Tag: values (page 1 of 3)

Celebrating Genocide – The Real Story of Thanksgiving

Irwin Ozborne, ContributorThanksgiving: Celebrating all that we have, and the genocide it took to get it.Thanksgiving is one of the most paradoxical times of the year. We gather together with friends and family in celebration of all that we are thankful for and express our gratitude, at the same time we are encouraged to eat in excess. But the irony really starts the next day on Black Friday. On Thursday we appreciate all the simple things in life, such as having a meal, a roof over [...]

View Article Here Read More

Why I Love Mercury Retrograde And Why You Could Too!

by Ines SuljMercury has just gone retrograde again. This time in Gemini, the sign it rules.All the planets, except Sun and Moon, go in apparent backward motion from time to time, yet the Mercury retrograde seems to be the most famous one. Almost everyone knows about it, including the people who know nothing about astrology and those who don’t even believe in it.In astrology, when a planet is in retrograde, it doesn’t actually move backwards in the sky. It only a [...]

View Article Here Read More

The Class-Domination Theory of Power

by G. William DomhoffNOTE: WhoRulesAmerica.net is largely based on my book,Who Rules America?, first published in 1967 and now in its7th edition. This on-line document is presented as a summary of some of the main ideas in that book.Who has predominant power in the United States? The short answer, from 1776 to the present, is: Those who have the money -- or more specifically, who own income-producing land and businesses -- have the power. George Washington was one of the biggest landowner [...]

View Article Here Read More

How the Secession Movement Could Break Up the U.S.



new U.S. map
Excerpt from charismanews.com  
A new map of the U.S. could include a state called Jefferson, made up of Northern California and Southern Oregon, a new state called Western Maryland and a new state called North Colorado. (CBN)

If you mention the word secession most people think of the South during the Civil War. But today, a new movement is gaining steam because of frustration over a growing, out-of-control federal government.
A number of conservative, rural Americans are taking about seceding and creating their own states, meaning a new map of the United States of America could include the following:
  • A 51st state called Jefferson, made up of Northern California and Southern Oregon
  • A new state called Western Maryland
  • A new state called North Colorado
These are real movements gaining traction with voters across the country. Jeffrey Hare runs the 51st State Initiative in Colorado, an effort to fight an out-of-control legislature trying to ram big government policies down the throats of voters.
"We're at this point of irreconcilable differences," Hare told CBN News.





Secessionist talk has filled town hall meetings and the divide discussed is not just ideological.
"It's predominately left versus right, but it's urban versus rural because you typically find more typical conservative values in rural America," Hare said.
An Attack on Colorado?
That's the crux of the issue. Rural Americans across many states feel they're not being heard. Their laundry list is long and at the top of that list are stricter gun control laws.
According to Weld County, Colo., Sheriff John Cooke, the state legislature is out of control.
"They are out of touch with rural Colorado," he said. "There is an attack on rural Colorado and it's not just on gun control laws. It's on several of the other bills that they passed."
Government mandates on renewable energy, environmental policies restricting oil and gas drilling, and controversial social issues like gay marriage have also led to this divide and talk of secession.
Organizers want to create "North Colorado," an idea that went to voters in 11 counties this past fall. But not everyone in Colorado thinks secession is a great idea.
"I don't think that's necessarily the way to make something happen within the area you live," Colorado resident Greg Howe told CBN News. "You're supposed to work within our electoral services."
The so-called secession movement in Colorado had mixed results this past November. Some counties approved it. Others didn't.
But the organizers of the 51st State Initiative are undaunted, saying this type of movement takes time.
"Movements take a while; education takes time," Hare said. "People do have a hard time saying ,'I want to live in a different state,' even though physically they live in the same house."
"It's hard for them since their lives have been Coloradoans," he explained. "Their whole lives to say that 'I'm going to be a new Coloradoan' or 'I want to live in the state of liberty' or something different."
An 'Amicable' Divorce
That desire for something different can also be felt in Arizona, Michigan, and in Western Maryland where thousands have signed secession petitions.
One website reads, "We intend to exercise our right of self-determination and self-governance to better secure our rights to life, liberty, and the pursuit of happiness."

