Tag: understood (page 2 of 7)

New Light on Our Accelerating Universe –"Not as Fast as We Thought"

 A Type Ia supernova, SN1994D, is shown exploding in lower left corner of the image at the top of the page of the galaxy NGC 4526 taken by the Hubble Space Telescope. (High-Z Supernova Search Team, HST, NASA)Excerpt from dailygalaxy.com Cer...

View Article Here Read More

New research shows Universe expansion pace isn’t as fast as assumed earlier



universe


Excerpt from thewestsidestory.net

The Universe is expanding and any student of astronomy will vouch to this fact. However according to a team of astronomers the acceleration of the universe may not be as quick as it was assumed earlier.

A team of astronomers have discovered that certain types of supernova are more varied than earlier thought of and in the process have led to the biggest mystery of the universe-how fast is the universe expanding after the big bang?

Peter A. Milne of the University of Arizona said, “We found that the differences are not random, but lead to separating Ia supernovae into two groups, where the group that is in the minority near us are in the majority at large distances — and thus when the universe was younger, there are different populations out there, and they have not been recognized. The big assumption has been that as you go from near to far, type Ia supernovae are the same. That doesn’t appear to be the case.”
The discovery throws new light on the currently accepted view of the universe expanding at a faster and faster rate pulled apart by an unknown force called dark energy this observation resulted in 2011 Nobel Prize for Physics.
Milne said, “The idea behind this reasoning, is that type Ia supernovae happen to be the same brightness — they all end up pretty similar when they explode. Once people knew why, they started using them as mileposts for the far side of the universe.The faraway supernovae should be like the ones nearby because they look like them, but because they’re fainter than expected, it led people to conclude they’re farther away than expected, and this in turn has led to the conclusion that the universe is expanding faster than it did in the past.”
The researchers felt that the accelerating universe can be explained on the basis of color difference in between two groups of supernova leaving less acceleration than earlier assumed and in the process will require lesser dark energy.

Milne said, “We’re proposing that our data suggest there might be less dark energy than textbook knowledge, but we can’t put a number on it, until our paper, the two populations of supernovae were treated as the same population. To get that final answer, you need to do all that work again, separately for the red and for the blue population.

Type la supernovae are considered as a benchmark for far away sources of light they do have a fraction of variability which has limited our knowledge of the size of the universe.
The distance of objects with the aid of our binocular vision and the best space-based telescopes and most sophisticated techniques works out in the range of ten or twenty thousand light years. 
However as compared to the vastness of space, this is just pea nuts.
For Distances greater than that it is imperative to compare the absolute and observed brightness of well understood objects and to use the difference to determine the object’s distance.

In astronomy it is difficult to find an object of known brightness since there are examples of both bright and dim stars and galaxies. However there is one event which can be used to work out its absolute brightness. Supernovas are the final stages of a dying star and it explodes with such violence, the flash can be seen across the vast universe.

Type la Supernovae occurs in a binary star system when a white dwarf scoops off mass from its fellow star. This reproducible mechanism gives a well determined brightness and therefore scientists term such Type la supernovae as ‘standard candles’.

Astronomers found that the Type la supernovae is so uniform that it has been designated as cosmic beacons and used to assess the depths of the universe. It is now revealed that they fall into different populations and are not very uniform as previously thought. .

View Article Here Read More

Mystery Methane Hotspot Over Four Corners — What Is It?

 Excerpt from eaglecurrent.com NASA is joining in an effort to have an understanding of the presence of a methane hotspot over the 4 corners area of the United States. How severe is the atmospheric feature?A methane hotspot hovering over t...

View Article Here Read More

UV light reveals hidden colors in ancient shells



UV light revealed the way ancient shells looked millions of years ago.


Excerpt from perfscience.com


Using ultra-violet (UV) light, scientists have revealed astonishing colors of about 30 ancient seashells. According to PLOS, the seashells, which are estimated to be between 6.6 and 4.8 million years old, were looking white in regular white light. The true colors of the shells appeared in UV light.




According to the researchers, “The biology of modern Conidae (cone snails)-which includes the hyperdiverse genus Conus-has been intensively studied, but the fossil record of the clade remains poorly understood, particularly within an evolutionary framework”.

In the presence of UV light, the organic matter remaining in the shells fluoresces. With this, the shells appeared similar to what they looked when living creatures used to live in them. It is yet unclear which particular compounds in the shells are releasing the light when exposed to UV rays. With the help of the technique, the researchers were able to document the coloration patterns of 28 different cone shell species found in the Dominican Republic. Out of these 28 shells, 13 were found to be the species, which were not known earlier. And this could help know about the relationship between modern species.

San Jose State University geologist Jonathan Hendricks exposed over 350 fossil specimens to ultraviolet light. 

The coloration patterns of the ancient species were compared with existing animals and doing this, researchers found many displayed similarities. According to this finding, some modern species emerge from lineages. These lineages began in the Caribbean millions of years ago.

