Tag: union (page 2 of 7)

The Moon’s History Is Surprisingly Complex, Chinese Rover Finds




Excerpt from space.com


The moon's past was livelier and more complex than scientists had thought, new results from China's first lunar rover suggest.

China's Yutu moon rover found evidence of at least nine distinct rock layers deep beneath its wheels, indicating that the area has been surprisingly geologically active over the past 3.3 billion years.
"Two things are most interesting," said Long Xiao, a researcher at the China University of Geosciences in Wuhan, who is the lead author of the study detailing the new findings. "One is [that] more volcanic events have been defined in the late volcanism history of the moon," Xiao told Space.com via email


"Another is the lunar mare [volcanic plain] area is not only composed of basaltic lavas, but also explosive eruption-formed pyroclastic rocks," Xiao added. "The latter finding may shed light on … the volatile contents in the lunar mantle." 


China's Yutu rover traveled about 374 feet (114 meters) on the moon in a zigzag fashion after touching down in December 2013



Yutu (whose name means "jade rabbit") is part of China's Chang'e 3 moon mission. Chang'e 3 delivered Yutu and a stationary lander to the lunar surface on Dec. 14, 2013 — the first soft touchdown on the moon since the Soviet Union's Luna 24 mission in 1976.
Yutu traveled 374 feet (114 meters) on the moon in a zigzag fashion before a glitch ended its travels in January 2014. 

The rover was equipped with cameras and three main scientific instruments — the Lunar Penetrating Radar (LPR), the Visible Near-Infrared Spectrometer (VNIS) and the Active Particle-Induced X-ray Spectrometer (APXS). The new study, which was published online today (March 12) in the journal Science, reports results from the camera and the LPR, which can probe about 1,300 feet (400 m) beneath the moon's surface.

Those data paint a detailed portrait of the Chang'e 3 landing site, which sits just 165 feet (50 m) away from a 1,475-foot-wide (450 m) crater known as C1. C1 was gouged out by a cosmic impact that occurred sometime between 80 million and 27 million years ago, the study authors said.

Yutu studied the ground it rolled over, characterized the craters it cruised past and investigated an oddly coarse-textured rock dubbed Loong, which measures about 13 feet long by 5 feet high (4 by 1.5 m). Overall, the rover's observations suggest that the composition of its landing site is quite different from that of the places visited by NASA's Apollo missions and the Soviet Union's Luna program.
While Yutu isn't beaming home any new data these days, the scientific community can expect to hear about more discoveries from the mission shortly, Xiao said.

"Unfortunately, Yutu encountered mechanical problems and has ended its mission," he told Space.com. "No more data will come. However, our report only provides the scientific results based on imagery and radar data. More results from NIS and APXS for composition study will come out soon."

View Article Here Read More

Dawn Enters Orbit Around Dwarf Planet Ceres ~ Video

Ceres Dawn




Dwarf Planet Ceres

Excerpt from spacenews.com

NASA’s Dawn spacecraft arrived in orbit around the dwarf planet Ceres March 6, completing a journey of nearly seven and a half years and five billion kilometers.  In a statement, NASA’s Jet Propulsion Laboratory said Dawn entered orbit about 61,000 kilometers above Ceres at 7:39 am EST March 6, sending a signal to Earth about an hour later confirming it was in orbit and in good health.  “We feel exhilarated,” Dawn principal investigator Chris Russell said in the statement. “We have much to do over the next year and a half, but we are now on station with ample reserves, and a robust plan to obtain our science objectives.”

Dawn will gradually spiral down to its initial science orbit, 13,500 kilometers above Ceres, by April. Later in its mission Dawn will move gradually closer to the surface, eventually moving into an orbit of 375 kilometers.  The Dawn spacecraft, built by Orbital ATK, launched on a United Launch Alliance Delta 2 rocket in September 2007. After making a gravity assist flyby of Mars in February 2009, it entered orbit around the large main-belt asteroid Vesta in July 2011. It remained there for more than a year, using its ion thrusters to leave orbit in September 2012 to head to Ceres. 