Scott Strzelczyk, the leader of the Western Maryland movement, is ready to get going.
"If they are not going to listen or take our needs into consideration and govern in a way that's more in accordance with the way we want to be governed we are seeking an amicable divorce," he said.
Meanwhile, in Northern California and Southern Oregon, activists want to come together in the state of "Jefferson."
Their proposed state flag includes two "Xs," representing their feeling of being double-crossed by the state capitals of Sacramento, Calif., and Salem, Ore.
No Small Task
Creating a new state isn't easy. The last time a state actually gave up territory was in 1820, when Maine split from Massachusetts. Since then, additional efforts have been unsuccessful. 
The first step is getting it passed by the state legislature and then the U.S. Congress.
"This is a valid constitutional process that our founding fathers specifically wrote into the Constitution," Hare said. "Well, if they didn't write this into the Constitution to be used, then why did they write it in?"
But supporters have an uphill battle since the media will not be their friend.
"The danger is once the outside media start to grab hold of it, the attention is on the difficulty, the almost impossibility of it happening," professor Derek Everett, with Metropolitan State University in Denver, explained.
Voter 'Disconnect'
State secession proponents, like Roni Bell Sylvester of Colorado, say they will keep fighting because the dismissive attitude of state legislative bodies must end.
"I find the sort of arrogant, dismissive to be further proof as to just how disconnected the urban is from the rural," Sylvester said.
Movements like the one in Colorado and other states could be just the beginning—at least that's the talk at town hall meetings in places like Colorado and elsewhere.
It's called 'voter disconnect" where the people say they've had enough and are crying out for something to be done.
"We, at some point, have to figure out a way to get our point across or at least be able to have a dialogue and not be ignored because you haven't seen anything yet over the next 5 to 10 years," one resident warned at a recent town hall meeting in Colorado.
As for Hare, he said it boils down to one simple concept.
"I think ultimately what people want, whether you look at it from a right or left paradigm, is government to stay out of their business," he said.

View Article Here Read More

Hypatia, Ancient Alexandria’s Great Female Scholar

An avowed paganist in a time of religious strife, Hypatia was also one of the first women to study math, astronomy and philosophy On the streets of Alexandria, Egypt, a mob led by Peter the Lector brutally murdered Hypatia, one of the last great thinkers of ancient Alexandria. (Mary Evans Picture Library / Alamy) By Sarah Zielinskismithsonian.com One day on the streets of Alexandria, Egypt, in the year 415 or 416, a mob of Christian zealots led by Peter the Lector accosted a wom [...]

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

Meteorite is ‘hard drive’ from space ~ Researchers decode ancient recordings from asteroid ~ BBC


Pallasite meteorite
The Esquel meteorite consists of gem-quality crystals embedded in metal.



Excert from bbc.com

Researchers have decoded ancient recordings from fragments of an asteroid dating back billions of years to the start of the Solar System. 

They found tiny "space magnets" in meteorites which retain a memory of the birth and death of the asteroid's core.
Like the data recorded on the surface of a computer hard drive, the magnetic signals written in the space rock reveal how Earth's own metallic core and magnetic field may one day die.

The work appears in Nature journal.

Using a giant X-ray microscope, called a synchrotron, the team was able to read the signals that formed more than four-and-a-half billion years ago, soon after the birth of the Solar System.

Start Quote

It's like a cosmic archaeological mission”
Dr James Bryson University of Cambridge
The meteorites are pieces of a parent asteroid that originally came from asteroid belt, between Mars and Jupiter.
They represents the left-over fragments of a planet that failed to form. The magnetic recording within it traps a signal of the precise moments when an iron-rich core formed in the asteroid as well as when it froze, killing its magnetic field.
The new picture of metallic core solidification in the asteroid provide clues about the magnetic field and iron-rich core of Earth.
Core values "Ideas about how the Earth's core evolved through [our planet's] history are really changing at the moment," lead researcher Dr Richard Harrison, from the University of Cambridge, told BBC News.
"We believe that Earth's magnetic field is linked to core solidification. Earth's solid inner core may have started to form at very interesting time in terms of the evolution of life on Earth.
"By studying an asteroid we get to see this in fast forward. We can see the start of core solidification in the magnetic records as well as its end, and start to think about how these processes work on Earth."

Magnetic fieldThe Earth's magnetic field will likely die off when the core completely freezes
The meteorites studied by the team originally fell to Earth in Argentina, and are composed of gem-quality crystals enclosed in a metallic matrix of iron and nickel. 

