Tag: touch (page 2 of 10)

Circular thinking: Stonehenge’s origin is subject of new theory




Excerpt from theguardian.com

Whether it was a Druid temple, an astronomical calendar or a centre for healing, the mystery of Stonehenge has long been a source of speculation and debate. Now a dramatic new theory suggests that the prehistoric monument was in fact “an ancient Mecca on stilts”.

The megaliths would not have been used for ceremonies at ground level, but would instead have supported a circular wooden platform on which ceremonies were performed to the rotating heavens, the theory suggests.

Julian Spalding, an art critic and former director of some of the UK’s leading museums, argues that the stones were foundations for a vast platform, long since lost – “a great altar” raised up high towards the heavens and able to support the weight of hundreds of worshippers.

“It’s a totally different theory which has never been put forward before,” Spalding told the Guardian. “All the interpretations to date could be mistaken. We’ve been looking at Stonehenge the wrong way: from the earth, which is very much a 20th-century viewpoint. We haven’t been thinking about what they were thinking about.”

Since Geoffrey of Monmouth wrote in the 12th century that Merlin had flown the stones from Ireland, theories on Stonehenge, from plausible to absurd, have abounded. In the last decade alone, the monument has been interpreted as “the prehistoric Lourdes” where people brought the sick to be healed by the power of the magic bluestones from Wales and as a haunted place of the dead contrasting with seasonal feasts for the living at nearby Durrington Walls. 

The site pored over by archaeologists for centuries still produces surprises, including the outline of stones now missing, which appeared in the parched ground in last summer’s drought and showed that the monument was not left unfinished as some had believed, but was once a perfect circle.

Spalding, who is not an archaeologist, believes that other Stonehenge theorists have fallen into error by looking down instead of up. His evidence, he believes, lies in ancient civilisations worldwide. As far afield as China, Peru and Turkey, such sacred monuments were built high up, whether on manmade or natural sites, and in circular patterns possibly linked to celestial movements.

He said: “In early times, no spiritual ceremonies would have been performed on the ground. The Pharaoh of Egypt and the Emperor of China were always carried – as the Pope used to be. The feet of holy people were not allowed to touch the ground. We’ve been looking at Stonehenge from a modern, earth-bound perspective.”
“All the great raised altars of the past suggest that the people who built Stonehenge would never have performed celestial ceremonies on the lowly earth,” he went on. “That would have been unimaginably insulting to the immortal beings, for it would have brought them down from heaven to bite the dust and tread in the dung.”

Spalding’s theory has not met with universal approval. Prof Vincent Gaffney, principal investigator on the Stonehenge Hidden Landscapes Project at Bradford University, said he held “a fair degree of scepticism” and Sir Barry Cunliffe, a prehistorian and emeritus professor of European archaeology at Oxford University, said: “He could be right, but I know of no evidence to support it”.
The archaeologist Aubrey Burl, an authority on prehistoric stone circles, said: “There could be something in it. There is a possibility, of course. Anything new and worthwhile about Stonehenge is well worth looking into, but with care and consideration.”

On Monday Spalding publishes his theories in a new book, titled Realisation: From Seeing to Understanding – The Origins of Art. It explores our ancestors’ understanding of the world, offering new explanations of iconic works of art and monuments.

Stonehenge, built between 3000 and 2000BC, is England’s most famous prehistoric monument, a UNESCO World Heritage site on Salisbury Plain in Wiltshire that draws more than 1 million annual visitors. It began as a timber circle, later made permanent with massive blocks of stone, many somehow dragged from dolerite rock in the Welsh mountains. Spalding believes that ancient worshippers would have reached the giant altar by climbing curved wooden ramps or staircases.

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

Great Fuel Economy For Less: 5 Affordable Used Cars That are Surprisingly Good on Gas

Excerpt from autotrader.com By Josh Sadlier   Seems like the only thing automakers want to talk about these days is how their cars suddenly get great fuel economy. Given this relentless chatter, it's tempting to conclude that mos...