Ceres, the largest object in the main asteroid belt between the orbits of Mars and Jupiter, was the first asteroid discovered by astronomers, in 1801. The International Astronomical Union designated Ceres a “dwarf planet” in 2006, a new category of objects that also includes the former planet Pluto.


Click to zoom
Dawn will gradually spiral down to its initial science orbit, 13,500 kilometers above Ceres, by April. Later in its mission Dawn will move gradually closer to the surface, eventually moving into an orbit of 375 kilometers.
The Dawn spacecraft, built by Orbital ATK, launched on a United Launch Alliance Delta 2 rocket in September 2007. After making a gravity assist flyby of Mars in February 2009, it entered orbit around the large main-belt asteroid Vesta in July 2011. It remained there for more than a year, using its ion thrusters to leave orbit in September 2012 to head to Ceres.
Ceres, the largest object in the main asteroid belt between the orbits of Mars and Jupiter, was the first asteroid discovered by astronomers, in 1801. The International Astronomical Union designated Ceres a “dwarf planet” in 2006, a new category of objects that also includes the former planet Pluto.
- See more at: http://spacenews.com/dawn-enters-orbit-around-ceres/#sthash.yoclEQI4.dpuf
WASINGTON — NASA’s Dawn spacecraft arrived in orbit around the dwarf planet Ceres March 6, completing a journey of nearly seven and a half years and five billion kilometers.
In a statement, NASA’s Jet Propulsion Laboratory said Dawn entered orbit about 61,000 kilometers above Ceres at 7:39 am EST March 6, sending a signal to Earth about an hour later confirming it was in orbit and in good health.
“We feel exhilarated,” Dawn principal investigator Chris Russell said in the statement. “We have much to do over the next year and a half, but we are now on station with ample reserves, and a robust plan to obtain our science objectives.”
- See more at: http://spacenews.com/dawn-enters-orbit-around-ceres/#sthash.yoclEQI4.dpuf

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

NASA releases first ever moving images of dark side of the Moon ~ Video





From wiki

The far side of the Moon, or 'dark side of the moon', is the hemisphere of the Moon that always faces away from Earth. The far side's terrain is rugged, with a multitude of impact craters and relatively few flat lunar maria. It has one of the largest craters in the Solar System, the South Pole–Aitken basin.

About 18 percent of the far side is occasionally visible from Earth due to libration. The remaining 82 percent remained unobserved until 1959, when the Soviet Union's Luna 3 space probe photographed it. The Russian Academy of Sciences published the first atlas of the far side in 1960. In 1968, the Apollo 8 mission's astronauts were the first humans to view this region directly when they orbited the Moon. To date, no one has explored the far side of the Moon on the ground.





Click to zoom

View Article Here Read More

New internet neutrality: FCC chairman proposes strong new rules

Excerpt from mercurynews.comThe federal government's top communications regulator on Wednesday called for strong new rules to bar Internet and wireless providers from blocking, slowing or discriminating against consumers' access to particular websi...

View Article Here Read More

Google Chairman Eric Schmidt: "The Internet Will Disappear"


 


Excerpt from hollywoodreporter.com

Google executive chairman Eric Schmidt on Thursday predicted the end of the Internet as we know it.

At the end of a panel at the World Economic Forum in Davos, Switzerland, where his comments were webcast, he was asked for his prediction on the future of the web. “I will answer very simply that the Internet will disappear,” Schmidt said.

“There will be so many IP addresses…so many devices, sensors, things that you are wearing, things that you are interacting with that you won’t even sense it,” he explained. “It will be part of your presence all the time. Imagine you walk into a room, and the room is dynamic. And with your permission and all of that, you are interacting with the things going on in the room.”

Concluded Schmidt: “A highly personalized, highly interactive and very, very interesting world emerges.”