Tiny particles, smaller than one thousandth the width of a human hair, trapped within the metal have retained the magnetic signature of the parent asteroid from its birth in the early Solar System.

"We're taking ancient magnetic field measurements in nano-scale materials to the highest ever resolution in order to piece together the magnetic history of asteroids - it's like a cosmic archaeological mission," said Dr James Bryson, the paper's lead author. 

"Since asteroids are much smaller than Earth, they cooled much more quickly, so these processes occur on a shorter timescales, enabling us to study the whole process of core solidification."

Prof Wyn William, from the University of Edinburgh, who was not involved in the study, commented: "To be able to get a time stamp on these recordings, to get a cooling rate and the time of solidification, is fantastic. It's a very nice piece of work."

The key to the long-lived stability of the recording is the atomic-scale structure of the iron-nickel particles that grew slowly in the asteroid core and survived in the meteorites. 

Making a final comment on the results, Dr Harrison said: "In our meteorites we've been able to capture both the beginning and end of core freezing, which will help us understand how these processes affected the Earth in the past and provide a possible glimpse of what might happen in the future." 

View Article Here Read More

Banned TED Talk: The Science Delusion ~ Is science way off about the nature of our reality?



The following statement has been posted by Tedstaff at blog.ted.com: "After due diligence, including a survey of published scientific research and recommendations from our Science Board and our community, we have decided that Graham Hancock’s and Rupert Sheldrake’s talks from TEDxWhitechapel should be removed from distribution on the TEDx YouTube channel... All talks on the TEDxTalks channel represent the opinion of the speaker, not of TED or TEDx, but we feel a responsibility not to provide a platform for talks which appear to have crossed the line into pseudoscience.

Response to the TED Scientific Board’s Statement
Rupert Sheldrake
March 18, 2013

I would like to respond to TED’s claims that my TEDx talk “crossed the line into pseudoscience”, contains ”serious factual errors” and makes “many misleading statements.”
This discussion is taking place because the militant atheist bloggers Jerry Coyne and P.Z. Myers denounced me, and attacked TED for giving my talk a platform. I was invited to give my talk as part of a TEDx event in Whitechapel, London, called “Challenging Existing Paradigms.” That’s where the problem lies: my talk explicitly challenges the materialist belief system. It summarized some of the main themes of my recent book Science Set Free (in the UK called The Science Delusion). Unfortunately, the TED administrators have publically aligned themselves with the old paradigm of materialism, which has dominated science since the late nineteenth century.
TED say they removed my talk from their website on the advice of their Scientific Board, who also condemned Graham Hancock’s talk. Hancock and I are now facing anonymous accusations made by a body on whose authority TED relies, on whose advice they act, and behind whom they shelter, but whose names they have not revealed.
TED’s anonymous Scientific Board made three specific accusations:
Accusation 1:“he suggests that scientists reject the notion that animals have consciousness, despite the fact that it’s generally accepted that animals have some form of consciousness, and there’s much research and literature exploring the idea.”
I characterized the materialist dogma as follows: “Matter is unconscious: the whole universe is made up of unconscious matter. There’s no consciousness in stars in galaxies, in planets, in animals, in plants and there ought not to be any in us either, if this theory’s true. So a lot of the philosophy of mind over the last 100 years has been trying to prove that we are not really conscious at all.” Certainly some biologists, including myself, accept that animals are conscious. In August, 2012, a group of scientists came out with an endorsement of animal consciousness in “The Cambridge Declaration on Consciousness”. As Discovery News reported, “While it might not sound like much for scientists to declare that many nonhuman animals possess conscious states, it’s the open acknowledgement that’s the big news here.” (http://news.discovery.com/human/genetics/animals-consciousness-mammals-birds-octopus-120824.htm)
But materialist philosophers and scientists are still in the majority, and they argue that consciousness does nothing – it is either an illusion or an ”epiphenomenon” of brain activity. It might as well not exist in animals – or even in humans. That is why in the philosophy of mind, the very existence of consciousness is often called “the hard problem”.http://en.wikipedia.org/wiki/Hard_problem_of_consciousness
Accusation 2:“He also argues that scientists have ignored variations in the measurements of natural constants, using as his primary example the dogmatic assumption that a constant must be constant and uses the speed of light as example.… Physicist Sean Carroll wrote a careful rebuttal of this point.”
TED’s Scientific Board refers to a Scientific American article that makes my point very clearly: “Physicists routinely assume that quantities such as the speed of light are constant.”
In my talk I said that the published values of the speed of light dropped by about 20 km/sec between 1928 and 1945. Carroll’s “careful rebuttal” consisted of a table copied from Wikipedia showing the speed of light at different dates, with a gap between 1926 and 1950, omitting the very period I referred to. His other reference (http://micro.magnet.fsu.edu/primer/lightandcolor/speedoflight.html) does indeed give two values for the speed of light in this period, in 1928 and 1932-35, and sure enough, they were 20 and 24km/sec lower than the previous value, and 14 and 18 km/sec lower than the value from 1947 onwards.
1926: 299,798
1928: 299,778
1932-5: 299,774
1947: 299,792

