Tag: version (page 2 of 17)

Our Hidden History: Are We Descendants of the Annunaki?

Video – Our history may not be what we were told! Over the past few thousand years, humanity has warped its history with mis-translations, alterations and changes to help fit it into our understanding of reality. We have completely left our many aspects that were perceived as unexplainable. Below, let’s take a look at an alternate version of human history, a version that was recorded throughout time across many ancient [...]

View Article Here Read More

Gluten-Free: “Fad” or Not? Studies Suggest Most Gluten Sensitivity Is Imagined

Makia Freeman, ContributorGluten-free food is now very common and available, whether you are in a restaurant, cafe or grocery store. Although there are definitely people who suffer from celiac disease and other diseases triggered by gluten, the entire gluten-free movement has left many health experts and nutritionalists scratching their heads in bewilderment. Since when did large chunks of populations used to eating bread, pasta and other wheat products suddenly suffer from [...]

View Article Here Read More

Secret of Immortality

The secret of physical immortality is one of the deepest occult secrets of the Light forces that has never been revealed to anybody who has not reached a certain vibrational frequency, a certain inner purity and a certain degree of dedication to the Li...

View Article Here Read More

Secretive X-37B Military Space Plane Preps for Another Mystery Mission


X-37B Space Plane in Orbit: Artist’s Concept
Artist's illustration of the U.S. Air Force's X-37B space plane in orbit. The mysterious spacecraft is scheduled to launch on its fourth mission on May 20, 2015.
Credit: NASA Marshall Space Flight Center




Excerpt from space.com


The United States Air Force's X-37B space plane will launch on its fourth mystery mission next month.
The unmanned X-37B space plane, which looks like a miniature version of NASA's now-retired space shuttle orbiter, is scheduled to blast off atop a United Launch Alliance Atlas V rocket from Florida's Cape Canaveral Air Force Station on May 20.

"We are excited about our fourth X-37B mission," Randy Walden, director of the Air Force Rapid Capabilities Office, said in a statement. "With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads." 

The X-37B's payloads and specific activities are classified, so it's unclear exactly what the spacecraft does while zipping around the Earth. But Air Force officials have revealed a few clues about the upcoming mission.

"The Air Force Research Laboratory (AFRL), Space and Missile Systems Center (SMC) and the Air Force Rapid Capabilities Office (AFRCO) are investigating an experimental propulsion system on the X-37B on Mission 4," Capt. Chris Hoyler, an Air Force spokesman, told Space.com via email.  

"AFRCO will also host a number of advance materials onboard the X-37B for the National Aeronautics and Space Administration (NASA) to study the durability of various materials in the space environment," Hoyler added.

The Air Force owns two X-37B space planes, both of which were built by Boeing's Phantom Works division. The solar-powered spacecraft are about 29 feet long by 9.5 feet tall (8.8 by 2.9 meters), with a wingspan of 15 feet (4.6 m) and a payload bay the size of a pickup-truck bed. The X-37B launches vertically atop a rocket and lands horizontally on a runway, like the space shuttle did.

One of the two X-37B vehicles flew the program's first and third missions, which were known as OTV-1 and OTV-3, respectively. ("OTV" is short for "Orbital Test Vehicle.") The other spacecraft flew OTV-2. Air Force officials have not revealed which space plane will be going to orbit on the upcoming mission.

OTV-1 launched in April 2010 and landed in December of that year, staying in orbit for 225 days. OTV-2 blasted off in March 2011 and circled Earth for 469 days, coming down in June 2012. OTV-3 launched in December 2012 and stayed aloft for a record-breaking 675 days, finally landing in October 2014.

Recovery Crew Processes X-37B Space Plane
A recovery team processes the U.S. Air Force's X-37B space plane after the robotic spacecraft's successful landing at Vandenberg Air Force Base in California on Oct. 17, 2014. The touchdown marked the end of the X-37B’s third space mission.
Credit: Boeing

If Air Force officials know how long OTV-4 is going to last, they're not saying.

