Tag: tool (page 2 of 7)

Confirmed: Jupiter’s moon Ganymede has a salt water ocean

GanymedeExcerpt from latimes.comAstronomers have found the most conclusive evidence yet that a large watery ocean lies beneath the surface of Jupiter's moon Ganymede.Scientists have suspected for decades that a subterranean ocean ...

View Article Here Read More

Fresh fossil studies push the dawn of man back to 2.8 million years

(Reuters) - A 2.8-million-year-old jawbone fossil with five intact teeth unearthed in an Ethiopian desert is pushing back the dawn of humankind by about half a million years.Scientists said on Wednesday the fossil represents the oldest known repres...

View Article Here Read More

Monster Black Hole Is the Largest and Brightest Ever Found



Largest and Brightest Black Hole
An artist's illustration of a monster supermassive black hole at the heart of a quasar in the distant universe. Scientists say the newfound black hole SDSS J010013.02+280225.8 is the largest and brightest ever found.

Excerpt from space.com

Astronomers have discovered the largest and most luminous black hole ever seen — an ancient monster with a mass about 12 billion times that of the sun — that dates back to when the universe was less than 1 billion years old.

It remains a mystery how black holes could have grown so huge in such a relatively brief time after the dawn of the universe, researchers say.

Supermassive black holes are thought to lurk in the hearts of most, if not all, large galaxies. The largest black holes found so far in the nearby universe have masses more than 10 billion times that of the sun. In comparison, the black hole at the center of the Milky Way is thought to have a mass only 4 million to 5 million times that of the sun. 


Although not even light can escape the powerful gravitational pulls of black holes — hence, their name — black holes are often bright. That's because they're surrounded by features known as accretion disks, which are made up of gas and dust that heat up and give off light as it swirl into the black holes. Astronomers suspect that quasars, the brightest objects in the universe, contain supermassive black holes that release extraordinarily large amounts of light as they rip apart stars.
So far, astronomers have discovered 40 quasars — each with a black hole about 1 billion times the mass of the sun — dating back to when the universe was less than 1 billion years old. Now, scientists report the discovery of a supermassive black hole 12 billion times the mass of the sun about 12.8 billion light-years from Earth that dates back to when the universe was only about 875 million years old.

This black hole — technically known as SDSS J010013.02+280225.8, or J0100+2802 for short — is not only the most massive quasar ever seen in the early universe but also the most luminous. It is about 429 trillion times brighter than the sun and seven times brighter than the most distant quasar known.

The light from very distant quasars can take billions of years to reach Earth. As such, astronomers can see quasars as they were when the universe was young.

This black hole dates back to a little more than 6 percent of the universe's current age of 13.8 billion years.

"This is quite surprising because it presents serious challenges to theories of black hole growth in the early universe," said lead study author Xue-Bing Wu, an astrophysicist at Peking University in Beijing.

Accretion discs limit the speed of modern black holes' growth. First, as gas and dust in the disks get close to black holes, traffic jams slow down any other material that's falling into them. Second, as matter collides in these traffic jams, it heats up, emitting radiation that drives gas and dust away from the black holes.

Newfound Quasar SDSS J0100+2802
The newfound quasar SDSS J0100+2802 has the most massive black hole and the highest luminosity among all known distant quasars, as shown in this comparison chart of the black hole's mass and brightness.


Scientists still do not have a satisfactory theory to explain how these supermassive objects formed in the early universe, Wu said.

"It requires either very special ways to quickly grow the black hole or a huge seed black hole," Wu told Space.com. For instance, a recent study suggested that because the early universe was much smaller than it is today, gas was often denser, obscuring a substantial amount of the radiation given off by accretion disks and thus helping matter fall into black holes.

The researchers noted that the light from this black hole could help provide clues about the dark corners of the distant cosmos. As the quasar's light shines toward Earth, it passes through intergalactic gas that colors the light. By deducing how this intergalactic gas influenced the spectrum of light from the quasar, scientists can deduce which elements make up this gas. This knowledge, in turn, can provide insight into the star-formation processes that were at work shortly after the Big Bang that produced these elements.

"This quasar is the most luminous one in the early universe, which, like a lighthouse, will provide us chances to use it as a unique tool to study the cosmic structure of the dark, distant universe," Wu said.
The scientists detailed their findings in the Feb. 26 issue of the journal Nature.

View Article Here Read More

Tool making arose earlier among human ancestors


Coming to grips with tool-making evolution
A modern human hand grasps a fossil metacarpus from a hominin ancestor who may have been able to craft tools. A new study suggests the adaptations enabling a precise and forceful grip developed 500,000 years earlier than previously theorized. (Tracy L. Kivell, Matthew M. Skinner)
Excerpt from latimes.com
By Geoffrey Mohan 


Our ape-like ancestors may have stopped dragging their knuckles and started making tools a half million years earlier than previously thought, according to a new study.
The study, published online Thursday in the journal Science, suggests that the art of tool making may not be exclusive to the genus Homo, which led to modern Homo sapiens. At least one species in the dead-end genus Australopithecus appears to have enough of the hand characteristics that would have made tool crafting possible, the study found.