In my talk I suggest how a re-examination of existing data could resolve whether large continuing variations in the Universal Gravitational Constant, G, are merely errors, as usually assumed, or whether they show correlations between different labs that might have important scientific implications hitherto ignored. Jerry Coyne and TED’s Scientific Board regard this as an exercise in pseudoscience. I think their attitude reveals a remarkable lack of curiosity.
Accusation 3:“Sheldrake claims to have “evidence” of morphic resonance in crystal formation and rat behavior. The research has never appeared in a peer-reviewed journal, despite attempts by other scientists eager to replicate the work.”
I said, “There is in fact good evidence that new compounds get easier to crystallize all around the world.” For example, turanose, a kind of sugar, was considered to be a liquid for decades, until it first crystallized in the 1920s. Thereafter it formed crystals everyehere. (Woodard and McCrone Journal of Applied Crystallography (1975). 8, 342). The American chemist C. P. Saylor, remarked it was as though “the seeds of crystallization, as dust, were carried upon the winds from end to end of the earth” (quoted by Woodard and McCrone).
The research on rat behavior I referred to was carried out at Harvard and the Universities of Melbourne and Edinburgh and was published in peer-reviewed journals, including the British Journal of Psychology and the Journal of Experimental Biology. For a fuller account and detailed references see Chapter 11 of my book Morphic Resonance (in the US) / A New Science of Life (in the UK). The relevant passage is online here: http://sciencesetfree.tumblr.com/
The TED Scientific Board refers to ”attempts by other scientists eager to replicate the work” on morphic resonance. I would be happy to work with these eager scientists if the Scientific Board can reveal who they are.
This is a good opportunity to correct an oversimplification in my talk. In relation to the dogma that mechanistic medicine is the only kind that really works, I said, “that’s why governments only fund mechanistic medicine and ignore complementary and alternative therapies.” This is true of most governments, but the US is a notable exception. The US National Center for Complementary and Alternative Medicine receives about $130 million a year, about 0.4% of the National Institutes of Health (NIH) total annual budget of $31 billion.
Obviously I could not spell out all the details of my arguments in an 18-minute talk, but TED’s claims that it contains “serious factual errors,” “many misleading statements” and that it crosses the line into “pseudoscience” are defamatory and false.

Click to zoom

View Article Here Read More

Liftoff! SpaceX Gets $1 Billion From Google and Fidelity

 Excerpt from  nbcnews.com SpaceX, the California-based rocket company that now has its sights set on a globe-spanning satellite constellation, says it has received a $1 billion investment from Google and Fidelity that values the c...

View Article Here Read More

New data that fundamental physics constants underlie life-enabling universe

Excerpt from spacedaily.com For nearly half a century, theoretical physicists have made a series of discoveries that certain constants in fundamental physics seem extraordinarily fine-tuned to allow for the emergence of a life-enabling universe.Thi...

View Article Here Read More

Nibiru? Solar system may have Planet X & Planet Y

 




Scientists have postulated the existence of possibly two undiscovered planets beyond the orbit of Neptune to explain discrepancies in the orbits of extreme trans-Neptunian objects (ETNO). The objects have orbits that take them beyond the orbit of the planet Neptune.

Theory predicts that they be randomly distributed and that their orbits must have a semi-major axis with a value around 150 AU; an orbital inclination of nearly zero degrees; and an angle of perihelion, the point in the object’s orbit at which it is closest to the Sun, of zero to 180 degrees.

However, a dozen ETNO do not fit these orbital criteria. These objects have semi-major axis values of 150 to 525 AU, orbital inclinations of around 20 degrees, and angles of perihelion far from 180 degrees.