View Article Here Read More

How will life on earth compare to life for the Mars One pioneers?


To infinity and beyond? Maggie Lieu
To infinity and beyond? Maggie Lieu Photo: Peter Quinnell


From telegraph.co.uk
By Nick Curtis

On a different planet - Nick Curtis imagines a message from 'Martianaut' Maggie Lieu to her parents back at home


Mars Mission, British Martianaut Maggie Lieu’s Log
Day One: Stardate 22/02/2025. 

Hello Mission Control.... Just kidding! Hi mum, hi dad, or should I say earthlings! 
Well, me and Bruce the Australian Martianaut finally touched down beside the Herschel II Strait on the red planet today, the last of 12 pairs to arrive - though as you know it was touch and go. Ten years of training and research almost went down the drain when Google got hit by a massive retrospective tax bill and had to withdraw all its branded sponsorship from the starship at the last minute: 

fortunately Amazon stepped in, on the agreement we install its first matter transference delivery portal (“It’s there before you know it”) here. And rename the ship Bezos 1, of course 
The trip was textbook, with both of us uploading videos on how to apply makeup and bake cupcakes in space direct to the Weibo-spex of our crowdsource funders in China - great practice for The Great Martian Bakeoff on BBC 12 next year (subscribers only). The one hairy moment was a near miss with that Virgin Galactic rocket, Beardie IV, that went AWOL five years ago. We were so close we could see Leonardo diCaprio’s little screaming face pressed against his porthole. And Kim Kardashian’s bum pressed against hers - though it’s looking kinda old now and I hoped we’d seen the last of it.


So what can I tell you? When we landed the others threw us a party with full fat milk, rare beef and waffles (the only official space superfoods since it was discovered that kale and quinoa cause impotence). The landscape is pretty barren, just acres of rolling sand and no one in sight, sort of like Greece after it left the Eurozone and the entire population moved to Germany. Or like the so-called Caliphate after Islamic State finally perfected its time machine and managed to transport itself and all its followers back to the 12th century. 

The temperature outside is about 20c, so a lot cooler than it is at home since the ice caps melted. There’s water here, but not as much as is now covering Indonesia, Holland and Somerset. The atmosphere is 96% carbon dioxide so Juan, the Spanish Martianaut, had to keep his suit on when he went out to smoke. He tried to get us all to buy duty free for him in Mexico City spaceport before we left, now that a pack of cigarettes costs 450 Euros in the shops, and they’ve been camouflaged so you can’t find them. 

Maggie Lieu (Guardian)


The construction-droids did a pretty good job building Mars Camp out of the recycled parts of all those closed Tesco Metros. They say we have enough air up here to last 20 years, Earth’s stocks of storable oxygen having increased tenfold when the European Parliament collapsed following the expenses scandal. I still can’t believe that Dasha Putin-Mugabe was claiming for SIX driverless cars while she was EU President, and employing her wife as her accountant. And her being the first transgender Russian lesbian to hold the office, too. 

Speaking of politics, how is life in coalition Britain? Who has the upper hand at the moment? UKIP? Scots Nats? The Greens? or those nutters from Cornwall, Mebion Kernow? Or are they underwater now. And how is young Straw doing now Labour is the smallest party in Parliament, after the New New New Conservatives? Hard to believe it’s three years since the last Lib Dem lost her seat. 

I gather that some things have improved internationally now that Brian Cox has developed his own time machine at the Wowcher-Hawking Institute in Cambridge, and worked out that the entire world can now transport all its waste products back to the Caliphate in the 12th century. 

We can see the Earth from here through the Clinton2020 Telescope that the US president endowed us with after her brief period in office. The joke up here is that she did it to keep a proper eye either on her husband (though he doesn’t get around so much any more, obviously) or on what President Palin is up to. I still can’t believe that she sold Alaska to Russia to pay the compensation bill for the Grand Canyon Fracking Collapse. 

