Tag: trained (page 1 of 3)

Lois Lane

Lois Lane Saves the World!

The post Lois Lane appeared first on Inception Radio Network | UFO & Paranormal Talk Radio.

View Article Here Read More

Celebrating Genocide – The Real Story of Thanksgiving

Irwin Ozborne, ContributorThanksgiving: Celebrating all that we have, and the genocide it took to get it.Thanksgiving is one of the most paradoxical times of the year. We gather together with friends and family in celebration of all that we are thankful for and express our gratitude, at the same time we are encouraged to eat in excess. But the irony really starts the next day on Black Friday. On Thursday we appreciate all the simple things in life, such as having a meal, a roof over [...]

View Article Here Read More

ADHD Meds – The Gateway to Addiction

Michael Whitehouse, Staff WriterModern medicine has revolutionized the way we treat disease and illness. Each decadenew breakthroughs are made as we continue to unlock our knowledge of the human body, and how to treat its fragility. But what happens when modern medicine identifies normal human characteristics as disorders, or misdiagnoses an existing condition? The result is startling: Prescribing drugs to individuals who don’t need them, in many cases creating a downward [...]

View Article Here Read More

The Unnecessary Cost of Cancer 

Dr. Eldon Dahl, Prevent DiseaseRecently, a 60 Minutes special about the cost of cancer drugs was rebroadcast. In the broadcast, cancer specialists from the Memorial Sloan Kettering Cancer Center were profiled for their stance against the exorbitant cost of cancer drugs. Dr. Leonard Saltz, one of the chief specialists at the hospital and a leading authority on colon cancer, stated, “We’re in a situation where a cancer diagnosis is one of the leadin [...]

View Article Here Read More

5 Cancer Myths Busted

Dr. E. Dahl, Prevent DiseaseCancer statistics are on the rise, and the growing numbers have moved the disease to a priority issue for the global community. AsThe Lancet reports, cancer deaths have increased 46% between 1990 and 2013. On Jan 1, 2016, new international development priorities called Sustainable Development Goals, will focus on decreasing premature deaths from non-communicable diseases by 2025.PreventDisease recently reported 5 cancer facts the cancer industry [...]

View Article Here Read More

Abandoned Uranium Mines Plague Navajo Nation

Sonia Luokkala, Earth Island JournalWaking TimesThe mesas of Monument Valley rise deep red on the horizon. We are in Diné Bikéyah, land of the Navajo.“This is John Wayne country,” trained Navajo guide Gregory Holiday repeats his lines for an enchanted group of tourists. The view opens boundless to the sacred land of the Diné people, but for visitors it is presented as the iconic west of cowboys and Americana.The sun sets and the last traveler boards t [...]

View Article Here Read More

Rats try to rescue others in distress, suggesting they feel empathy


Rats were even more likely to choose helping over getting a treat

Excerpt from cbc.ca

Calling someone a rat isn't a compliment about their character – but a new study suggests that maybe it should be.

Rats that see another rat struggling in a pool of water will open a door to rescue it, even if they could open a different door to get a chocolate treat instead.

Rats that knew what it was like to be wet and struggling in the pool were even quicker to help.
"Our findings suggest that rats can behave prosocially and that helper rats may be motivated by empathy-like feelings towards their distressed cage mate," Nobuya Sato, lead author of a study, said in a statement.

The study was published this week in the journal Animal Cognition.

Sato and his team at Kwansei Gakuin University in Japan designed experiments involving pairs of rat cage mates, either two males or two females.


'Helper rats may be motivated by empathy-like feelings,' suggests Nobuya Sato, a Kwansei Gakuin University in Japan research and lead author of a study released this week. (Andre Penner/Associated Press)


The two were placed in separate compartments separated by a transparent wall and door – one compartment that was dry and empty, and one filled with a deep pool of water and sheer walls that made it impossible to climb out. The door could be opened by the rat on the dry side, allowing the other rat to climb out of the pool.

Motivated by helping

Rats on the dry side of the cage were quick to open the door if they saw their cage mates struggling in the water, but not if the pool was empty or contained a stuffed toy rat. If no water was in either compartment, they also didn't open the door. That suggested that they were motivated by helping and not just opening the door for fun.

The researchers reversed the roles and found that rats were quicker to learn to open the door and rescue their cage mate if they had previously experienced a similar struggle in the pool.
"This modulation of learning by prior experience suggests that the helping behaviour observed in the present study might be based on empathy," they wrote.