The panel, entitled The Future of the Digital Economy, also featured Facebook COO Sheryl Sandberg and others.
Earlier in the debate, Schmidt discussed the issue of market dominance. The European Union has been looking at Google’s search market dominance in a long-running antitrust case, and the European parliament late last year even called for a breakup.
“You now see so many strong tech platforms coming, and you are seeing a reordering and a future reordering of dominance or leaders or whatever term you want to use because of the rise of the apps on the smartphone,” Schmidt said Thursday. “All bets are off at this point as to what the smartphone app infrastructure is going to look like” as a “whole new set” of players emerges to power smartphones, which are nothing but super-computers, the Google chairman argued. “I view that as a completely open market at this point.”

Asked about his recent trip to North Korea, Schmidt said the country has many Internet connections through data phones, but there is no roaming and web usage is “heavily supervised.” Schmidt said “it’s very much surveillance of use,” which he said was not good for the country and others.

Sandberg and Schmidt lauded the Internet as an important way to give more people in the world a voice. Currently, only 40 percent of people have Internet access, the Facebook COO said, adding that any growth in reach helps extend people’s voice and increase economic opportunity. “I’m a huge optimist,” she said about her outlook for the industry. “Imagine what we can do” once the world gets to 50 percent, 60 percent and more in terms of Internet penetration.
She cited women as being among the beneficiaries, saying the Internet narrows divides.

Schmidt similarly said that broadband can address governance issues, information needs, personal issues, women empowerment needs and education issues. “The Internet is the greatest empowerment of citizens … in many years,” he said. “Suddenly citizens have a voice, they can be heard.”
During another technology panel at the World Economic Forum on Thursday, Yahoo CEO Marissa Mayer, Liberty Global CEO Mike Fries and others answered questions on the need to regulate privacy standards on the Internet and for tech companies following the Snowden case, the Sony hack and the like.


Mayer said that the personalized Internet “is a better Internet,” emphasizing: “We don’t sell your personal data … We don’t transfer your personal data to third parties.” She said users own their data and need to have control, adding that people give up data to the government for tax assessment, social services and other purposes.
Fries said Liberty Global subscribers view billions of hours of content and generate billions of clicks, but added that “today we do nothing.” He explained: “We generate zero revenue from all of that information.” But he acknowledged that big data was big business for a lot of people.

Both executives said transparency was important to make sure users know privacy standards and the like.

Gunther Oettinger, a conservative German politician serving as the European Union’s commissioner for digital economy and society, said on the panel that “we need a convincing global understanding, we need a UN agency for data protection and security.” Asked what form that “understanding” should have, he said he was looking for “clear, pragmatic, market-based regulation.” Explained Oettinger: “It’s a public-private partnership.”

Fries said such a solution was likely not to happen in the near term, given the size of the EU. “I think it is going to take several years,” he said, adding that some countries’ parliaments would likely take a stab at it.

But he warned that a joint solution would make more sense. “We don’t want Germany to have its own Internet,” Fries said. “Some countries may build their own Internets” and “balkanize” the web, he warned.

Mayer said on the issue of regulation: “I like Tim’s idea better of the beneficent marketplace.” She spoke of fellow panelist and computer specialist Tim Berners-Lee, known as the inventor of the World Wide Web.

Asked how Yahoo stores and handles client records, she said the online giant “changed the way we store and communicate data” after Snowden and also changed encryptions between data centers. And the company protects users through encryption methods, she added. Mayer said that trust and confidence of Yahoo users has rebounded since.

Mayer was also asked what happens if a government asks for a user’s data, a question that has new significance after the recent terrorist attacks in Paris, which have led some to call for increased surveillance powers of the Internet for governments. Mayer said Yahoo always assesses if such a request is reasonable. “We have a very good track record for standing up to what’s not reasonable,” she said.

View Article Here Read More

Philae comet lander eludes discovery

Artist's conceptionExcerpt from bbc.comEfforts to find Europe's lost comet lander, Philae, have come up blank. The most recent imaging search by the overflying Rosetta "mothership" can find no trace of the probe. Philae touched down on 67...