Even through the Clinton2020 the Earth looks pretty small, though at times, when the stars are really bright, we can see the Great Wall 2 ring of laser satellites that China has pointed at Russia to discourage any more “accidental” incursions. 

Our team up here is like a microcosm of human life on earth. Well, up to a point. As you know the French and Italian Martianauts were expelled from the team before lift-off, because of some scandal or other. We weren’t told if it was financial or sexual but a space bra and a data stick with three million Bitcoins on it were found in the airlock. 

The African and Brazilian Martianauts swan around the place as if they PERSONALLY solved the world’s food and energy problems.
And the North Korean guy just sits in the corner, muttering into some device up his sleeve and scowling. All the freeze-dried cheese has gone and he’s looking quite fat, if you get my meaning. 

I don’t get much time to myself, what with work, the non-denominational Sorry Meetings where we apologise in case we’ve accidently offended someone’s beliefs, and the communal space-pilates sessions (the North Korean guy skips those so he may be in line for a compulsory gastric band, as mandated by the Intergalactic Health Organisation). 

I always try and upload the latest Birmingham City Games onto my cortex chip when I feel homesick: I know it's not fashionable, but I think football got better when they replaced the players with robots and the wage bill - and the number of court cases - dropped to zero. I know the electricity bill is massive, but the new Brazilian solar technology should fix that. 

Anyway, got to run now. We’re putting together a bid to have the 2036 Olympics up here. 

Bye, or as we say on Mars - see you on the dark side.

View Article Here Read More

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me


Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.

Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin


Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

View Article Here Read More

A Thin Sheet of Reality: The Universe as a Hologram ~ Video



What we touch. What we smell. What we feel. They're all part of our reality. But what if life as we know it reflects only one side of the full story? Some of the world's leading physicists think that this may be the case. They believe that our reality is a projection—sort of like a hologram—of laws and processes that exist on a thin surface surrounding us at the edge of the universe. Although the notion seems outlandish, it's a long-standing theory that initially emerged years ago from scientists studying black holes; recently, a breakthrough in string theory propelled the idea into the mainstream of physics. What took place was an intriguing discussion on the cutting-edge results that may just change the way we view reality.

Click to zoom

View Article Here Read More

Future Tech Watch ~ High-tech mirrors to beam heat from buildings into space ~ May replace air conditioning



illustration of reflective panel on building

news.stanford.edu 

By Chris Cesare

A new ultrathin multilayered material can cool buildings without air conditioning by radiating warmth from inside the buildings into space while also reflecting sunlight to reduce incoming heat.

Stanford engineers have invented a material designed to help cool buildings. The material reflects incoming sunlight, and it sends heat from inside the structure directly into space as infrared radiation (represented by reddish rays).

Stanford engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space.

A team led by electrical engineering Professor Shanhui Fan and research associate Aaswath Raman reported this energy-saving breakthrough in the journal Nature.

The heart of the invention is an ultrathin, multilayered material that deals with light, both invisible and visible, in a new way.

Invisible light in the form of infrared radiation is one of the ways that all objects and living things throw off heat. When we stand in front of a closed oven without touching it, the heat we feel is infrared light. This invisible, heat-bearing light is what the Stanford invention shunts away from buildings and sends into space.

Of course, sunshine also warms buildings. The new material, in addition dealing with infrared light, is also a stunningly efficient mirror that reflects virtually all of the incoming sunlight that strikes it.

The result is what the Stanford team calls photonic radiative cooling – a one-two punch that offloads infrared heat from within a building while also reflecting the sunlight that would otherwise warm it up. The result is cooler buildings that require less air conditioning.

"This is very novel and an extraordinarily simple idea," said Eli Yablonovitch, a professor of engineering at the University of California, Berkeley, and a pioneer of photonics who directs the Center for Energy Efficient Electronics Science. "As a result of professor Fan's work, we can now [use radiative cooling], not only at night but counter-intuitively in the daytime as well."