In another experiment, rats in the dry compartment could choose between two different doors.
  • One that allowed them to rescue their cage mate from the pool.
  • Another that provided access to a chocolate cereal treat. 
More than half the time, rats chose to rescue the other rat first – especially if they were trained to open the door in a similar rescue scenario rather than being trained to open the door in order to access a food treat.

"These results suggest that for all rats, helping a distressed cage mate has a higher value than obtaining a food reward," the researchers wrote.

The results are similar to those in a previous experiment by different researchers, in which rats rescued other rats trapped in an acrylic tube. Still, there has some debate about whether this type of helping behaviour exists among animals other than primates such as monkeys and humans.

View Article Here Read More

The Class-Domination Theory of Power

by G. William DomhoffNOTE: WhoRulesAmerica.net is largely based on my book,Who Rules America?, first published in 1967 and now in its7th edition. This on-line document is presented as a summary of some of the main ideas in that book.Who has predominant power in the United States? The short answer, from 1776 to the present, is: Those who have the money -- or more specifically, who own income-producing land and businesses -- have the power. George Washington was one of the biggest landowner [...]

View Article Here Read More

Jane Goodall Says SeaWorld ‘Should Be Closed Down’

Jane Goodall


Excerpt from huffingtonpost.com

NEW YORK -- Jane Goodall wants to see SeaWorld go extinct.
The 81-year-old primatologist said whales and dolphins should never be held in captivity, and that the entertainment company known for its orca shows should be shuttered.

“They definitely should be closed down,” Goodall said in an interview with The Huffington Post earlier this month. 

She’s not alone. SeaWorld’s stock price has been plummeting since July 2013, when CNN released the documentary “Blackfish." The film exposed the misery endured by SeaWorld's trained orca and the dangers posed to trainers working with stressed-out carnivorous whales. 

seaworld stock
SeaWorld's stock price has declined precipitously since the 2013 release of "Blackfish."

One of the problems highlighted in "Blackfish" is that cetacea, the family of aquatic mammals that includes whales, dolphins and porpoises, communicate with sonar-like sound waves. When confined to tanks, Goodall noted, those waves echo back and create a hellish cacophony for the animals.

“When they are contained in these tanks … that is acoustical hell,” said Goodall, adding that her nonprofit organization, the Jane Goodall Institute, is urging aquariums across the country to free their whales. “The sounds bounce back from the walls of the tank.”

SeaWorld aggressively refuted many of the film's claims, including allegations that its whales were unhealthy and that the company tried to cover up details surrounding the 2010 death of trainer Dawn Brancheau, who was mauled by an orca. 

After the release of "Blackfish," SeaWorld saw a rapid decline in visitors, and with that, in the price of shares. But on Monday, Goldman Sachs upgraded the stock, optimistic that the company can retool its image as consumers start forgetting about the blockbuster documentary.

"Jane Goodall is a respected scientist and advocate for the world’s primates, but we couldn’t disagree more with her on this," Becca Bides, a SeaWorld spokeswoman, said in an emailed statement. 

"Zoos and marine mammal parks like SeaWorld allow people to experience animals in a way that is inspiring and educational."
Asked about the allegation that SeaWorld's tanks are detrimental to whales, Bides denied the claim, arguing that they are specially crafted to keep underwater noise levels quieter than the ambient ocean.

As of last December, SeaWorld held 22 orcas in its three U.S. marine parks, five of which were caught in the wild, according to the nonprofit advocacy group Whale and Dolphin Conservation. A total of 57 orcas are held in captivity around the world, the group notes. At least 160 orcas have died in captivity since 1961, and an additional 30 pregnant whales have miscarried or had stillborn calves.

Goodall said she remains hopeful that humans are gaining a greater sense of empathy for animals and losing interest in watching them perform for entertainment.

“It’s not only that they’re really big, highly intelligent and social animals so that the capture and confinement in itself is cruel,” she said of the captive orcas, but also that “they have emotions like ours.”
She welcomed the decision by Ringling Bros. and Barnum & Bailey Circus to eliminate elephants in its shows by 2018.

“If you see what happens to those baby elephants, the way they’re trained, it’s absolutely chilling,” said Goodall, who had a pendant in the shape of Africa hanging from her necklace. “They lose all of their young elephant playfulness, and then they can be trained.”

