. Three people died in a blast at the Mojave Air and Space Port in 2007 while testing a rocket motor for SpaceShipTwo.

View Article Here Read More

After Pluto, What’s Next for New Horizons Spacecraft?



NASA's New Horizons space probe is set to zoom by Pluto next summer. Where should it go after that?

Excerpt from
csmonitor.com

A NASA spacecraft may have another frigid object in its sights after zooming past Pluto next summer.

NASA's Hubble Space Telescope has spotted three faraway bodies that the New Horizons probe could potentially visit after completing its highly anticipated flyby of the Pluto system in July 2015. One of these newly identified objects is definitely reachable, researchers said, while further tracking is required to determine if the other two are indeed accessible.

The $700 million New Horizons mission launched in 2006 with the primary goal of returning the first-ever up-close looks at Pluto and its moons. But Stern and his colleagues have always wanted the probe to fly by another object in the Kuiper Belt — the ring of frigid bodies beyond Neptune — after the Pluto encounter.

An additional flyby would increase researchers' knowledge of the mysterious Kuiper Belt, mission team members say. Kuiper Belt objects (KBOs) have never been "heat-treated" by the sun, so they're viewed as relatively pristine building blocks left over from the solar system's formation 4.6 billion years ago.

Analysis of Hubble's data turned up the three new KBOs, which are each 1 billion miles (1.6 billion kilometers) beyond Pluto and range in size from 15 to 34 miles wide (25 to 55 km). The KBOs are each about 10 times bigger than a typical comet but just 1 to 2 percent as big as Pluto, researchers said.

"We started to get worried that we could not find anything suitable, even with Hubble, but in the end the space telescope came to the rescue," said New Horizons science team member John Spencer, also of SwRI. "There was a huge sigh of relief when we found suitable KBOs; we are over the moon about this detection."

The additional flyby would likely occur in 2019, he added — but there's no guarantee it will happen.

"In 2016, we need to propose to NASA to get permission (and funding) to fly the KBO mission," he said via email.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