The newly distinguished species, Conus carlottae, was also among the newly distinguished species and it has a polka-dotted shell, which is not found in modern cone snails today. Researchers are now using UV light to emit color from porcelain white seashell fossils.

View Article Here Read More

MRSA superbug killed by 1,100-year-old home remedy, researchers say


MRSA attacks a human cell. The bacteria shown is the strain MRSA 252, a leading cause of hospital-associated infections. (Rocky Mountain Laboratories, NIAID, NIH)


Excerpt from washingtonpost.com
By Justin Wm. Moyer 

Even in the age of AIDS, avian flu and Ebola, methicillin-resistant Staphylococcus aureus, better known as MRSA, is terrifying.

The superbug, which is resistant to conventional antibiotics because of their overuse, shrugs at even the deadliest weapons modern medicine offers. The Centers for Disease Control and Prevention estimated MRSA contributed to the deaths of more than 5,000 people in the United States in 2013. It even attacked the NFL, and some say it could eventually kill more people than cancer. And presidential commissions have advised that technological progress is the only way to fight MRSA.

But researchers in the United Kingdom now report that the superbug proved vulnerable to an ancient remedy. The ingredients? Just a bit of garlic, some onion or leek, copper, wine and oxgall — a florid name for cow’s bile.

This medicine sounds yucky, but it’s definitely better than the bug it may be able to kill.

“We were absolutely blown away by just how effective the combination of ingredients was,” Freya Harrison of the University of Nottingham, who worked on the research, told the BBC.

The oxgall remedy, billed as an eye salve, was found in a manuscript written in Old English from the 10th century called “Bald’s Leechbook” — a sort of pre-Magna Carta physician’s desk reference. Garlic and copper are commonly thought to have antibiotic or antimicrobial properties, but seeing such ingredients in a home remedy at Whole Foods is a far cry from researchers killing a superbug with it.

According to Christina Lee, an associate professor in Viking studies at Nottingham, the MRSA research was the product of conversations among academics of many stripes interested in infectious disease and how people fought it before antibiotics.

“We were talking about the specter of antibiotic resistance,” she told The Washington Post in a phone interview. The medical researchers involved in the discussions said to the medievalists: “In your period, you guys must have had something.”

Not every recipe in Bald’s Leechbook is a gem. Other advice, via a translation from the Eastern Algo-Saxonist: “Against a woman’s chatter; taste at night fasting a root of radish, that day the chatter cannot harm thee.” And: “In case a man be a lunatic; take skin of a mereswine or porpoise, work it into a whip, swinge the man therewith, soon he will be well. Amen.”

Though the Leechbook may include misses, it may help doctors find a solution to a problem that only seems to be getting worse.

If the oxgall remedy proves effective against MRSA outside of the lab — which researchers caution it may not — it would be a godsend. Case studies of MRSA’s impact from the CDC’s charmingly named Morbidity and Mortality Weekly Report seem medieval.

In July 1997, a 7-year-old black girl from urban Minnesota was admitted to a tertiary-care hospital with a temperature of 103 F.” Result: Death from pulmonary hemorrhage after five weeks of hospitalization.

In January 1998, a 16-month-old American Indian girl from rural North Dakota was taken to a local hospital in shock and with a temperature of 105.2 F.” Result: After respiratory failure and cardiac arrest, death within two hours of hospital admission.

In January 1999, a 13-year-old white girl from rural Minnesota was brought to a local hospital with fever, hemoptysis” — that’s coughing up blood — “and respiratory distress.” The result: Death from multiple organ failure after seven days in the hospital.

“We believe modern research into disease can benefit from past responses and knowledge, which is largely contained in non-scientific writings,” Lee told the Telegraph. “But the potential of these texts to contribute to addressing the challenges cannot be understood without the combined expertise of both the arts and science.”

Lee stressed that it was the combination of ingredients that proved effective against MRSA — which shows that people living in medieval times were not as barbaric as popularly thought. Even 1,000 years ago, when people got sick, other people tried to figure out how to help.

“We associate ‘medieval’ with dark, barbaric,” Lee said. “… It’s not. I’ve always believed in the pragmatic medieval ages.”
The research will be presented at the Annual Conference of the Society for General Microbiology in Birmingham. In an abstract for the conference, the team cautioned oxgall was no cure-all.

“Antibacterial activity of a substance in laboratory trials does not necessarily mean the historical remedy it was taken from actually worked in toto,” they wrote.

Lee said researchers hope to turn to other remedies in Bald’s Leechbook — including purported cures for headaches and ulcers — to see what other wisdom the ancients have to offer.

“At a time when you don’t have microscope, medicine would have included things we find rather odd,” she said. “In 200 years, people will judge us.”

View Article Here Read More

New spin on Saturn’s peculiar, err, spin

 Excerpt from spacedaily.comAccording to the new method, Saturn's day is 10 hours, 32 minutes and 44 seconds long. Tracking the rotation speed of solid planets, like the Earth and Mars, is a relatively simple task: Just measure the time it tak...