"The X-37B is designed for an on-orbit duration of 270 days," Hoyler said. "Longer missions have been demonstrated. As with previous missions, the actual duration will depend on test objectives, on-orbit vehicle performance and conditions at the landing facility."

The secrecy surrounding the X-37B and its payloads has fueled speculation in some quarters that the vehicle could be a space weapon of some sort. But Air Force officials have repeatedly refuted that notion.

"The primary objectives of the X-37B are twofold: reusable spacecraft technologies for America's future in space, and operating experiments which can be returned to, and examined, on Earth," Air Force officials wrote in on online X-37B fact sheet. 

"Technologies being tested in the program include advanced guidance, navigation and control; thermal protection systems; avionics; high-temperature structures and seals; conformal reusable insulation, lightweight electromechanical flight systems; and autonomous orbital flight, re-entry and landing."

View Article Here Read More

Hypatia, Ancient Alexandria’s Great Female Scholar

An avowed paganist in a time of religious strife, Hypatia was also one of the first women to study math, astronomy and philosophy On the streets of Alexandria, Egypt, a mob led by Peter the Lector brutally murdered Hypatia, one of the last great thinkers of ancient Alexandria. (Mary Evans Picture Library / Alamy) By Sarah Zielinskismithsonian.com One day on the streets of Alexandria, Egypt, in the year 415 or 416, a mob of Christian zealots led by Peter the Lector accosted a wom [...]

View Article Here Read More

NASA’s Plan to Give the Moon a Moon


arm-capture_0




Excerpt from wired.com

It sounds almost like a late ’90s sci-fi flick: NASA sends a spacecraft to an asteroid, plucks a boulder off its surface with a robotic claw, and brings it back in orbit around the moon. Then, brave astronaut heroes go and study the space rock up close—and bring samples back to Earth.
Except it’s not a movie: That’s the real-life idea for the Asteroid Redirect Mission, which NASA announced today. Other than simply being an awesome space version of the claw arcade game (you know you really wanted that stuffed Pikachu), the mission will let NASA test technology and practice techniques needed for going to Mars.
The mission, which will cost up to $1.25 billion, is slated to launch in December 2020. It will take about two years to reach the asteroid (the most likely candidate is a quarter-mile-wide rock called 2008 EV5). The spacecraft will spend up to 400 days there, looking for a good boulder. After picking one—maybe around 13 feet in diameter—it will bring the rock over to the moon. In 2025, astronauts will fly NASA’s still-to-be-built Orion to dock with the asteroid-carrying spacecraft and study the rock up close.
Although the mission would certainly give scientists an up-close opportunity to look at an asteroid, its main purpose is as a testing ground for a Mars mission. The spacecraft will test a solar electronic propulsion system, which uses the power from solar panels to pump out charged particles to provide thrust. It’s slower than conventional rockets, but a lot more efficient. You can’t lug a lot of rocket fuel to Mars.
Overall, the mission gives NASA a chance at practicing precise navigation and maneuvering techniques that they’ll need to master for a Mars mission. Such a trip will also require a lot more cargo, so grabbing and maneuvering a big space rock is good practice. Entering lunar orbit and docking with another spacecraft would also be helpful, as the orbit might be a place for a deep-space habitat, a rendezvous point for astronauts to pick up cargo or stop on their way to Mars.
And—you knew this part was coming, Armageddon fans—the mission might teach NASA something about preventing an asteroid from striking Earth. After grabbing the boulder, the spacecraft will orbit the asteroid. With the added heft from the rock, the spacecraft’s extra gravity would nudge the asteroid, creating a slight change in trajectory that NASA could measure from Earth. “We’re not talking about a large deflection here,” says Robert Lightfoot, an associate administrator at NASA. But the idea is that a similar technique could push a threatening asteroid off a collision course with Earth.
NASA chose this mission concept over one that would’ve bagged an entire asteroid. In that plan, the spacecraft would’ve captured the space rock by enclosing it in a giant, flexible container. The claw concept won out because its rendezvous and soft-landing on the asteroid will allow NASA to test and practice more capabilities in preparation for a Mars mission, Lightfoot says. The claw would’ve also given more chances at grabbing a space rock, whereas it was all or nothing with the bag idea. “It’s a one-shot deal,” he says. “It is what it is when we get there.” But the claw concept offers some choices. “I’ve got three to five opportunities to pull one of the boulders off,” he says. Not bad odds. Better than winning that Pikachu

View Article Here Read More

Young Jupiter wiped out solar system’s early inner planets, study says


Ganymede
(Photo : NASA/ESA) In early days of solar system, Jupiter destroyed everything that came in its way, researchers have found.


