Tag: The Milky Way (page 2 of 5)

New research shows billions of habitable planets exist in our galaxy



CGI of how the Milky Way galaxy may appear from deep space


Excerpt from thespacereporter.com


Analysis of data collected by NASA’s Kepler space telescope has led researchers at the Australian National University and the Niels Bohr Institute to conclude that Earth is only one of billions of potentially life-sustaining planets in our galaxy.

In order for a planet to sustain life, it must orbit its star at just the right distance to provide sufficient light and warmth to maintain liquid water without too much radiation. This perfect orbital distance is considered to be the habitable zone.

According to a Weather Channel report, there are an average of two planets per star in the Milky Way Galaxy orbiting within their habitable zones. That brings the total number of planets with the potential for holding liquid water to 100 billion.

Scientists assume that water would be an essential ingredient for life to evolve on other planets, but it is not a certainty.

“If you have liquid water, then you should have better conditions for life, we think,” said Steffen Jacobsen of Niels Bohr. “Of course, we don’t know this yet. We can’t say for certain.”

To reach their conclusion, the researchers studied 151 planetary systems and focused on those with four or more planets. They used a concept called the Titus-Bode law to calculate where unseen planets might be located in a system based on the placements of other planets around the star. The Titus-Bode law suggested the existence of Uranus before it was actually seen.

The data will require further analysis and the sky will require further searching to yield a more accurate number of potentially life-harboring planets.
“Some of these planets are so small the Kepler team will probably have missed them in the first attempt because the signals we get are so weak. They may be hidden in the noise,” Jacobsen said.

The initial analysis, however, is extremely promising in the possibility of finding habitable planets. “Our research indicates that there are a lot of planets in the habitable zone and we know there are a lot of stars like the one we’re looking at. We know that means we’re going to have many billions of planets in the habitable zone,” said Jacobsen, who considers that “very good news for the search for life.”

View Article Here Read More

The Universe within 50,000 Light Years

This map shows the full extent of the Milky Way galaxy - a spiral galaxy of at least two hundred billion stars. Our Sun is buried deep within the Orion Arm about 26 000 light years from the centre. Towards the centre of the Galaxy the stars are ...

View Article Here Read More

Milky Way Galaxy May Be 50 Percent Bigger Than We Thought

 Excerpt from cbsnews.com Rings of stars thought to surround the Milky Way are actually part of it, according to new research, meaning the galaxy is bigger than previously believed.The findings extend the known width of the Milk...

View Article Here Read More

Earth’s address within a massive supercluster of 100,000 galaxies ~ Video





Excerpt from cnet.com


Astronomers have mapped the Milky Way's position to the outskirts of a supercluster of galaxies, newly dubbed Laniakea, meaning "Immense Heaven".

The distribution of galaxies throughout the universe is not more-or-less even; instead, galaxies tend to cluster together, bound together by the pull of each other's gravity. These groups can be a variety of sizes. The Milky Way Galaxy, for instance, is part of what is called the Local Group, which contains upwards of 54 galaxies, covering a diameter of 10 megalight-years (10 million light-years).

Click to zoom

But this Local Group is just a small part of a much, much bigger structure, which researchers at the University of Hawai'i Mānoa have now mapped in detail. Coming in at over 100,000 galaxies, the massive supercluster has been given the name Laniakea -- "immense heaven" in Hawaiian.
The new 3D map was created by examining the positions and movements of the 8000 closest galaxies to the Milky Way. After calculating which galaxies were being pulled away from us and which were being pulled towards us -- accounting for the universe's expansion -- the team, led by astronomer R. Brent Tully, was able to map the paths of galactic migration -- and define the boundaries of Laniakea.

Traditionally, the borders of galactic superclusters have been difficult to map, but studying the gravitational force acting on our neighbouring galaxies has provided some important clues. All objects inside Laniakea are being slowly but surely drawn to a single point -- a force known as the Great Attractor, a gravitational anomaly with a mass tens of thousands of times the mass of the Milky Way.

Everything that is being pulled towards the Great Attractor is part of Laniakea -- although it's possible that Laniakea itself might in turn be part of a structure that is larger still.