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

Warp in spacetime lets astronomers watch the same star explode four times



Excerpt from csmonitor.com

Thanks to a phenomenon known as gravitational lensing, the Hubble Space Telescope has captured four images of the same supernova explosion.

For the first time, a cosmic magnifying glass has allowed scientists to see the same star explosion four times, possibly offering a revealing glimpse into these explosive stellar deaths and the nature of the accelerating universe.

Astronomers using the Hubble Space Telescope have captured four images of a supernova explosion in deep space thanks to a galaxy located between Earth and the massive star explosion. You can see how Hubble saw the supernova in this NASA video. The galaxy cluster warped the fabric of space and time around it — like a bowling ball placed on a bed sheet — allowing scientists to see the supernova in four images.

"It was predicted 50 years ago that a supernova could be gravitationally lensed like this, but it's taken a long time for someone to find an example," lead study author Patrick Kelly, an astronomer at the University of California, Berkeley told Space.com. "It's fun to have been able to find the first one." 

The supernova, which was discovered on Nov. 11, 2014, is located about 9.3 billion light-years away from Earth, near the edge of the observable universe. The researchers have named the distant supernova SN Refsdal in honor of the late Norwegian astrophysicist Sjur Refsdal, a pioneer of gravitational lensing studies. Due to gravitational lensing, "the supernova appears 20 times brighter than its normal brightness," study co-author Jens Hjorth, head of the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen, said in a statement.
The lensing galaxy, which is about 5 billion light-years from Earth, is part of a large cluster of galaxies known MACS J1149.6+2223. In 2009, astronomers discovered that this cluster was the source of the largest known image of a spiral galaxy ever seen through a gravitational lens.

The four images of the supernova each appeared separately over the course of a few weeks. This is because light can take various paths around and through a gravitational lens, arriving at Earth at different times.

Using gravity as a lens

Gravity is created when matter warps the fabric of reality. The greater the mass of an object, the more space-time curves around that object and the stronger its gravitational pull, the discovery enshrined in Einstein's theory of general relativity, which celebrates its centennial this year.

As a result, gravity can also bend light like a lens, meaning objects see n behind powerful gravitational fields, such as those of massive galaxies, are magnified. Gravitational lensing was first discovered in 1979, and today gravitational lenses can help astronomers see features otherwise too distant and faint to detect with even the largest telescopes.

"These gravitational lenses are like a natural magnifying glass. It's like having a much bigger telescope," Kelly said in a statement. "We can get magnifications of up to 100 times by looking through these galaxy clusters."

When light is far from a gravitationally lensing mass, or if the gravitationally lensing mass is not especially large, only "weak lensing" occurs, barely distorting the light. However, when the light comes from almost exactly behind the gravitationally lensing mass, "strong lensing" can happen. 

When a strongly lensed object occupies a large patch of space — for instance, if it's a galaxy — it can get smeared into an "Einstein ring" surrounding a gravitationally lensing mass. However, strong lensing of small, pointlike items — for instance, super-bright objects known as quasars — often produces multiple images surrounding the gravitationally lensing mass, resulting in a so-called "Einstein cross."

The observations of SN Refsdal mark the first time astronomers on Earth have witnessed strong lensing of a  supernova, with four images of an exploding star arrayed as an Einstein cross.

An expanding universe

These new findings could help scientists measure the accelerating rate at which the universe is expanding, researchers say.

A computer model of the lensing cluster suggests the scientists missed chances to see the lensed supernova 50 and 10 years ago. However, the model also suggests more images of the explosion will repeat again within the next 10 years.

The timing of when all these images of the supernova arrive depends on the gravitational pull of the matter generating the gravitational lens. So, by measuring those times, the researchers hope to map how visible normal matter and invisible dark matter is distributed in the lensing galaxy.

Dark matter is currently one of the greatest mysteries in science, a poorly understood substance thought to make up five-sixths of all matter in the universe. A better understanding of how dark matter is behaving in this gravitationally lensing cluster might help shed light on the material's nature, Kelly said.

Analyzing when the images arrive could also help scientists pinpoint the rate at which the universe is expanding. Although there are already several ways to measure the cosmic expansion rate, "there has been a lot of heated debate between different methods, so it'd be interesting to see how this new technique might affect the area," Kelly said. "It's always nice to have completely independent measurements of the same quantity."

The scientists detailed their findings in the March 6 issue of the journal Science.

View Article Here Read More

Is This a Baby Picture of a Giant Planet?


Hubble optical image (left) and VLT infrared image (right) of the circumstellar disk surrounding HD 100546. (ESO/NASA/ESA/Ardila et al.)


Excerpt from news.discovery.com


Mommy, where do baby planets come from? There’s no storks, birds, bees, or romantic dinners for two involved in the answer to that question — regardless of size, planets are all formed in pretty much the same way: through the aggregation of material within the disk of dust and gas surrounding a young star. While how long it actually takes and just what sort of planets are most likely to form where are still topics of discussion among astronomers, the birth process of a planet is fairly well understood.

And this may be the very first image of it actually happening.