View Article Here Read More

Top Secret Government Programs That Your Not Supposed To Know About

Originally Posted at in5d.com The following is the alleged result of the actions of one or more scientists creating a covert, unauthorized notebook documenting their involvement with an Above Top Secret government program. Government publications and information obtained by the use of public tax monies cannot be subject to copyright. This document is released into the public domain for all citizens of the United States of America. THE ‘MAJIC PROJECTS’ SIGMA is the project whic [...]

View Article Here Read More

What happens to your body when you give up sugar?





Excerpt from independent.co.uk
By Jordan Gaines Lewis


In neuroscience, food is something we call a “natural reward.” In order for us to survive as a species, things like eating, having sex and nurturing others must be pleasurable to the brain so that these behaviours are reinforced and repeated.
Evolution has resulted in the mesolimbic pathway, a brain system that deciphers these natural rewards for us. When we do something pleasurable, a bundle of neurons called the ventral tegmental area uses the neurotransmitter dopamine to signal to a part of the brain called the nucleus accumbens. The connection between the nucleus accumbens and our prefrontal cortex dictates our motor movement, such as deciding whether or not to taking another bite of that delicious chocolate cake. The prefrontal cortex also activates hormones that tell our body: “Hey, this cake is really good. And I’m going to remember that for the future.”
Not all foods are equally rewarding, of course. Most of us prefer sweets over sour and bitter foods because, evolutionarily, our mesolimbic pathway reinforces that sweet things provide a healthy source of carbohydrates for our bodies. When our ancestors went scavenging for berries, for example, sour meant “not yet ripe,” while bitter meant “alert – poison!”
Fruit is one thing, but modern diets have taken on a life of their own. A decade ago, it was estimated that the average American consumed 22 teaspoons of added sugar per day, amounting to an extra 350 calories; it may well have risen since then. A few months ago, one expert suggested that the average Briton consumes 238 teaspoons of sugar each week.
Today, with convenience more important than ever in our food selections, it’s almost impossible to come across processed and prepared foods that don’t have added sugars for flavour, preservation, or both.
These added sugars are sneaky – and unbeknown to many of us, we’ve become hooked. In ways that drugs of abuse – such as nicotine, cocaine and heroin – hijack the brain’s reward pathway and make users dependent, increasing neuro-chemical and behavioural evidence suggests that sugar is addictive in the same way, too.

Sugar addiction is real

Anyone who knows me also knows that I have a huge sweet tooth. I always have. My friend and fellow graduate student Andrew is equally afflicted, and living in Hershey, Pennsylvania – the “Chocolate Capital of the World” – doesn’t help either of us. But Andrew is braver than I am. Last year, he gave up sweets for Lent. “The first few days are a little rough,” Andrew told me. “It almost feels like you’re detoxing from drugs. I found myself eating a lot of carbs to compensate for the lack of sugar.”
There are four major components of addiction: bingeing, withdrawal, craving, and cross-sensitisation (the notion that one addictive substance predisposes someone to becoming addicted to another). All of these components have been observed in animal models of addiction – for sugar, as well as drugs of abuse.
A typical experiment goes like this: rats are deprived of food for 12 hours each day, then given 12 hours of access to a sugary solution and regular chow. After a month of following this daily pattern, rats display behaviours similar to those on drugs of abuse. They’ll binge on the sugar solution in a short period of time, much more than their regular food. They also show signs of anxiety and depression during the food deprivation period. Many sugar-treated rats who are later exposed to drugs, such as cocaine and opiates, demonstrate dependent behaviours towards the drugs compared to rats who did not consume sugar beforehand.
Like drugs, sugar spikes dopamine release in the nucleus accumbens. Over the long term, regular sugar consumption actually changes the gene expression and availability of dopamine receptors in both the midbrain and frontal cortex. Specifically, sugar increases the concentration of a type of excitatory receptor called D1, but decreases another receptor type called D2, which is inhibitory. Regular sugar consumption also inhibits the action of the dopamine transporter, a protein which pumps dopamine out of the synapse and back into the neuron after firing.
In short, this means that repeated access to sugar over time leads to prolonged dopamine signalling, greater excitation of the brain’s reward pathways and a need for even more sugar to activate all of the midbrain dopamine receptors like before. The brain becomes tolerant to sugar – and more is needed to attain the same “sugar high.”