"We probably need to measure to another factor of three in distance to explain our local motion," Tully said. "We might find that we have to come up with another name for something larger than we're a part of -- we're entertaining that as a real possibility."

The full paper, "The Laniakea supercluster of galaxies", can be read online in the journal Nature.

View Article Here Read More

Our new neighbours: Rare dwarf galaxies found orbiting the Milky Way

The Large and Small Magellanic Clouds, near which the satellites were found. Excerpt from cnet.com Researchers have found rare satellite dwarf galaxies and candidate dwarf galaxies in orbit around our Milky Way, the largest number of such...

View Article Here Read More

Exoplanet Bonanza Boosts Count by 1,200

Excerpt from news.discovery.comDozens of candidate worlds reside within the "habitable zones" of their parent stars. THE GIST - NASA's Kepler telescope has found more than 1,200 extrasolar planet candidates. - Smaller worlds, like Earth,...

View Article Here Read More

Chances of Exoplanet Life ‘Impossible’? Or ‘100 percent’?


Kepler’s Exoplanets: A map of the locations of exoplanets, of various masses, in the Kepler field of view. 1,235 candidates are plotted (NASA/Wendy Stenzel)


 news.discovery.com 

Just in case you haven’t heard, our galaxy appears to be teeming with small worlds, many of which are Earth-sized candidate exoplanets and dozens appear to be orbiting their parent stars in their “habitable zones.”

Before Wednesday’s Kepler announcement, we knew of just over 500 exoplanets orbiting stars in the Milky Way. Now the space telescope has added another 1,235 candidates to the tally — what a difference 24 hours makes.

Although this is very exciting, the key thing to remember is that we are talking about exoplanet candidates, which means Kepler has detected 1,235 exoplanet signals, but more work needs to be done (i.e. more observing time) to refine their orbits, masses and, critically, to find out whether they actually exist.

But, statistically speaking, a pattern is forming. Kepler has opened our eyes to the fact our galaxy is brimming with small worlds — some candidates approaching Mars-sized dimensions!

Earth-Brand™ Life

Before Kepler, plenty of Jupiter-sized worlds could be seen, but with its precision eye for spotting the tiniest of fluctuations of star brightness (as a small exoplanet passes between Kepler and the star), the space telescope has found that smaller exoplanets outnumber the larger gas giants.

Needless to say, all this talk of “Earth-sized” worlds (and the much-hyped “Earth-like” misnomer) has added fuel to the extraterrestrial life question: If there’s a preponderance of small exoplanets — some of which orbit within the “sweet-spot” of the habitable zones of their parent stars — could life as we know it (or Earth-Brand™ Life as I like to call it) also be thriving there?
Before I answer that question, let’s turn back the clock to Sept. 29, 2010, when, in the wake of the discovery of the exoplanet Gliese 581 g, Steven Vogt, professor of astronomy and astrophysics at University of California Santa Cruz, told Discovery News: “Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that the chances for life on [Gliese 581 g] are 100 percent. I have almost no doubt about it.”

Impossible? Or 100 Percent?

As it turns out, Gliese 581 g may not actually exist — an excellent example of the progress of science scrutinizing a candidate exoplanet in complex data sets as my Discovery News colleague Nicole Gugliucci discusses in “Gliese 581g and the Nature of Science” — but why was Vogt so certain that there was life on Gliese 581 g? Was he “wrong” to air this opinion?

Going to the opposite end of the spectrum, Howard Smith, an astrophysicist at Harvard University, made the headlines earlier this year when he announced, rather pessimistically, that aliens will unlikely exist on the extrasolar planets we are currently detecting.
“We have found that most other planets and solar systems are wildly different from our own. They are very hostile to life as we know it,” Smith told the UK’s Telegraph.

Smith made comparisons between our own solar system with the interesting HD 10180 system, located 127 light-years away. HD 10180 was famous for a short time as being the biggest star system beyond our own, containing five exoplanets (it has since been trumped by Kepler-11, a star system containing six exoplanets as showcased in Wednesday’s Kepler announcement).