Acquired by the European Southern Observatory’s Very Large Telescope (VLT), the infrared image above (right) shows a portion of the disk of gas and dust around the star HD100546, located 335 light-years away in the constellation Musca. By physically blocking out the light from the star itself by means of an opaque screen — seen along the left side of the image — the light from the protoplanetary disk around HD 100546 can be seen, revealing a large bright clump that’s thought to be a planet in the process of formation.

If it is indeed a baby planet, it’s a big one — as large as, or perhaps even larger than, Jupiter.

A candidate protoplanet found in a disc of gas and dust around young star HD100546 (ESO)


This does raise an interesting question for astronomers because if it is a Jupiter-sized planet, it’s awfully far from its star… at least according to many current models of planetary formation. About 68 times as far from HD100546 as we are from the sun, if this planet were in our solar system it’d be located deep in the Kuiper Belt, twice as far as Pluto. That’s not where one would typically expect to find gas giants, so it’s been hypothesized that this protoplanet might have migrated outwards after initially forming closer to the star… perhaps “kicked out” by gravitational interaction with an even more massive planet.

Alternatively, it may not be a planet at all — the bright blob in the VLT image might be coming from a much more distant source. While extremely unlikely, further research will be needed to rule that possibility out.

If it’s found to be a planet, HD100546 “b” would offer scientists an unprecedented opportunity to observe a planetary formation process in action — and from a relatively close proximity as well.

According to the team’s paper, submitted to Astrophysical Journal Letters, ”What makes HD100546 particularly interesting is that 1. it would be the first imaged protoplanet that is still embedded in the gas and dust disk of its host star; and 2. it would show that planet formation does occur at large orbital separations.”

(Now all we have to do is wait a couple billion years and then show these pictures to HD100546b’s girlfriend. How embarrassing!)

View Article Here Read More

Mayday! Mayday! Mars One a ‘suicide mission’, warn leading space scientists




By Victoria Weldon

IT'S been described as science fiction made real - but now, just as the final selection process gets under way for the folk with the right stuff to make a manned mission to Mars, scientists have dashed the dreams of planet Earth by warning the journey will probably never happen and will end in disaster if it does.
Privately run space exploration programme Mars One wants to send four people to the red planet for the rest of their (probably not very long) lives and film it for reality TV in order to help finance the endeavour.

Thousands have set their sights on becoming the first settlers to land on the planet - and have now been whittled down to a short list of 100, including a Scottish PhD student - but with questionable technology, a lack of funding and an unrealistic timeframe, experts claim it is a "suicide mission".

Mars One believes it can achieve a manned mission in 2024 - sooner than NASA, the European Space Agency, the Russians or Chinese, and on a fraction of their budgets.

If the project does go ahead, the crew would have to make it through nine months of interplanetary travel without being killed by mishap, radiation - or each other.

And even then, a recent study suggested they will only last 68 days on Mars before dying - due to lack of food and water.

However, Anu Ojha OBE, director of the UK National Space Academy Programme, has warned the applicants not to get their hopes up as the mission is unlikely to ever leave the ground.

Ojha said: "Obviously this is something that has captured the public's imagination, and Mars One obviously has a great PR team, but space engineering obeys the laws of physics not PR."
Mars One is the brainchild of Dutch entrepreneur Bas Lansdorp who was inspired by the images of Mars sent back by the Sojourner rover in 1997, when he was a student.

Lansdorp, who will not make the journey himself, has an impressive team working on the project including former NASA employees Dr Norbert Kraft, who specialises in the physiological and psychological effects of space travel and space architect Kristian von Bengtson.

Physicist Arno Wielders, who previously worked for Dutch Space, is also on board, as well as a number of other advisers from around the world with backgrounds in space engineering, science and technology, marketing, design and television production.

The ultimate aim is to see a large, self-sustaining colony on Mars, but Ojha, who is also a director at the National Space Centre in Leicester, said there are three major stumbling blocks for the mission: technology, funding and human psychology.

"In terms of technology, it's pushing the absolute boundaries and there seems to be a lot of technological naivety on the part of the people running it", he said.

"There are some elements that seem reasonable, but overall it's concerning, and the timescales are also questionable."

While Mars One is planning the one way mission for 2024, NASA, with its long established expertise and technology, is looking to be able to send humans to Mars and bring them back again by the mid 2030s.

This is estimated to cost up to as much as £100 billion (£64.9bn) for the space agency, while Mars One believes it can do it for an optimistic $6 billion (£3.9bn) - and there are even questions over whether or not they will be able to achieve that much funding.
The private enterprise is hoping to raise money through a TV deal and additional funding from the exposure that will bring the project.

Last year it said it had teamed up with programme makers Endemol, but the Big Brother creators recently pulled out of the deal claiming they were "unable to reach agreement on the details of the contract".

Mars One did not respond to questioning by the Sunday Herald over its funding, but its website showed that as at January this year, it had raised just $759,816 from donations, merchandising, and a crowdfunding campaign.

It is unclear what other funding the project has.