Sugar withdrawal is also real

Although these studies were conducted in rodents, it’s not far-fetched to say that the same primitive processes are occurring in the human brain, too. “The cravings never stopped, [but that was] probably psychological,” Andrew told me. “But it got easier after the first week or so.”
In a 2002 study by Carlo Colantuoni and colleagues of Princeton University, rats who had undergone a typical sugar dependence protocol then underwent “sugar withdrawal.” This was facilitated by either food deprivation or treatment with naloxone, a drug used for treating opiate addiction which binds to receptors in the brain’s reward system. Both withdrawal methods led to physical problems, including teeth chattering, paw tremors, and head shaking. Naloxone treatment also appeared to make the rats more anxious, as they spent less time on an elevated apparatus that lacked walls on either side.
Similar withdrawal experiments by others also report behaviour similar to depression in tasks such as the forced swim test. Rats in sugar withdrawal are more likely to show passive behaviours (like floating) than active behaviours (like trying to escape) when placed in water, suggesting feelings of helplessness.
A new study published by Victor Mangabeira and colleagues in this month’s Physiology & Behavior reports that sugar withdrawal is also linked to impulsive behaviour. Initially, rats were trained to receive water by pushing a lever. After training, the animals returned to their home cages and had access to a sugar solution and water, or just water alone. After 30 days, when rats were again given the opportunity to press a lever for water, those who had become dependent on sugar pressed the lever significantly more times than control animals, suggesting impulsive behaviour.
These are extreme experiments, of course. We humans aren’t depriving ourselves of food for 12 hours and then allowing ourselves to binge on soda and doughnuts at the end of the day. But these rodent studies certainly give us insight into the neuro-chemical underpinnings of sugar dependence, withdrawal, and behaviour.
Through decades of diet programmes and best-selling books, we’ve toyed with the notion of “sugar addiction” for a long time. There are accounts of those in “sugar withdrawal” describing food cravings, which can trigger relapse and impulsive eating. There are also countless articles and books about the boundless energy and new-found happiness in those who have sworn off sugar for good. But despite the ubiquity of sugar in our diets, the notion of sugar addiction is still a rather taboo topic.
Are you still motivated to give up sugar? You might wonder how long it will take until you’re free of cravings and side-effects, but there’s no answer – everyone is different and no human studies have been done on this. But after 40 days, it’s clear that Andrew had overcome the worst, likely even reversing some of his altered dopamine signalling. “I remember eating my first sweet and thinking it was too sweet,” he said. “I had to rebuild my tolerance.”
And as regulars of a local bakery in Hershey – I can assure you, readers, that he has done just that.
Jordan Gaines Lewis is a Neuroscience Doctoral Candidate at Penn State College of Medicine

View Article Here Read More

Bees Do It, Humans Do It ~ Bees can experience false memories, scientists say



Excerpt from csmonitor.com


Researchers at Queen Mary University of London have found the first evidence of false memories in non-human animals.

It has long been known that humans – even those of us who aren't famous news anchors – tend to recall events that did not actually occur. The same is likely true for mice: In 2013, scientists at MIT induced false memories of trauma in mice, and the following year, they used light to manipulate mice brains to turn painful memories into pleasant ones.

Now, researchers at Queen Mary University of London have shown for the first time that insects, too, can create false memories. Using a classic Pavlovian experiment, co-authors Kathryn Hunt and Lars Chittka determined that bumblebees sometimes combine the details of past memories to form new ones. Their findings were published today in Current Biology.
“I suspect the phenomenon may be widespread in the animal kingdom," Dr. Chittka said in a written statement to the Monitor.
First, Chittka and Dr. Hunt trained their buzzing subjects to expect a reward if they visited two artificial flowers – one solid yellow, the other with black-and-white rings. The order didn’t matter, so long as the bee visited both flowers. In later tests, they would present a choice of the original two flower types, plus one new one. The third type was a combination of the first two, featuring yellow-and-white rings. At first, the bees consistently selected the original two flowers, the ones that offered a reward.

But a good night’s sleep seemed to change all that. One to three days after training, the bees became confused and started incorrectly choosing the yellow-and-white flower (up to fifty percent of the time). They seemed to associate that pattern with a reward, despite having never actually seen it before. In other words, the bumblebees combined the memories of two previous stimuli to generate a new, false memory.

“Bees might, on occasion, form merged memories of flower patterns visited in the past,” Chittka said. “Should a bee unexpectedly encounter real flowers that match these false memories, they might experience a kind of deja-vu and visit these flowers expecting a rich reward.”

Bees have a rather limited brain capacity, Chittka says, so it’s probably useful for them to “economize” by storing generalized memories instead of minute details.