Excerpt from latimes.com

Before Mercury, Venus, Earth and Mars occupied the inner solar system, there may have been a previous generation of planets that were bigger and more numerous – but were ultimately doomed by Jupiter, according to a new study.

If indeed the early solar system was crowded with so-called super-Earths, it would have looked a lot more like the planetary systems found elsewhere in the galaxy, scientists wrote Monday in the Proceedings of the National Academy of Sciences.


Inner planets
As NASA’s Kepler space telescope has found more than 1,000 planets in orbit around other stars, along with more than 4,000 other objects that are believed to be planets but haven’t yet been confirmed. Kepler finds these planets by watching their host stars and registering tiny drops in their brightness – a sign that they are being ever-so-slightly darkened by a planet crossing in front of them.

In addition, ground-based telescopes have detected hundreds of exoplanets by measuring the wiggles of distant stars. Those stars wiggle thanks to the gravitational pull of orbiting planets, and the Doppler effect makes it possible to estimate the size of these planets.

The more planetary systems astronomers discovered, the more our own solar system looked like an oddball. Exoplanets – at least the ones big enough for us to see – tended to be bigger than Earth, with tight orbits that took them much closer to their host stars. In multi-planet systems, these orbits tended to be much closer together than they are in our solar system. For instance, the star known as Kepler-11 has six planets closer to it than Venus is to the sun.

Why does our solar system look so different? Astrophysicists Konstantin Batygin of Caltech and Greg Laughlin of UC Santa Cruz summed it up in one word: Jupiter.

Here’s what could have happened, according to their models:

In Solar System 1.0, the region closest to the sun was occupied by numerous planets with masses several times bigger than that of Earth. There were also planetesimals, “planetary building blocks” that formed within the first million years after the birth of the sun, Batygin and Laughlin wrote.

This is how things might have stayed if the young Jupiter had stayed put at its initial orbit, between 3 and 10 astronomical units away from the sun. (An astronomical unit, or AU, is the distance between the Earth and the sun. Today, Jupiter’s orbit ranges between 5 and 5.5 AUs from the sun.)

But Jupiter was restless, according to a scenario known as the “Grand Tack.” In this version of events, Jupiter was swept up by the currents of gas that surrounded the young sun and drifted toward the center of the solar system.

Jupiter, however, was too big to travel solo. All manner of smaller objects would have been dragged along too. With so many bodies in motion, there would have been a lot of crashes.

The result was “a collisional cascade that grinds down the planetesimal population to smaller sizes,” the astrophysicists wrote. For the most part, these planetary crumbs were swept toward the sun and ultimately destroyed, like disintegrating satellites falling back to Earth.

The planetesimals wouldn’t have been Jupiter’s only victims. Assuming the early solar system resembled the planetary systems spied by Kepler and other telescopes, there would have been “a similar population of first-generation planets,” the pair wrote. “If such planets formed, however, they were destroyed.”

Jupiter probably got about as close to the sun as Mars is today before reversing course, pulled away by the gravity of the newly formed Saturn. That would have ended the chaos in the inner solar system, allowing Earth and the other rocky planets to form from the debris that remained.

“This scenario provides a natural explanation for why the inner Solar System bears scant resemblance to the ubiquitous multi-planet systems” discovered by Kepler and other survey efforts, Batygin and Laughlin wrote.

Although their models show that this is what might have happened, they don’t prove that it actually did. But there may be a way to get closer to the truth.