View Article Here Read More

Rosetta’s Comet Lander Will Revive After Bumpy Touchdown, Scientists Say


Mosaic of four images taken by Rosetta's navigation camera (NAVCAM) on 10 December 2014 at 20.1 km from the centre of comet 67P/Churyumov-Gerasimenko.
The ESA comet lander Philae came to rest between two shadowed cliffs, limiting the sunlight hitting the lander's solar panels, but scientists hope the lander can be revived by February as more light arrives. This image of the comet's surface is a mosaic of four taken by Rosetta's navigation camera on December 10.

Hopes rise for reviving the hibernating lander's solar power as comet receives more sunlight.

Excerpt from news.nationalgeographic.com

SAN FRANCISCO—Fear not for Philae: The little lost lander could reawaken as soon as February, the Rosetta mission team said Wednesday. Increasing sunlight almost guarantees an end to the probe's current hibernation on a comet racing toward the sun.

The European Space Agency's $1.75-billion mission sent the lander to comet 67P/Churyumov-Gerasimenko on November 12 in an audacious, if bumpy, touchdown on the double-lobed comet. It was the first soft landing attempt on a comet.

The lander bounced after an anchoring harpoon failed to fire, turning initial elation to disappointment. After a two-hour bounce, Philae came to rest with one of its three feet planted on the comet and the others angled between two shadowed cliffs.

Those cliffs allow, for now, only 4 hours and 33 minutes of uninterrupted sunlight per day to the probe's solar panels, not enough to restart it. But the mission team announced at the American Geophysical Union meeting that more sunshine is on the way.

View Article Here Read More

Strange rock containing 30,000 diamonds baffles scientists


Strange rock containing 30,000 diamonds baffles scientists
© Getty Images Strange rock containing 30,000 diamonds baffles scientists

msn.com

When Russian miners pulled a strange red and green stone out of the ground, they immediately knew it was different to the thousands of tons of ore they process every day. 

In fact, what workers at Alrosa 's Udachnaya diamond mine had unearthed was a 30mm rock that contained 30,000 diamonds - a conentration 1m times higher than normal. 

However, despite the rare find the company donated the rock to the Russian Academy of Sciences, as the diamonds are so small that they cannot be used as gems. 

After scanning the rock with X-rays, scientists found that the diamonds inside measure just 1mm and are octahedral in shape - similar to two pyramids stuck together at the base. The red and green colouring comes from larger crystals of garnet, olivine and pyroxene. 

"The exciting thing for me is there are 30,000 itty-bitty, perfect octahedrons, and not one big diamond," said Larry Taylor, a geologist at the University of Tennessee, who presented the findings at the American Geophysical Union 's annual meeting. "It's like they formed instantaneously. This rock is a strange one indeed."

Scientists are excited at the finding as they hope it will shed further light on how diamonds are made. They know diamonds are crystals of pure carbon that form under crushing pressures and intense heat, mostly formed in the Earth's mantle, the layer beneath the crust or surface layer, at a depth of about 150km. However, certain processes in their creation remain a mystery. 

"The [chemical] reactions in which diamonds occur still remain an enigma," Mr Taylor told Live Science, which first reported the story. 

View Article Here Read More

The End of the Space Race?




Excerpt from
psmag.com

A far cry from the fierce Cold War Space Race between the U.S. and the Soviet Union, exploration in the 21st century is likely to be a much more globally collaborative project.

Today, NASA’s goal to put astronauts on Mars by the 2030s could be a similarly unifying project. And not only in the United States. A far cry from the fierce Cold War Space Race between the U.S. and the Soviet Union, exploration in the 21st century is likely to be a far more globally collaborative project.

Why has the idea of reaching Mars captured the world? A trip to Mars is a priority for many scientific reasons—some believe it’s the planet that most resembles our own, and one that could answer the age-old question of whether we’re alone in the universe—but there’s also been a long popular fascination with the planet, Stofan observed. Ever since Giovanni Virginio Schiaparelli first observed the canali on Mars in the 1800s or when H.G. Wells wrote about aliens from Mars in his 1898 science fiction novel, The War of the Worlds, the planet has loomed large in the public’s imagination.