According to a statement, a new study by astrophysicists at the Complutense University of Madrid (UCM) and University of Cambridge have calculated that these orbital discrepancies could be explained by the existence of at least two additional planets beyond the orbits of Neptune and dwarf planet Pluto. Their study suggests that the gravitational pulls of those two planets must be disturbing the orbits of some smaller ETNO.

However, there are two difficulties with the hypothesis. One is that current models of the formation of our solar system do not allow for additional planets beyond Neptune. Secondly, the team’s sample size is very small, only 13 objects. However, additional results are in the pipeline, which will expand the sample.

“This excess of objects with unexpected orbital parameters makes us believe that some invisible forces are altering the distribution of the orbital elements of the ETNO and we consider that the most probable explanation is that other unknown planets exist beyond Neptune and Pluto,” said Carlos de la Fuente Marcos of UCM and lead author on the study.

The new findings have been published in two papers published in the journal Monthly Notices of the Royal Astronomical Society Letters.

View Article Here Read More

Science Increasingly Makes the Case for God



Excerpt from  wsj.com
By Eric Metaxas


The odds of life existing on another planet grow ever longer. Intelligent design, anyone?


In 1966 Time magazine ran a cover story asking: Is God Dead? Many have accepted the cultural narrative that he’s obsolete—that as science progresses, there is less need for a “God” to explain the universe. Yet it turns out that the rumors of God’s death were premature. More amazing is that the relatively recent case for his existence comes from a surprising place—science itself.
Here’s the story: The same year Time featured the now-famous headline, the astronomer Carl Sagan announced that there were two important criteria for a planet to support life: The right kind of star, and a planet the right distance from that star. Given the roughly octillion—1 followed by 27 zeros—planets in the universe, there should have been about septillion—1 followed by 24 zeros—planets capable of supporting life.
With such spectacular odds, the Search for Extraterrestrial Intelligence, a large, expensive collection of private and publicly funded projects launched in the 1960s, was sure to turn up something soon. Scientists listened with a vast radio telescopic network for signals that resembled coded intelligence and were not merely random. But as years passed, the silence from the rest of the universe was deafening. Congress defunded SETI in 1993, but the search continues with private funds. As of 2014, researches have discovered precisely bubkis—0 followed by nothing.
What happened? As our knowledge of the universe increased, it became clear that there were far more factors necessary for life than Sagan supposed. His two parameters grew to 10 and then 20 and then 50, and so the number of potentially life-supporting planets decreased accordingly. The number dropped to a few thousand planets and kept on plummeting.
Even SETI proponents acknowledged the problem. Peter Schenkel wrote in a 2006 piece for Skeptical Inquirer magazine: “In light of new findings and insights, it seems appropriate to put excessive euphoria to rest . . . . We should quietly admit that the early estimates . . . may no longer be tenable.”
As factors continued to be discovered, the number of possible planets hit zero, and kept going. In other words, the odds turned against any planet in the universe supporting life, including this one. Probability said that even we shouldn’t be here.
Today there are more than 200 known parameters necessary for a planet to support life—every single one of which must be perfectly met, or the whole thing falls apart. Without a massive planet like Jupiter nearby, whose gravity will draw away asteroids, a thousand times as many would hit Earth’s surface. The odds against life in the universe are simply astonishing.
Yet here we are, not only existing, but talking about existing. What can account for it? Can every one of those many parameters have been perfect by accident? At what point is it fair to admit that science suggests that we cannot be the result of random forces? Doesn’t assuming that an intelligence created these perfect conditions require far less faith than believing that a life-sustaining Earth just happened to beat the inconceivable odds to come into being?
There’s more. The fine-tuning necessary for life to exist on a planet is nothing compared with the fine-tuning required for the universe to exist at all. For example, astrophysicists now know that the values of the four fundamental forces—gravity, the electromagnetic force, and the “strong” and “weak” nuclear forces—were determined less than one millionth of a second after the big bang. Alter any one value and the universe could not exist. For instance, if the ratio between the nuclear strong force and the electromagnetic force had been off by the tiniest fraction of the tiniest fraction—by even one part in 100,000,000,000,000,000—then no stars could have ever formed at all. Feel free to gulp.
Multiply that single parameter by all the other necessary conditions, and the odds against the universe existing are so heart-stoppingly astronomical that the notion that it all “just happened” defies common sense. It would be like tossing a coin and having it come up heads 10 quintillion times in a row. Really?
Fred Hoyle, the astronomer who coined the term “big bang,” said that his atheism was “greatly shaken” at these developments. He later wrote that “a common-sense interpretation of the facts suggests that a super-intellect has monkeyed with the physics, as well as with chemistry and biology . . . . The numbers one calculates from the facts seem to me so overwhelming as to put this conclusion almost beyond question.”
Theoretical physicist Paul Davies has said that “the appearance of design is overwhelming” and Oxford professor Dr. John Lennox has said “the more we get to know about our universe, the more the hypothesis that there is a Creator . . . gains in credibility as the best explanation of why we are here.”
The greatest miracle of all time, without any close seconds, is the universe. It is the miracle of all miracles, one that ineluctably points with the combined brightness of every star to something—or Someone—beyond itself.