The scientists’ equations suggest that if a star is orbited by a cluster of close-in planets, there won’t be a larger, farther-out planet in the same system. As astronomers find more exoplanetary systems, they can see whether this prediction holds up.

Also, if far-away solar systems are experiencing a similar series of events, telescopes ought to be able to detect the extra heat thrown off by all of the planetesimal collisions, they added.

Sadly for those hoping to find life on other planets, the pair’s calculations also imply that most Earth-sized planets are lacking in water and other essential compounds that can exist in liquid or solid form. As a result, they would be “uninhabitable,” they wrote.

View Article Here Read More

Is Titan submarine the most daring space mission yet?

The submersible could extract cores from the seabed to unlock a rich climatic historyExcerpt from bbc.comDropping a robotic lander on to the surface of a comet was arguably one of the most audacious space achievements of recent times. But one...

View Article Here Read More

This Alien Color Catalog May Help Us Spot Life on Other Planets






Excerpt from smithsonianmag.com


In the hunt for alien life, our first glimpse of extraterrestrials may be in the rainbow of colors seen coming from the surface of an exoplanet.

That's the deceptively simple idea behind a study led by Siddharth Hegde at the Max Planck Institute for Astronomy in Germany. Seen from light-years away, plants on Earth give our planet a distinctive hue in the near-infrared, a phenomenon called red edge. That's because the chlorophyll in plants absorbs most visible light waves but starts to become transparent to wavelengths on the redder end of the spectrum. An extraterrestrial looking at Earth through a telescope could match this reflected color with the presence of oxygen in our atmosphere and conclude there is life here.


exoplanets palette
Eight of the 137 microorganism samples used to measure biosignatures for the catalog of reflection signatures of Earth life forms. In each panel, the top is a regular photograph of the sample and the bottom is a micrograph, a version of the top image zoomed-in 400 times.



Plants, though, have only been around for 500 million years—a relative blip in our planet's 4.6-billion-year history. Microbes dominated the scene for some 2.5 billion years in the past, and some studies suggest they will rule the Earth again for much of its future. So Hegde and his team gathered 137 species of microorganisms that all have different pigments and that reflect light in specific ways. By building up a library of the microbes' reflectance spectra—the types of colors those microscopic critters reflect from a distance—scientists examining the light from habitable exoplanets can have a plethora of possible signals to search for, the team argues this week in the Proceedings of the National Academy of Sciences.

"No one had looked at the wide range of diverse life on Earth and asked how we could potentially spot such life on other planets, and include life from extreme environments on Earth that could be the 'norm' on other planets," Lisa Kaltenegger, a co-author on the study, says via email. "You can use it to model an Earth that is different and has different widespread biota and look how it would appear to our telescopes."

To make sure they got enough diversity, the researchers looked at temperate-dwelling microbes as well as creatures that live in extreme environments like deserts, mineral springs, hydrothermal vents or volcanically active areas.

While it might seem that alien life could take a huge variety of forms—for instance, something like the silicon-based Horta from Star Trek—it's possible to narrow things down if we restrict the search to life as we know it. First, any life-form that is carbon-based and uses water as a solvent isn't going to like the short wavelengths of light far in the ultraviolet, because this high-energy UV can damage organic molecules. At the other end of the spectrum, any molecule that alien plants (or their analogues) use to photosynthesize won't be picking up light that's too far into the infrared, because there's not enough energy at those longer wavelengths.

In addition, far-infrared light is hard to see through an Earth-like atmosphere because the gases block a lot of these waves, and whatever heat the planet emits will drown out any signal from surface life. That means the researchers restricted their library to the reflected colors we can see when looking at wavelengths in the visible part of the spectrum, the longest wavelength UV and short-wave infrared.

The library won't be much use if we can't see the planets' surfaces in the first place, and that's where the next generation of telescopes comes in, Kaltenegger says. The James Webb Space Telescope, scheduled for launch in 2018, should be able to see the spectra of relatively small exoplanet atmospheres and help scientists work out their chemical compositions, but it won't be able to see any reflected spectra from material at the surface. Luckily, there are other planned telescopes that should be able to do the job. The European Extremely Large Telescope, a 40-meter instrument in Chile, will be complete by 2022. And NASA's Wide Field Infrared Survey Telescope, which is funded and in its design stages, should be up and running by the mid-2020s.