The researchers say they designed the material to be cost-effective for large-scale deployment on building rooftops. Though still a young technology, they believe it could one day reduce demand for electricity. As much as 15 percent of the energy used in buildings in the United States is spent powering air conditioning systems.

In practice the researchers think the coating might be sprayed on a more solid material to make it suitable for withstanding the elements.

"This team has shown how to passively cool structures by simply radiating heat into the cold darkness of space," said Nobel Prize-winning physicist Burton Richter, professor emeritus at Stanford and former director of the research facility now called the SLAC National Accelerator Laboratory.

A warming world needs cooling technologies that don't require power, according to Raman, lead author of the Nature paper. 

"Across the developing world, photonic radiative cooling makes off-grid cooling a possibility in rural regions, in addition to meeting skyrocketing demand for air conditioning in urban areas," he said.

Using a window into space

The real breakthrough is how the Stanford material radiates heat away from buildings.

researchers Linxiao Zhu, Shanhui Fan, Aaswath Raman
Doctoral candidate Linxiao Zhu, Professor Shanhui Fan and research associate 
Aaswath Raman are members of the team that invented the breakthrough energy-saving material.
As science students know, heat can be transferred in three ways: conduction, convection and radiation. Conduction transfers heat by touch. That's why you don't touch an oven pan without wearing a mitt. Convection transfers heat by movement of fluids or air. It's the warm rush of air when the oven is opened. Radiation transfers heat in the form of infrared light that emanates outward from objects, sight unseen.
The first part of the coating's one-two punch radiates heat-bearing infrared light directly into space. The ultrathin coating was carefully constructed to send this infrared light away from buildings at the precise frequency that allows it to pass through the atmosphere without warming the air, a key feature given the dangers of global warming.

"Think about it like having a window into space," said Fan.

Aiming the mirror

But transmitting heat into space is not enough on its own.
This multilayered coating also acts as a highly efficient mirror, preventing 97 percent of sunlight from striking the building and heating it up.

"We've created something that's a radiator that also happens to be an excellent mirror," said Raman.

Together, the radiation and reflection make the photonic radiative cooler nearly 9 degrees Fahrenheit cooler than the surrounding air during the day.

From prototype to building panel

Making photonic radiative cooling practical requires solving at least two technical problems.

The first is how to conduct the heat inside the building to this exterior coating. Once it gets there, the coating can direct the heat into space, but engineers must first figure out how to efficiently deliver the building heat to the coating.

The second problem is production. Right now the Stanford team's prototype is the size of a personal pizza. Cooling buildings will require large panels. The researchers say there exist large-area fabrication facilities that can make their panels at the scales needed.

The cosmic fridge

More broadly, the team sees this project as a first step toward using the cold of space as a resource. In the same way that sunlight provides a renewable source of solar energy, the cold universe supplies a nearly unlimited expanse to dump heat.

"Every object that produces heat has to dump that heat into a heat sink," Fan said. "What we've done is to create a way that should allow us to use the coldness of the universe as a heat sink during the day."

In addition to Fan, Raman and Zhu, this paper has two additional co-authors: Marc Abou Anoma, a master's student in mechanical engineering who has graduated; and Eden Rephaeli, a doctoral student in applied physics who has graduated.

View Article Here Read More

Scientists ‘confident’ comet lander will wake up

ASSOCIATED PRESSA burst of sunshine in the spring could be just the wake-up call for Europe's comet lander.Scientists raised hopes Monday that as the Philae lander nears the sun its solar panel-powered battery will recharge, and the first spacecraft ...

View Article Here Read More

Why France has a team of UFO hunters

A drawing from the files at the French UFO departmentExcerpt from BBCBy Chris Bockman Thousands of UFO sightings are reported every year but not many countries are willing to spend money investigating them - there is just one dedicated state-run tea...

View Article Here Read More

PETA urges FDA to act on alleged SeaWorld dolphin, whale suffering


 


dailydigestnews.com


A complaint filed recently against SeaWorld San Diego by the People for the Ethical Treatment of Animals (PETA) alleges that a veterinarian’s recent visit uncovered great psychological distress among captive dolphins, whales, and other creatures, and urged immediate government intervention.