That would mean that the credit for tool use would now be shared between Homo habilis -- most often thought to be the progenitor of tool-making hominins -- and Australopithecus africanus, a species that wandered around southern Africa about 2-3 million years ago.
Since then, modern Homo sapiens has used a lot of his tool-making ability to type out arguments over which ancestor first flaked a stone into a sharp-edged tool. So it’s unlikely that one study will settle the matter...

View Article Here Read More

Spacecraft found on Mars – and it’s ours




Computer image of the Beagle 2


Excerpt from skyandtelescope.com
By Kelly Beatty  


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.  It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). 

Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester - See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf


Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers. Beagle 2 on Mars  The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life. Beagle 2 consortium  But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?  Now, thanks to HiRISE, we know more of the story.  
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester 


Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry. Beagle 2 seen from orbit by HiRISE  

One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent...


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.
It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers.
Beagle 2 on Mars
The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life.
Beagle 2 consortium
But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?
Now, thanks to HiRISE, we know more of the story. Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry.
Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014.
NASA / JPL / Univ. of Arizona / Univ. of Leicester
One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent.
The initial images didn't just show up. They'd been requested and searched by Michael Croon of Trier, Germany, who'd served on the Mars Express operations team. Croon had asked for specific camera targeting through a program called HiWish, through which anyone can submit suggestions for HiRISE images. Read more about this fascinating sleuthing story.
"Not knowing what happened to Beagle 2 remained a nagging worry," comments Rudolf Schmidt in an ESA press release about the find. "Understanding now that Beagle 2 made it all the way down to the surface is excellent news." Schmidt served as the Mars Express project manager at the time.
Built by a consortium of organizations, Beagle 2 was the United Kingdom's first interplanetary spacecraft. The 32-kg (73-pound) lander carried six instruments to study geochemical characteristics of the Martian surface and to test for the presence of life using assays of carbon isotopes. It was named for HMS Beagle, the ship that carried a crew of 73 (including Charles Darwin) on an epic voyage of discovery in 1831–36.
- See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf

View Article Here Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here Read More

Is AI a threat to humanity?

Excerpt from cnn.comImagine you're the kind of person who worries about a future when robots become smart enough to threaten the very existence of the human race. For years, you've been dismissed as a crackpot, consigned to the same category of peop...

View Article Here Read More

World’s Oldest Art Identified in Half-Million-Year-Old Zigzag

A jagged line etched on a fossil mussel shell may be the oldest evidence of geometric art.Photograph by Wim Lustenhouwer, VU University Amsterdam(Reuters) - It's a simple zigzag design scratched onto the surface of a freshwater mussel shell on t...

View Article Here Read More

Move Over Predator Alien: The human eye can see ‘invisible’ infrared light too


The eye can detect light at wavelengths in the visual spectrum. Other wavelengths, such as infrared and ultraviolet, are supposed to be invisible to the human eye, but Washington University scientists have found that under certain conditions, it’s possible for us to see otherwise invisible infrared light. Image: Sara Dickherber

Excerpt from
news.wustl.edu
By Jim Dryden

Any science textbook will tell you we can’t see infrared light. Like X-rays and radio waves, infrared light waves are outside the visual spectrum. 

But an international team of researchers co-led by scientists at Washington University School of Medicine in St. Louis has found that under certain conditions, the retina can sense infrared light after all. 

Using cells from the retinas of mice and people, and powerful lasers that emit pulses of infrared light, the researchers found that when laser light pulses rapidly, light-sensing cells in the retina sometimes get a double hit of infrared energy. When that happens, the eye is able to detect light that falls outside the visible spectrum.

The findings are published Dec. 1 in the Proceedings of the National Academy of Sciences (PNAS) Online Early Edition. The research was initiated after scientists on the research team reported seeing occasional flashes of green light while working with an infrared laser. Unlike the laser pointers used in lecture halls or as toys, the powerful infrared laser the scientists worked with emits light waves thought to be invisible to the human eye.

“They were able to see the laser light, which was outside of the normal visible range, and we really wanted to figure out how they were able to sense light that was supposed to be invisible,” said Frans Vinberg, PhD, one of the study’s lead authors and a postdoctoral research associate in the Department of Ophthalmology and Visual Sciences at Washington University. 

Vinberg, Kefalov and their colleagues examined the scientific literature and revisited reports of people seeing infrared light. They repeated previous experiments in which infrared light had been seen, and they analyzed such light from several lasers to see what they could learn about how and why it sometimes is visible.

“We experimented with laser pulses of different durations that delivered the same total number of photons, and we found that the shorter the pulse, the more likely it was a person could see it,” Vinberg explained. “Although the length of time between pulses was so short that it couldn’t be noticed by the naked eye, the existence of those pulses was very important in allowing people to see this invisible light.”