Another issue is whether natural geologic or chemical processes could look like life and create a false signal. So far the pigments from life-forms look a lot different from those reflected by minerals, but the team hasn't examined all the possibilities either, says Kaltenegger. They hope to do more testing in the future as they build up the digital library, which is now online and free for anyone to explore at biosignatures.astro.cornell.edu.

View Article Here Read More

Great Fuel Economy For Less: 5 Affordable Used Cars That are Surprisingly Good on Gas

Excerpt from autotrader.com By Josh Sadlier   Seems like the only thing automakers want to talk about these days is how their cars suddenly get great fuel economy. Given this relentless chatter, it's tempting to conclude that mos...

View Article Here Read More

Hubble’s ‘Einstein Cross’ Marks the Space-Warping Spot


Image: Einstein Cross revealed
Flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo.


Excerpt from nbcnews.com
By Alan Boyle


One hundred years after Albert Einstein published his theory of general relativity, the Hubble Space Telescope has provided a demonstration of the theory at work: a picture of a distant galaxy so massive that its gravitational field is bending the light from an even more distant supernova. 

The image, released Thursday, shows how the flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo. 

"It really threw me for a loop when I spotted the four images surrounding the galaxy," Patrick Kelly, an astronomer from the University of California at Berkeley, said in a news release. "It was a complete surprise." 

Maybe it shouldn't have been. The configuration is known as an Einstein Cross. It's a well-known but rarely seen effect of gravitational lensing, which is in line with Einstein's assertion that a massive object warps the fabric of space-time — and thus warps the path taken by light rays around the object. 

In this case, the light rays are coming from a stellar explosion that's directly behind the galaxy, but 4.3 million light-years more distant. Computer models suggest that the four-pointed cross will eventually fade away, to be followed within the next five years by the reappearance of the supernova's flash as a single image. 

Kelly is part of a research collaboration known as the Grism Lens Amplified Survey from Space, or GLASS. The collaboration is working with the Frontier Field Supernova team, or FrontierSN, to analyze the exploding star. He's also the lead author of a paper on the phenomenon that's being published this week by the journal Science as part of a package marking the 100th anniversary of Einstein's general relativity theory. 

The researchers suggest that a high-resolution analysis of the gravitational lensing effect can lead to better measurements of cosmic distances and galactic masses, including the contribution from dark matter. The Hubble team says the faraway supernova has been named "Refsdal" in honor of Norwegian astronomer Sjur Refsdal, who proposed using time-delayed images from a lensed supernova to study the expansion of the universe. 

"Astronomers have been looking to find one ever since," UCLA astronomer Tommaso Treu, the GLASS project's principal investigator, said in Thursday's news release. "The long wait is over!" 

The Einstein Cross is the subject of a Google+ Hangout at 3 p.m. ET Thursday, presented by the Hubble science team. You can watch the event now or later via YouTube. Check out a preprint version of the Science report.

View Article Here Read More

Mars Had an Ocean, Scientists Say, Pointing to a Treasure Trove of New Data





Excerpt from nytimes.com

After six years of planetary observations, scientists at NASA say they have found convincing new evidence that ancient Mars had an ocean.

It was probably the size of the Arctic Ocean, larger than previously estimated, the researchers reported on Thursday. The body of water spread across the low-lying plain of the planet’s northern hemisphere for millions of years, they said.

If confirmed, the findings would add significantly to scientists’ understanding of the planet’s history and lend new weight to the view that ancient Mars had everything needed for life to emerge.
“The existence of a northern ocean has been debated for decades, but this is the first time we have such a strong collection of data from around the globe,” said Michael Mumma, principal investigator at NASA’s Goddard Center for Astrobiology and an author of the report, published in the journal Science. “Our results tell us there had to be a northern ocean.”
But other experts said the question was hardly resolved. The ocean remains “a hypothesis,” said Ashwin Vasavada, project scientist of the Curiosity rover mission at the Jet Propulsion Laboratory in Pasadena, Calif.