Ojha said: "The business model has so many holes in it, it's shaky to say the least. And when you ask them how much money they have raised, they say it's still ongoing. The time scales and the business model - they're completely unrealistic."

Mars One plans to send several unmanned rockets to Mars ahead of the 2024 mission, with the first of these scheduled to take place in 2018.

These will include missions with robots to find a suitable location for a base and assemble it ahead of the humans' arrival.
The project claims it will use only existing technology for the mission, buying in materials from proven suppliers including Lockheed Martin or SpaceX.

The equipment involved includes several simulation outposts for training, a rocket launcher, a transit vehicle to take the crew to Mars, a Mars landing capsule, two rovers, a Mars suit and a communications system.

However, experts have warned that much of this equipment has not been fully tested. 

Physicist professor Todd Huffman is a big supporter of attempting a manned mission to Mars, but he also has serious concerns about Mars One, claiming it is "scientifically irresponsible".

He said: "The plan stretches the technology in many places.
"The launch vehicle they want to use has not actually ever launched yet, let alone make a trip to Mars.

"The living spaces have not been made nor has it been tested whether they can be robotically assembled and by what kind of robot.

"A suitable site would also need to be found for the living spaces and the details of how water extraction will take place have not been understood.

"If you assign a 90 per cent chance to success to each of those things, all of which are necessary for human survival, you end up with about a 50 per cent chance of failure, ending in the death of the colonists - and that would likely not make good television."
He added: "Unless we [wait for] quite a lot of technology and exploration to happen first, it is basically worse than a one-way ticket for the colonists - it is almost surely a suicide mission if carried out within this next decade."

Although most scientists believe the mission will not go ahead, some have also warned of the psychological impact on the people selected for the mission if it does.

Ojha said: "The thing that's really captured the public's imagination is this idea of it being a one way trip, but this brings another set of problems in terms of human psychology.

"The longest period a human has spent in space is 438 days - they're talking about sending people on a one way trip.
"Lots of the people I've seen interviewed, they're really excited about taking part, but have they really thought about what they're doing and what the implications are?

"I would tell them to go to Antarctica for six months in the middle of winter and that's about 1 per cent of what they'll be experiencing on Mars.

"Human psychology is far more fragile than we think."

However, while many scientists warn of the dangers and do not believe the mission will proceed, they have praised Mars One for sparking the public's interest in planetary science.

Dr John Bridges, of the Space Research Centre in Leicester, said: "It's a very interesting and innovative project, but the time scales are very challenging.

"I believe they're planning for 2024 and it's 2015 now. So for something as major as this, it's a very challenging timescale
"But it's fantastic that people are thinking about this, that industry is getting involved and raising awareness of planetary science."

Ojha added: "Mars One has been great in a way because it's once again drawn people's imagination to the idea of space engineering and exploration. 

"But the reality is that there are serious concerns about the project's space engineering, funding and medical implications."

Lansdorp has previously said that most people are "surprised to hear that the manned missions will be happening in ten years time, with a budget ten times less than Nasa".

He added: "But I think that if you really spend time studying Mars One, you cannot believe there is not a good chance we will make it.
"At the same time, it's a hugely ambitious plan, there's many things that can go wrong with such a big plan.

"But I believe we have a good plan and we can overcome the challenges."

However, he has also conceded that the current plans are an "optimum schedule", adding: "If one rocket doesn't launch, or a lander doesn't work on Mars before a human goes, any major malfunctions will result in a two year delay."

Mars One declined the Sunday Herald's request to interview someone from the project and failed to answer any of our questions.

View Article Here Read More

The Best Bet for Alien Life May Be in Planetary Systems Very Different From Ours




Excerpt from wired.com


In the hunt for extraterrestrial life, scientists started by searching for a world orbiting a star just like the sun. After all, the steady warmth of that glowing yellow ball in the sky makes life on Earth possible.

But as astronomers continue to discover thousands of planets, they’re realizing that if (or when) we find signs of extraterrestrial life, chances are good that those aliens will orbit a star quite different from the sun—one that’s redder, cooler, and at a fraction of the sun’s size and mass. So in the quest for otherworldly life, many astronomers have set their sights on these small stars, known as red dwarfs or M dwarfs.

At first, planet-hunting astronomers didn’t care so much about M dwarfs. After the first planet outside the solar system was discovered in 1995, scientists began hunting for a true Earth twin: a rocky planet like Earth with an orbit like ours around a sun-like star. Indeed, the search for that kind of system drove astronomers through most of the 2000s, says astronomer Phil Muirhead of Boston University.

But then astronomers realized that it might be technically easier to find planets around M dwarfs. Detecting another planet is really hard, and scientists rely on two main methods. In the first, they look for a drop in a star’s brightness when a planet passes in front of it. In the second, astronomers measure the slight wobble of a star, caused by the gentle gravitational tug of an orbiting planet. With both of these techniques, the signal is stronger and easier to detect for a planet orbiting an M dwarf. A planet around an M dwarf also orbits more frequently, increasing the chances that astronomers will spot it.