Mr. Metaxas is the author, most recently, of “Miracles: What They Are, Why They Happen, and How They Can Change Your Life” ( Dutton Adult, 2014).

View Article Here Read More

Are we sending aliens the right messages?


(Nasa)


bbc.com

Artist Carrie Paterson has long dreamed of beaming messages far out to the emptiness of space. Except her messages would have an extra dimension – smell.

By broadcasting formulae of aromatic chemicals, she says, aliens could reconstruct all sorts of whiffs that help to define life on Earth: animal blood and faeces, sweet floral and citrus scents or benzene to show our global dependence on the car. This way intelligent life forms on distant planets who may not see or hear as we do, says Paterson, could explore us through smell, one of the most primitive and ubiquitous senses of all.
(Wikipedia)
It is nearly 40 years since the Arecibo facility sent messages out into space (Wikipedia)

Her idea is only the latest in a list of attempts to hail intelligent life outside of the Solar System. Forty years ago this month, the Arecibo radio telescope in Puerto Rico sent an iconic picture message into space – and we’ve arguably been broadcasting to aliens ever since we invented TV and radio.

However in recent years, astronomers, artists, linguists and anthropologists have been converging on the idea that creating comprehensible messages for aliens is much harder than it seems. This week, Paterson and others discussed the difficulties of talking to our cosmic neighbours at a conference called Communicating Across the Cosmos, held by Seti (Search for Extraterrestrial Intelligence). It seems our traditional ways of communicating through pictures and language may well be unintelligible – or worse, be catastrophically misconstrued. So how should we be talking to ET?

Lost in translation?

We have always wanted to send messages about humanity beyond the planet. According to Albert Harrison, a space psychologist and author of Starstruck: Cosmic Visions in Science, Religion and Folklore, the first serious designs for contacting alien life appeared two centuries ago, though they never got off the ground.


In the 1800s, mathematician Carl Gauss proposed cutting down lines of trees in a densely forested area and replanting the strips with wheat or rye, Harrison wrote in his book. “The contrasting colours would form a giant triangle and three squares known as a Pythagoras figure which could be seen from the Moon or even Mars.” Not long after, the astronomer Joseph von Littrow proposed creating huge water-filled channels topped with kerosene. “Igniting them at night showed geometric patterns such as triangles that Martians would interpret as a sign of intelligence, not nature.”

But in the 20th Century, we began to broadcast in earnest. The message sent by Arecibo hoped to make first contact on its 21,000 year journey to the edge of the Milky Way. The sketches it contained, made from just 1,679 digital bits, look cute to us today, very much of the ‘Pong’ video game generation.  Just before then, Nasa’s Pioneer 10 and 11 space probes each carried a metal calling card bolted onto their frame with symbols and drawings on the plaque, showing a naked man and woman.

Yet it’s possible that these kinds of message may turn out to be incomprehensible to aliens; they might find it as cryptic as we find Stone Age etchings.

Antique tech

“Linear drawings of a male and a female homo sapiens are legible to contemporary humans,” says Marek Kultys, a London-based science communications designer. ”But the interceptors of Pioneer 10 could well assume we are made of several separate body parts (i.e. faces, hair and the man’s chest drawn as a separate closed shapes) and our body surface is home for long worm-like beings (the single lines defining knees, abdomens or collarbones.).”