Dr. Mumma and Geronimo Villanueva, a planetary scientist at NASA, measured two slightly different forms of water in Mars’ atmosphere. One is the familiar H2O, which consists of two hydrogen atoms and one oxygen atom.

The other is a slightly “heavier” version of water, HDO, in which the nucleus of one hydrogen atom contains a neutron. The atom is called deuterium.

The two forms exist in predictable ratios on Earth, and both have been found in meteorites from Mars. A high level of heavier water today would indicate that there was once a lot more of the “lighter” water, somehow lost as the planet changed.

The scientists found eight times as much deuterium in the Martian atmosphere than is found in water on Earth. Dr. Villanueva said the findings “provide a solid estimate of how much water Mars once had by determining how much water was lost to space.”

He said the measurements pointed to an ancient Mars that had enough water to cover the planet to a depth of at least 137 meters, or about 450 feet. Except for assessments based on the size of the northern basin, this is the highest estimate of the amount of water on early Mars that scientists have ever made.

The water on Mars mostly would have pooled in the northern hemisphere, which lies one to three kilometers — 0.6 to 1.8 miles — below the bedrock surface of the south, the scientists said.
At one time, the researchers estimated, a northern ocean would have covered about 19 percent of the Martian surface. In comparison, the Atlantic Ocean covers about 17 percent of Earth’s surface.

The new findings come at a time when the possibility of a northern ocean on Mars has gained renewed attention.

The Curiosity rover measured lighter and heavier water molecules in the Gale Crater, and the data also indicated that Mars once had substantial amounts of water, although not as much as Dr. Mumma and Dr. Villanueva suggest.

“The more water was present — and especially if it was a large body of water that lasted for a longer period of time — the better the chances are for life to emerge and to be sustained,” said Paul Mahaffy, chief of the atmospheric experiments laboratory at the Goddard Space Flight Center.

Just last month, the science team running the Curiosity rover held its first formal discussion about the possibility of such an ocean and what it would have meant for the rest of Mars.

Scientists generally agree that lakes must have existed for millions of years in Gale Crater and elsewhere. But it is not clear how they were sustained and replenished.

“For open lakes to remain relatively stable for millions of years — it’s hard to figure how to do that without an ocean,” Dr. Vasavada said. “Unless there was a large body of water supplying humidity to the planet, the water in an open lake would quickly evaporate and be carried to the polar caps or frozen out.”

Yet climate modelers have had difficulty understanding how Mars could have been warm enough in its early days to keep water from freezing. Greenhouse gases could have made the planet much warmer at some point, but byproducts of those gases have yet to be found on the surface.

James Head, a professor of geological sciences at Brown University, said in an email that the new paper had “profound implications for the total volume of water” on ancient Mars.

But, he added, “climate models have great difficulty in reconstructing an early Mars with temperatures high enough to permit surface melting and liquid water.”

Also missing are clear signs of the topographic and geological features associated with large bodies of water on Earth, such as sea cliffs and shorelines.

Based on low-resolution images sent back by the Viking landers, the geologist Timothy Parker and his colleagues at the NASA Jet Propulsion Lab reported in 1989 the discovery of ancient shorelines. But later high-resolution images undermined their conclusions.

Still, Dr. Parker and his colleagues have kept looking for — and finding, they say — some visible signs of a northern ocean. The new data “certainly encourages me to do more,” he said in an interview.

Other researchers have also been looking for signs of an ancient ocean.

In 2013, Roman DiBiase, then a postdoctoral student at the California Institute of Technology, and Michael Lamb, an assistant professor of geology there, identified what might have been a system of channels on Mars that originated in the southern hemisphere and emptied steeply into the northern basin — perhaps, they said, water flowing through a delta to an ocean.

View Article Here Read More

‘God Particle’ analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor


The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • uperconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