M dwarfs got a big boost from the Kepler space telescope, which launched in 2008. By staring at small patch of the sky, the telescope searches for suddenly dimming stars when a planet passes in front of them. In doing so, the spacecraft discovered a glut of planets—more than 1,000 at the latest count—it found a lot of planets around M dwarfs. “Kepler changed everything,” Muirhead said. Because M-dwarf systems are easier to find, the bounty of such planets is at least partly due to a selection effect. But, as Muirhead points out, Kepler is also designed to find Earth-sized planets around sun-like stars, and the numbers so far suggest that M-dwarfs may offer the best odds for finding life.

“By sheer luck you would be more likely to find a potentially habitable planet around an M dwarf than a star like the sun,” said astronomer Courtney Dressing of Harvard. She led an analysis to estimate how many Earth-sized planets—which she defined as those with radii ranging from one to one-and-a-half times Earth’s radius—orbit M dwarfs in the habitable zone, the region around the star where liquid water can exist on the planet’s surface. According to her latest calculations, one in four M dwarfs hosts such a planet.

That’s higher than the estimated number of Earth-sized planets around a sun-like star, she says. For example, an analysis by astronomer Erik Petigura of UC Berkeley suggests that fewer than 10 percent of sun-like stars have a planet with a radius between one and two times that of Earth’s.

This illustration shows Kepler-186f, the first rocky planet found in a star's habitable zone. Its star is an M dwarf.
This illustration shows Kepler-186f, the first rocky planet found in a star’s habitable zone. Its star is an M dwarf. NASA Ames/SETI Institute/JPL-Caltech


M dwarfs have another thing going for them. They’re the most common star in the galaxy, comprising an estimated 75 percent of the Milky Way’s hundreds of billions of stars. If Dressing’s estimates are right, then our galaxy could be teeming with 100 billion Earth-sized planets in their stars’ habitable zones.

To be sure, these estimates have lots of limitations. They depend on what you mean by the habitable zone, which isn’t well defined. Generally, the habitable zone is where it’s not too hot or too cold for liquid water to exist. But there are countless considerations, such as how well a planet’s atmosphere can retain water. With a more generous definition that widens the habitable zone, Petigura’s numbers for Earth-sized planets around a sun-like star go up to 22 percent or more. Likewise, Dressing’s numbers could also go up.
Astronomers were initially skeptical of M-dwarf systems because they thought a planet couldn’t be habitable near this kind of star. For one, M dwarfs are more active, especially during within the first billion years of its life. They may bombard a planet with life-killing ultraviolet radiation. They can spew powerful stellar flares that would strip a planet of its atmosphere.

And because a planet will tend to orbit close to an M dwarf, the star’s gravity can alter the planet’s rotation around its axis. When such a planet is tidally locked, as such a scenario is called, part of the planet may see eternal daylight while another part sees eternal night. The bright side would be fried while the dark side would freeze—hardly a hospitable situation for life.

But none of these are settled issues, and some studies suggest they may not be as big of a problem as previously thought, says astronomer Aomawa Shields of UCLA. For example, habitability may depend on specific types and frequency of flares, which aren’t well understood yet. Computer models have also shown that an atmosphere can help distribute heat, preventing the dark side of a planet from freezing over.

View Article Here Read More

Richard Branson: We owe it to test pilot to continue Virgin Galactic SpaceShipTwo

Excerpt from smh.com.auThe Tony Blair grin was gone but Richard Branson was unbowed by disaster when he appeared on American breakfast television on Monday morning. He vowed his program to hurl paying customers into the...

View Article Here Read More

What Would You Take With You to the Afterlife? – Life, Death, Out-of-Body Experiences & the Journey of Consciousness




beforeitsnews.com
By Matthew Butler 

People save up for retirement, but how well do we prepare for the journey after? Ancient cultures put great emphasis on the afterlife, because they knew consciousness continued after death. They were right: Out-of-body experiences reveal we really do exist beyond the body. Knowing this truth should inspire us to seek in life what really matters and remains after death – awakened consciousness.

What is the greatest mystery of life? According to a legendary Q&A in the Indian spiritual epic the Mahabharata, the greatest wonder is that countless people die every day, yet those left behind believe they will live forever.
There is a well-known saying that the only certainty in life is death, but our hyper-connected modern society is not exactly inspiring much reflection on what lies beyond the transient.
People put aside savings for retirement, and some take out life insurance to take care of the loved ones they leave behind. This looks after physical needs, but what about the needs of consciousness which continues without the body? What preparations are made for its journey after death – the ultimate journey of a lifetime?
Religious institutions offer a solution to their followers that usually depends on adopting a set of beliefs rather than personal spiritual discovery.  On the other hand, some scientists will tell you with equal conviction that nothing comes after death, so don’t worry about it. Both of these points of view depend on belief, but what if, when the final moment comes, you realise you wasted the great opportunity your life provided? An alternative option is to discover for ourselves why we are here, and what  our place in the universe is, while we are alive and have the opportunity to do something with the knowledge we gain.
Ancient spiritual cultures almost universally placed importance on the individual’s preparations and journey into the afterlife. They clearly understood our existence extended beyond our bodies, and that life and death were best seen with the bigger picture of creation in mind – as part of an ongoing journey of consciousness – with life presenting an amazing opportunity for conscious evolution that we take the fruits from after death.
This was bought home to me in an interesting way during a trip to a museum exhibition showcasing ancient Egyptian afterlife cosmology; it reminded me of the universal nature of the afterlife, and how Near-Death Experiences and Out-of-Body Experiences offer us a glimpse into the reality of existence beyond the body, revealing that awakening consciousness is what creation is really all about.
With our modern culture drifting more and more into shallow short-sighted materialism and faux metaphysics, the need to re-discover and live this deeper purpose to life, so cherished by the ancients, is more important than ever.