“In bees, for example, the ability to learn more than one flower type is certainly useful,” Chittka said, “as is the ability to extract commonalities of multiple flower patterns. But this very ability might come at the cost of bees merging memories from multiple sequential experiences.”

Chittka has studied memory in bumblebees for two decades. Bees can be raised and kept in a lab setting, so they make excellent long-term test subjects.

“They are [also] exceptionally clever animals that can memorize the colors, patterns, and scents of multiple flower species – as well as navigate efficiently over long distances,” Chittka said.

In past studies, it was assumed that animals that failed to perform learned tasks had either forgotten them or hadn’t really learned them in the first place. Chittka’s research seems to show that animal memory mechanisms are much more elaborate – at least when it comes to bumblebees.

“I think we need to move beyond understanding animal memory as either storing or not storing stimuli or episodes,” Chittka said. “The contents of memory are dynamic. It is clear from studies on human memory that they do not just fade over time, but can also change and integrate with other memories to form new information. The same is likely to be the case in many animals.”

Chittka hopes this study will lead to a greater biological understanding of false memories – in animals and humans alike. He says that false memories aren’t really a “bug in the system,” but a side effect of complex brains that strive to learn the big picture and to prepare for new experiences.

“Errors in human memory range from misremembering minor details of events to generating illusory memories of entire episodes,” Chittka said. “These inaccuracies have wide-ranging implications in crime witness accounts and in the courtroom, but I believe that – like the quirks of information processing that occur in well known optical illusions – they really are the byproduct of otherwise adaptive processes.”

“The ability to memorize the overarching principles of a number of different events might help us respond in previously un-encountered situations,” Chittka added. “But these abilities might come at the expense of remembering every detail correctly.”
So, if generating false memories goes hand in hand with having a nervous system, does all this leave Brian Williams off the hook?

“It is possible that he conflated the memories,” Chittka said, “depending on his individual vulnerability to witnessing a traumatic event, plus a possible susceptibility to false memories – there is substantial inter-person variation with respect to this. It is equally possible that he was just ‘showing off’ when reporting the incident, and is now resorting to a simple lie to try to escape embarrassment. That is impossible for me to diagnose.”

But if Mr. Williams genuinely did misremember his would-be brush with death, Chittka says he shouldn’t be vilified.

“You cannot morally condemn someone for reporting something they think really did happen to them,” Chittka said. “You cannot blame an Alzheimer patient for forgetting to blow out the candle, even if they burn down the house as a result. In the same way, you can't blame someone who misremembers a crime as a result of false memory processes."

View Article Here Read More

Google’s AI Program Is Better At Video Games Than You





pcmag.com

IBM's Watson supercomputer may be saving lives and educating children, but Google's new AI program can master video games without human guidance.

The artificial intelligence system from London-based DeepMind, which Google acquired last year for a reported $400 million, represents a major step toward a future of smart machines.

Computers running the deep Q-network (DQN) algorithm were exposed to 49 retro games on the Atari 2600 and told to play them, without any direction from researchers. Using the same network architecture and tuning parameters, the machines were given only raw screen pixels, available actions, and game score as input.

For each level passed or high score earned, the computer was automatically rewarded with a digital treat.

"Strikingly, DQN was able to work straight 'out of the box' across all these games," DeepMind's Dharshan Kumaran and Demis Hassabis wrote in a blog post. The executives cited classic titles like Breakout, River Raid, Boxing, and Enduro.

The AI crushed even the most expert humans at 29 games, sometimes composing what the creators called "surprisingly far-sighted strategies" that allowed maximum scoring possibilities. It also outperformed previous machine-learning methods in 43 of 49 instances.

VIEW ALL PHOTOS IN GALLERY
Google DeepMind's findings were presented in a paper published in this week's Nature journal, which describes the key DQN features that allow it to learn.

"This work offers the first demonstration of a general purpose learning agent that can be trained end-to-end to handle a wide variety of challenging tasks," the researchers said. "This kind of technology should help us build more useful products."

Imagine asking the Google app to complete a complex task—like plan a backpacking trip through Europe, for example.

Google's DeepMind also hopes its technology will give researchers new ways to make sense of large-scale data, opening the door to discoveries in fields like climate science, physics, medicine, and genomics.

"And it may even help scientists better understand the process by which humans learn," Kumaran and Hassabis said, citing physicist Richard Feynman, who famously said, "What I cannot create, I do not understand."

For more, see How DeepMind Can Bring Google Artificial Intelligence to Life in the slideshow above.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