NASA’s view is to turn over to the private sector those projects that in a sense have become routine so that it can focus its resources on getting to Mars.

This spirit of trans-border ownership and investment seems set to continue. One key part of this is the Global Exploration Roadmap, an effort between space agencies like NASA, France’s Centre National d’Etudes Spatiales, the Canadian Space Agency, and the Japan Aerospace Exploration Agency, among many others, that is intended to aid joint projects from the International Space Station to expeditions to the Moon and near-Earth asteroids—and to reach Mars. On a recent trip to India’s space agency, Stofan recounted to me, she met with many Indian engineers who were just as excited as the Americans to get scientists up there, not only to explore, but also to begin nailing down the question of whether there was ever life on the red planet.

It’s also clear that the next stage of space exploration will not only be more global, but will equally involve greater private and public partnerships.

This environment feels a lot different from the secretive and adversarial Space Race days, when the U.S. and Soviet Union battled to reach the moon first. What’s changed? The Cold War is over, of course, but with it, the funding commitment may also be missing this time around. Stofan mentioned, in response to an audience question, that at the time of the Apollo missions, NASA got up to about four percent of the federal budget, while now it’s only around 0.4 percent. The dollars are still large, but perhaps increased international and private cooperation can be seen as an efficient, clever way to do more with less.

So, what does the future hold? NASA is extremely focused on how to get to Mars and back again safely, Stofan told the audience, but the fun role of science fiction, she suggested, is to start envisioning what the steps after that might be. For example, what might it be like to live on Mars? After all, science often gets its inspiration from the creative world. Just look at how similar mobile phones are to the communicators from Star Trek, she pointed out, or the fact that MIT students made a real-life version of the robotic sphere that Luke Skywalker trains with in Star Wars. “Stories are a great counterpoint to science,” she said.

View Article Here Read More

NASA’s Dawn spacecraft captures early images of planet Ceres


From Wiki: Ceres (minor-planet designation 1 Ceres) is the largest object in the asteroid belt, which lies between the orbits of Mars and Jupiter. It is composed of rock and ice, is 950 km (590 mi) in diameter, containing a third of the mass of the asteroid belt. It is the largest asteroid, and the only dwarf planet in the inner Solar System.

Excerpt from nbcnews.com

It's only nine pixels wide, but the Dawn probe's latest picture of Ceres already shows that the dwarf planet is true to form.
The Dec. 1 view was taken when NASA's Dawn spacecraft was about 740,000 miles (1.2 million kilometers) from 590-mile-wide (950-kilometer-wide) Ceres, the most massive object in the main asteroid belt. Dawn is on its way to a rendezvous with Ceres early next year after studying Vesta, the second most massive asteroid.
The International Astronomical Union lumped Ceres in with Pluto and several other worlds as dwarf planets in 2006 — due to the fact that it's massive enough to maintain a round shape, but not big enough to "clear the neighborhood of its orbit." That definition may be a bit problematic; nevertheless, Dawn's view certainly provides a sense of Ceres' roundness. 

Location of Ceres
This picture was taken primarily to calibrate Dawn's camera. It's not as detailed as the view that the Hubble Space Telescope captured in 2004. For better views — perhaps including glimpses of ice caps, ice volcanoes and clouds — check back in March, when Dawn goes into orbit around the first dwarf planet to be seen close up. 

View Article Here Read More

Mars Capsule Test Heralds New Space Age With Musk Alongside NASA




Excerpt from
bloomberg.com

The U.S. is preparing to launch the first craft developed to fly humans to Mars, presaging a second space age -- this one fueled by billionaires like Elon Musk rather than a Cold War contest with the Soviet Union. 

An unmanned version of the Orion spaceship built by Lockheed Martin Corp. (LMT) is scheduled for liftoff tomorrow to an altitude of 3,600 miles (5,800 kilometers), the farthest from Earth by a vehicle designed for people since the Apollo program was scrapped in 1972. 