A Journey into the Ancient Egyptian Afterlife

A while back I was fortunate to have the opportunity to take a one-way self-guided tour through the ancient Egyptian afterlife, thanks to a special museum exhibition featuring artefacts from the British Museum collection.
The local museum was packed, and we had to wait in a queue before being allowed in. Finally we entered a dimly-lit passage thronging with people, winding past ancient Egyptian artefacts, artworks, tools, scriptures, and mummies.

Geb_Nut_Shu-300x202The exhibit started with depictions of ancient Egyptian cosmology like this. Here the sky goddess is held up above the earth.


It was arranged so that you went on an afterlife “journey” vicariously, stage by stage, in the way the ancient Egyptians understood it. It began with displays showing ancient Egyptian depictions of the world’s creation, and culminated with the judgement of the soul and its journey after death. In between you were shown artefacts demonstrating how ancient Egyptians understood and prepared for death.
There were ancient scrolls of the pyramid texts on display, and ancient art depicting the soul’s journey through the afterlife. A major theme in their art was judgement and the “weighing of the heart”, where a deceased person’s heart was weighed against a feather, and their fate was dependent on their inner qualities and the sum of their actions while alive. Toward the end of the exhibition they had a mockup display of this, with a large set of scales on which you could weigh your “heart” against a feather, while Egyptian Gods looked on from a mural.
After that, you passed into a depiction of the Egyptian paradise before stepping outside into the sunlight. I doubt the effect was intentional on the part of the exhibitors, but after passing through the exhibition’s dark passageway with its ordered depictions of the afterlife, judgment and then stepping into the light, I couldn’t help but think of accounts of near-death experiences, in which people often report passing through a dark tunnel toward the light, and experiencing a life review where they see the consequences of all their actions.

BD_Hunefer_cropped_1-300x231Depiction of the “weighing of the heart”

The exhibit really brought home to me how the ancient Egyptians understood they existed for a purpose that went beyond everyday life. Death was a doorway to the next stage of existence, and their lives were an opportunity to prepare for it. They knew we do not cease to exist when we die, and saw the quest for immortality through awakening consciousness as the real purpose to creation.
From looking at artefacts from different periods, it was apparent the ancient Egyptian understanding of death changed over time. It seemed to me that originally, the emphasis was on living spiritually and obtaining an immortality of the soul, while in later periods their understanding declined into more literal interpretations of preparing the body (rather than consciousness) for the afterlife through mummification, and a preoccupation with the arrangement of one’s burial and tomb with the right spells and amulets.
But I was vividly struck by how through that civilisation’s long and varied existence, the importance of the afterlife always reigned supreme, and being prepared for life after death was absolutely central to existence. Death, and therefore life, was taken very seriously.

I couldn’t help but notice a stark contrast between our modern culture and theirs. It was a bit like being in some kind of time warp, where two very different cultures collided. The artefacts of the Egyptians gave a sense of the sacredness of life and creation, but the bustling, noisy crowds of modern onlookers apparently saw this ancient preoccupation with the afterlife as mere novelty and amusement. How different ancient Egypt was to our modern society where the reality, and inevitability, of death is given little thought or preparation, and the understanding that consciousness continues after death is often summarily discounted and ridiculed.
I highly doubt that many people who attended the exhibition paused to reflect on whether they would continue to exist after death and, if so, how? And why are we here anyway? This was driven home when, just prior to reaching the scales of “judgement”, I noticed a whiteboard, styled with papyrus veneer, with a pertinent question written at the top.

What would you take with you to the afterlife?

Good question. A pen hung from the board, inviting people to write their response underneath. The answers ranged from the sentimental, to the mundane, to the silly.

WP_000293-EDIT1-1024x845How would you answer the question?

Some wanted to take their friends and family with them, while others wanted to take things like their iPhone, make-up, favourite band, football team, favourite rock star, chocolate, alcohol, and so forth.
A “time machine” was perhaps the only clever response. I could see the benefit of that if you realised you had wasted your life. I don’t think it’s really an option however.
This brought home how we don’t take death and the meaning of our lives anywhere near as seriously as we should today. The ancients knew a lot more about life and death than we do. We have lost their ancient wisdom, and with it the understanding of the amazing opportunity our existence in this universe presents.
This is a serious problem. Our consciousness will continue to exist without the body. But if we don’t question our existence and why we are here, we will not awaken consciousness and we will never reach our true potential.