The complaint, which was submitted Monday to the U.S. Department of Agriculture, says that in addition to pyschological harm, dolphins in particular showed signs of attacks from other dolphins due to their close confinement. It urges the agency to investigate the situation.

PETA quoted its own veterinarian Heather Rally, who visited SeaWorld and noted that, among other things, dolphins that had skin conditions and depressed immune systems were interacting with the public, increasing the risk to their health. She said despite the fact that some dolphins had “obvious” pox-like skin lesions, members of the public were allowed to put their hands in the water and touch the dolphins without a SeaWorld supervisor present, according to a PETA statement.

Also, Rally claimed it was common to see bullying and fighting between species at the park, leaving rake marks from the teeth of dominant whales and dolphins on the skin of victims. She said she observed dolphins ramming and chasing other dolphins, as well as attempting to slap them with their flukes. Rake marks leave scars that usually heal within a few months, which Rally said indicates that such aggression is commonplace because of how often she encountered the marks.


PETA claims that aggression between cetaceans in the wild is less common than it is in captivity, since in the latter case dolphins are not able to separate themselves from a dangerous situation.

Rally argued that orcas at SeaWorld suffer great psychological stress as well, since they are used to having strong family bonds and swim great distances. An orca would have to swim 1,900 laps around their tanks to equal the 100 miles per day they usually travel, PETA claimed.

Rally said she observed an orca floating “listlessly” in a lateral position at one point, indicating psychological distress or extreme boredom.

View Article Here Read More

US Military’s Robot Space Plane Due To Land This Week



-
The X-37B Orbital Test Vehicle (OTV), the Air Force's unmanned, reusable space plane. (US Air Force / AFP)


Excerpt from
defensenews.com

WASHINGTON — The US military’s mysterious robot space plane is expected to land this week after a 22-month orbit, officials said Tuesday, but the craft’s mission remains shrouded in secrecy.
The unmanned X-37B, which looks like a miniature space shuttle, is due to glide back to Earth after having launched on Dec. 11, 2012, on a mission that military officers say is strictly top secret.
“Preparations for the third landing of the X-37B are underway at Vandenberg Air Force Base” in California, said a US Air Force spokesman, Captain Chris Hoyler.


A defense official said that the space plane will likely touch down sometime this week and that future missions would seek to extend the vehicle’s technical capabilities and time in orbit.

“The specific parameters are unreleasable,” the official said.

The Air Force says the X-37B can test technology for “reusable” spacecraft and conduct unspecified experiments that can be studied on Earth.

The X-37B, manufactured by aerospace giant Boeing, weighs five tonnes and measures about 29 feet (8.8 meters) long, with a wing span of roughly 15 feet across.

Traveling at speeds 25 times faster than the speed of sound, the vehicle is launched into space on the back of a rocket and, once its mission is complete, returns from orbit like a plane. 

View Article Here Read More

10 Signs That You’re Fully Awake

A great article from www.pakalertpress.comIsn’t it obvious that there is a significant global awakening happening? Just as the Mayans predicted so many years ago, the apocalypse would become apparent in 2012. But many misinterpret the apocalypse to be the end of the world, when in fact it actually means an “un-covering, a revelation of something hidden.”As many continue to argue the accuracy of the Mayan calendar, it can no longer be argued that a great many people are finally [...]

View Article Here Read More

The Light Side of the Dark Night of the Soul

by Kim Hutchinson Clayhut Healing CentreThe phenomenon known as the Dark Night of the Soul is something which many spiritual seekers experience on their journey to re-enlightenment. It can be a painful and frightening process, but it can also be liberating and empowering. It all depends on your perspective and your ability to remain detached. Peeling the Onion The word ‘night’ is misleading. This is a process, and thankfully so. I doubt you would want to experience [...]

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