Man-made tech may also be an issue. The most basic requirement for understanding Voyager’s Golden Record, launched 35 years ago and now way out beyond Pluto, is a record player. Aliens able to play it at 16 and 2/3 revolutions a minute will hear audio greetings in 55 world languages, including a message of ‘Peace and Friendship’ from former United Nations Secretary General Kurt Waldheim. But how many Earthlings today have record players, let alone extraterrestrials?
(Nasa)
Our sights and sounds of Earth might be unintelligible to an alien audience (Nasa)



Time capsule

Inevitably such messages become outdated too, like time capsules. Consider the case of the Oglethorpe Atlanta Crypt of Civilization – a time capsule sealed on Earth in 1940, complete with a dry martini and a poster of Gone With the Wind. It was intended as a snapshot of 20th Century life for future humans, not aliens, but like an intergalactic message, may only give a limited picture to future generations. When, in 61,000 years, the Oglethorpe time capsule is opened, would Gone With The Wind have stood the test of time?


(Nasa)
This message was taken into the stars by Pioneer - but we have no idea if aliens would be able to understand it (Nasa)

Kultys argues that all these factors should be taken into account when we calculate the likelihood of communicating with intelligent life. The astronomer Frank Drake’s famous equation allows anyone to calculate how many alien species are, based on likely values of seven different factors. At a UK Royal Society meeting in 2010 Drake estimated there are roughly 10,000 detectable civilisations in the galaxy. Yet Kultys points out that we should also factor in how many aliens are using the same channel of communications as us, are as willing to contact us as we are them, whose language we hope to learn, and who are physically similar to us.

Another barrier we might consider is the long distance nature of trans-cosmos communication. It means that many years ‒ even a thousand ‒ could pass between sending a message and receiving a reply. Paterson sees romance in that. “Our hope for communication with another intelligent civilisation has a melancholic aspect to it. 
We are on an island in a vast, dark space. Imagine if communication… became like an exchange of perfumed love letters with the quiet agony of expectation... Will we meet? Will we be as the other imagined? Will the other be able to understand us?”

Ready for an answer?

Anthropologist John Traphagan of the University of Texas in Austin has been asking the same question, though his view is more cautious. "When it comes to ET, you'll get a signal of some kind; not much information and very long periods between ‘Hi, how are you?’ and whatever comes back. We may just shrug our shoulders and say 'This is boring’, and soon forget about it or, if the time lag wasn't too long, we might use the minimal information we get from our slow-speed conversation to invent what we think they're like and invent a kind concept of what they're after.”

(20th Century Fox)
The aliens in Independence Day (1996) did not come in peace (20th Century Fox)
While we have been sending out messages, we have not been preparing the planet for what happens when we get an interstellar return call. First contact could cause global panic. We might assume those answering are bent on galactic domination or, perhaps less likely, that they are peaceful when in fact they’re nasty.

Consider how easy it is to mess up human-to-human communications; I got Traphagan’s first name wrong when I e-mailed him for this article. An apology within minutes cleared up the confusion, yet if he had been an alien anthropologist on some distant planet it would have taken much longer to fix. He later confessed: "I could have thought this is a snooty English journalist and our conversation might never have happened."

Even if Earth’s interstellar messaging committees weeded out the typos, cultural gaffes are always a possibility. These can only be avoided by understanding the alien’s culture – something that’s not easy to do, especially when you’ve never met those you’re communicating with.

Rosy picture

So, what is the best way to communicate? This is still up for grabs – perhaps it’s via smell, or some other technique we haven’t discovered yet. Clearly, creating a message that is timeless, free of cultural bias and universally comprehensible would be no mean feat.


But for starters, being honest about who we are is important if we want to have an extra-terrestrial dialogue lasting centuries, says Douglas Vakoch, director of interstellar message composition at Seti. (Otherwise, intelligent civilisations who’ve decoded our radio and TV signals might smell a rat.)

(Nasa)
The golden discs aboard the Voyager spacecraft require aliens to understand how to play a record (Nasa)

“Let's not try to hide our shortcomings,” says Vakoch. “The message we should send to another world is straightforward: We are a young civilisation, in the throes of our technological adolescence. We're facing a lot of problems here on Earth, and we're not even sure that we'll be around as a species when their reply comes in. But in spite of all of these challenges, we humans also have hope – especially hope in ourselves."


Yet ultimately what matters, says Paterson, is that they stop and consider the beings who sent them a message; the people who wanted to say: “Here are some important things. Here’s our DNA, here is some maths and universal physics. And here is our longing and desire to say “I’m like you, but I’m different.”

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