Near-Death Experiences and the Reality of Existence Beyond the Body

Existence after death is not something the ancient Egyptians invented. Concepts of an afterlife are so common across geographically isolated cultures around the world that it cannot simply be dismissed as a coincidence. There may be cultural differences in the details, but the understanding that we continue existing without the body has been pretty much universal for thousands of years.
In fact, the burial of the dead and the realisation of an afterlife are considered some of the most important hallmarks of cultural development in Stone Age people. It was a sign of intelligence distinguishing people from animals, and paved the way for the development of more sophisticated civilisations.

Hieronymus_Bosch_013The medieval painting ‘Ascent of the Blessed’ by Hieronymus Bosch shows the light at the end of the tunnel common to NDE accounts

Near-Death Experiences (NDEs) provide compelling anecdotal evidence that the afterlife mythologies of the world share a real common source and that consciousness exists beyond the brain. In NDEs, people who are clinically dead or close to death go through experiences that follow a pattern with universal traits, which they recall after being revived.
These include an out of body experience, where they leave their body and realise they are separate from it, perhaps seeing their body lying beneath them. Then they may go on a journey, which may feature common aspects like travelling through a tunnel, and a life review, where a person is shown everything they have done, and feels the effects of their actions toward others, whether good or bad.
Although some scientists speculate that these phenomena may be caused by the brain, the reality is that these experiences have occurred when patients are clinically brain dead, and it has not been proven these experiences are produced biologically. Furthermore, there is no ultimate proof that consciousness is produced by the brain anyway, although this is a strongly-held assumption among those entrenched in materialistic beliefs.
NDEs challenge rigid materialistic beliefs about life. In light of the prevalence and commonality of NDEs, some scientists now suggest that consciousness interacts with the brain rather than being produced by it. Rather, the brain is a conduit through which consciousness can express itself, much like the way a computer is a conduit for the internet, but the internet continues to exist when the computer is switched off.
NDEs are increasingly reported in the modern world due to improvements in health care leading to more people being revived, but they are also an ancient phenomenon. Research by the scholar Gregory Shushan found there are universal afterlife experiences which underpinned both modern NDE accounts and ancient afterlife mythologies. His research involved an in-depth comparative analysis of afterlife conceptions of five ancient civilisations (Old and Middle Kingdom Egypt, Sumerian and Old Babylonian Mesopotamia, Vedic India, pre-Buddhist China, and pre-Columbian Mesoamerica) and compared them to modern NDE accounts. He demonstrated that, although there were some variations in the details based on the cultural origin, there were specific recurring similarities that reappeared too consistently to be mere coincidence, suggesting that, “afterlife conceptions are not entirely culturally-determined and… appear to be universal or quasi-universal to some degree”.

Life is an Opportunity to Awaken Consciousness

Realising that you are consciousness, and continue to exist without the body, awakens you to the bigger picture of life. It puts your whole life in perspective.
In an NDE life review, people tend to see that what really matters in life is not how much money they made or what they achieved in a given field, but how they treated other people, and whether they acted with love. These experiences tend to change people’s lives, inspiring them to be more spiritual.
afterlife
Discovering you exist beyond the body can be a life-changing revelation

We do not need to have an NDE to verify that we exist without the body, or to have life-changing experiences. Through astral projection, we can have wilful out of body experiences and use these mystical experiences to learn about ourselves and make positive changes in our lives.
Realising that we exist beyond the body can open the door to awakening. You realise that what really matters in life is not what we gain physically, but developing consciousness. Then the question, “what will you take with you to the afterlife” becomes much more meaningful. You can’t take physical things with you when you die like your iPhone, but you can take consciousness. Then you see that the focus on the afterlife in ancient cultures was not a preoccupation with death, but a deep understanding of life, and how to live it in the most meaningful way to bring spiritual benefits to yourself and others, the effects of which continue after death.
States like anger, greed and hatred have their consequences in the world which are bad enough, but who wants to take these states with them to afterlife? If these states don’t bring happiness here, why drag them along after death? Expressions of consciousness like love, wisdom and inner peace are much  better qualities to carry within. By awakening and expressing consciousness in a world filled with ignorance, hatred and darkness, we not only help to make the world a better place, but continue to carry these spiritual qualities in our consciousness when our body is left behind.
Understanding this is so important today. We live in a society bombarded with elite-controlled propaganda and entertainment that not only hides the darker agendas working in the world, but blankets people in ignorance, keeping us from uncovering the deeper potential of our consciousness and empowering ourselves by striving to awaken – which enables us to break free of the grip of darkness that exerts its influence over humanity. Failing to wake up to this agenda has it implications in the world, and also for our consciousness, and it’s consciousness that really counts, both in life and beyond.
So what would you take with you to the afterlife?

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