Robert Boston

Kefalov’s team developed this adapter that allowed scientists to analyze retinal cells and photopigment molecules as they were exposed to infrared light. The device already is commercially available and in use at several vision research centers around the world.
“The visible spectrum includes waves of light that are 400-720 nanometers long,” explained Kefalov, an associate professor of ophthalmology and visual sciences. “But if a pigment molecule in the retina is hit in rapid succession by a pair of photons that are 1,000 nanometers long, those light particles will deliver the same amount of energy as a single hit from a 500-nanometer photon, which is well within the visible spectrum. That’s how we are able to see it.”

Robert Boston

Frans Vinberg, PhD (left), and Vladimir J. Kefalov, PhD, sit in front of a tool they developed that allows them to detect light responses from retinal cells and photopigment molecules.

View Article Here Read More

Extraordinary’ 5,000-Year-Old Human Footprints Discovered

An ancient human footprint.
A 5,000-year-old human footprint discovered on the Danish island of Lolland.
Credit: Lars Ewald Jensen/Museum Lolland-Falster


Excerpt from livescience.com

When a pair of fishermen waded into the frigid waters of the southern Baltic Sea about 5,000 years ago, they probably didn't realize that the shifting seabed beneath their feet was recording their every move. But it was.




The long-lost evidence of that prehistoric fishing trip — two sets of human footprints and some Stone Age fishing gear — was recently discovered in a dried up fjord, or inlet, on the island of Lolland in Denmark. There, archaeologists uncovered the prints alongside a so-called fishing fence, a tool that dates back to around 3,000 B.C.


Archaeologists have found fishing fences before, but the footprints are the first of their kind discovered in Denmark, according to Terje Stafseth, an archaeologist with the Museum Lolland-Falster, who helped excavate the ancient prints. 


"This is really quite extraordinary, finding footprints from humans," Stafseth said in a statement. "Normally, what we find is their rubbish in the form of tools and pottery, but here, we suddenly have a completely different type of trace from the past, footprints left by a human being."


The Stone Age footprints were likely formed sometime between 5,000 B.C. and 2,000 B.C., Jensen said. At that time, the water level of the Baltic Sea was rising due to melting glaciers in northern Europe. Also at that time, prehistoric people were using these inlets as fishing grounds.

These individuals constructed elaborate traps, called fishing fences, to catch their prey. The wooden fences were built in sections several feet wide — thin switches of hazel suspended between two larger sticks — and the sections were lined up consecutively to form one long, continuous trap. The trap was placed in the shallow water of the fjord, which would be flooded with the incoming tide, the archaeologists said. When the fishermen wanted to move their gear, they would pluck the sections of the fence from the claylike floor of the fjord and move the whole apparatus to a new location.

"What seems to have happened was that at some point they were moving out to the [fish fence], perhaps to recover it before a storm," Jensen said. "At one of the posts, there are footprints on each side of the post, where someone had been trying to remove it from the sea bottom."



The archaeologists said the footprints must have been made by two different people, since one set of prints is significantly smaller than the other. Jensen and his team are now making imprints, or flat molds, of the footprints to preserve these ancient signs of life.

In addition to the human tracks, the team uncovered several skulls belonging to domestic and wild animals on the beach near the fjord.

The researchers said the skulls were likely part of offerings made by local farmers, who inhabited the region from around 4,000 B.C.

"They put fragments of skulls from different kinds of animals [on the sea floor], and then around that they put craniums from cows and sheep," Jensen said. "At the outermost of this area, they put shafts from axes. All in all, it covers about 70 square meters [83 square yards]. It's rather peculiar."

View Article Here Read More

Is Mars One Ready to Colonize the Red Planet?

 Excerpt from  latimes.com A team of engineers at MIT that studies the technology needed for humans to live on other planets has determined that the Mars One plan to send four people to colonize the Red Planet by 2025 is not possible.&...

View Article Here Read More

Can You Fathom A World Without Money And Without Disease?

Michael Forrester, Prevent DiseaseIn many ways we’ve already selected monetary systems for termination. Money itself is not the root of all evil, however humans have bound money so tightly to contracts that it can no longer be used to benefit us in its current form and with the mindset to transcend all that it represents. Humanity has realized this and it’s only a matter of time before our monetary structures evolve to something else. That something will benefit all the struggl [...]

View Article Here Read More

Deconstructing the Intellect

The intellect is a great tool, but it is, at the same time, just a tool. A person can use the intellect to evaluate information and decide that destruction of life is a reasonable action, if it contributes to a desired end goal. Intellect doesn’t need to have a heart. Therein is the big difference between intellect and intuition, or the heart. To proceed with vision is to use intuition.A few days ago we made it through the 13th anniversary of an intentional trauma perpetrated upon th [...]

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