Entrepreneurs such as Musk and longtime contractors like Lockheed are helping shape the technology needed to find other homes for humanity in the solar system with an eye to one day commercializing their work. 

“These are really exciting times for space exploration and for our nation as we begin to return to the ability to fly humans to space,” said Jim Crocker, vice president and general manager of civil space at Lockheed Martin Space Systems. “What Orion is about is going further into space than humans have ever gone before.”
Photographer: Brent Lewis/The Denver Post via Getty Images

Launched from Kennedy Space Center in Florida atop a Delta IV rocket, the Orion capsule will test the riskiest systems needed to carry astronauts far beyond the moon, although its first flight will cover only about 2 percent of the 238,900-mile distance to the lunar surface.

Speed Limit

After orbiting earth twice, Orion will accelerate to 20,000 miles per hour during descent, mimicking the speeds of a craft returning from a mission to deep space. The capsule is supposed to make a parachute-cushioned splashdown in the Pacific Ocean off Mexico’s Baja peninsula. 

To explore the universe, the National Aeronautics and Space Administration must first redevelop capabilities abandoned more than 40 years ago when the U.S. shifted focus from Apollo’s lunar forays to rocketing crews a few hundred miles to low Earth orbit.
NASA has used Russian craft to reach the International Space Station since the space shuttle program ended in 2011. 

In a strategic shift, the Obama administration canceled plans to return to the moon, turning some flights to commercial companies while setting its sights -- and limited funds -- on pioneering deep space. The Orion capsule was originally commissioned in 2006 for the defunct Constellation program.

Musk, Bezos

Those moves paved the way for technology chieftains including Musk and Amazon.com Inc. (AMZN) founder Jeff Bezos to pursue their own space ambitions. 

Musk founded Hawthorne, California-based SpaceX in 2002 with the goal of enabling people to live on other planets, a massive endeavor that would require innovations such as reusable rocket stages to lower costs. 

Mars is also in focus for NASA as the space agency maps plans to “pioneer the space frontier,” according to a May 29 white paper.

$22 Billion

NASA proposes an initial $22 billion effort that includes two other Orion missions over the next eight years and building a powerful new rocket. The Delta IV being used tomorrow is manufactured by United Launch Alliance, a Lockheed-Boeing Co. (BA) venture.

A new Space Launch System rocket being developed by the partnership is slated to hoist the next Orion craft beyond the moon in fiscal 2018, Lockheed’s Crocker said in a phone interview. The first manned Orion mission is slated for early in the next decade.
NASA’s plans are “sketchy” beyond that, aside from broad goals to capture asteroid samples in the 2020s and reach Mars a decade later, said Marco Caceres, director of space studies with Fairfax, Virginia-based consultant Teal Group. 

Average Distance

While Mars’s distance from Earth varies because of the two planets’ orbits, the average is about 140 million miles, almost 600 times longer than a trip to the moon. It’s so far that radio communications take as long as 20 minutes to travel each way, according to Bill Hill, NASA’s deputy associate administrator for exploration systems development. 


Entrepreneurs such as Musk will have opportunities to get involved as NASA refines capsule and rocket designs. NASA plans to develop two larger rockets beyond the initial launch vehicle, which will be capable of hauling a 70-metric ton payload. 

“We’re not taking any options off the table,” Hill said. “We want to be sufficiently flexible so that if we find a new path, we can introduce it and not change course.” 

Expense, shifting political priorities and the lack of a clear NASA road map could still derail the latest effort as they did the Apollo program in the early 1970s, said Micah Walter-Range, director of research analysis with the Space Foundation, a non-profit organization based in Colorado Springs, Colorado. 

“All of the challenges that exist are surmountable,” Walter-Range said by phone. “It’s just a question of having the money to do it.”

View Article Here Read More

Is this what Rosetta’s comet really looks like in color?

This image depicts a more colorful view of 67PExcerpt from cnet.comA color image of Rosetta's comet buddy has emerged online and may shine some brightness on a comet that has become famous in black and white. Move over, Halley: 67P/Churyumov-Gerasime...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