One of HD 10180′s worlds is thought to be around 1.4 Earth-masses, making it the smallest detected exoplanet before yesterday. Alas, as Smith notes, that is where the similarities end; the “Earth-sized” world orbiting HD 10180 is too close to its star, meaning it is a roasted exoplanet where any atmosphere is blasted into space by the star’s powerful radiation and stellar winds.
The Harvard scientist even dismissed the future Kepler announcement, pointing out that upcoming reports of habitable exoplanets would be few and far between. “Extrasolar systems are far more diverse than we expected, and that means very few are likely to support life,” he said.

Both Right and Wrong

So what can we learn about the disparity between Vogt and Smith’s opinions about the potential for life on exoplanets, regardless of how “Earth-like” they may seem?

Critically, both points of view concern Earth-Brand™ Life (i.e. us and the life we know and understand). As we have no experience of any other kind of life (although the recent eruption of interest over arsenic-based life is hotly debated), it is only Earth-like life we can realistically discuss.

We could do a Stephen Hawking and say that all kinds of life is possible anywhere in the cosmos, but this is pure speculation. Science only has life on Earth to work with, so (practically speaking) it’s pointless to say a strange kind of alien lifeform could live on an exoplanet where the surface is molten rock and constantly bathed in extreme stellar radiation.

If we take Hawking’s word for it, Vogt was completely justified for being so certain about life existing on Gliese 581 g. What’s more, there’s no way we could prove he’s wrong!

But if you set the very tight limits on where we could find Earth-like life, we are suddenly left with very few exoplanet candidates that fit the bill. Also, just because an Earth-sized planet might be found in the habitable zone of its star, doesn’t mean it’s actually habitable. There are many more factors to consider. So, in this case, Smith’s pessimism is well placed.

Regardless, exoplanet science is in its infancy and the uncertainty with the “is there life?” question is a symptom of being on the “raggedy edge of science,” as Nicole would say. We simply do not know what it takes to make a world habitable for any kind of life (apart from Earth), but it is all too tempting to speculate as to whether a race of extraterrestrials, living on one of Kepler’s worlds, is pondering these same questions.

View Article Here Read More

Far Flung Star Cluster Found at Milky Way’s Edge

Astronomers in Brazil have discovered a cluster of stars forming at the edge of the Milky Way, according to a press release from the Royal Astronomical Society.




Excerpt from  news.discovery.com


This is unusual because it was believed that stars generally take form closer to the center of our spiral-shaped galaxy, rather than from its swirling, spiral arms, which are thousands of light-years away. These two clusters of stars — named Camargo 438 and 439 — were seen in a cloud at the galaxy’s outskirts.

Denilso Camargo, an astronomer at the Federal University of Rio Grande do Sul in Porto Alegre, Brazil, led a team that analyzed data from NASA’s orbiting Wide-Field Infrared Survey Explorer (WISE) observatory. They zeroed in on dense clumps of gas in so-called giant molecular clouds(GMCs) that are known to generate stars. GMCs are mainly located in the inner part of the galactic disc.

The new star clusters lie about 16,000 light-years away from the main disk of the Milky Way galaxy. How did they form there? The scientists aren’t yet sure but Camargo theorizes that one of two scenarios could have led to the stars’ formation.

In the first scenario, called the “chimney model,” supernovas could have flung the gas and dust that formed the cloud out of the Milky Way. Another explanation is the material could have drifted in from outside the galaxy.


“Our work shows that the space around the Galaxy is a lot less empty that we thought,” said Camargo. “The new clusters of stars are truly exotic.”

Camargo’s team published their results in the journal Monthly

View Article Here Read More

Astronomers find star speeding out of the galaxy





(Reuters) - Astronomers have found a star hurtling through the galaxy faster than any other, the result of being blasted away by the explosion of a massive partner star, researchers said on Thursday.
The star, known as US 708, is traveling at about 746 miles (1,200 km) per second, fast enough to actually leave the Milky Way galaxy in about 25 million years, said astronomer Stephan Geier with Germany-based European Southern Observatory, which operates three telescopes in Chile.

"At that speed you could travel from Earth to the moon in five minutes," noted University of Hawaii astronomer Eugene Magnier.
US 708 is not the first star astronomers have found that is moving fast enough to escape the galaxy, but it is the only one so far that appears to have been slingshot in a supernova explosion.

The 20 other stars discovered so far that are heading out of the galaxy likely got their impetus from coming too close to the supermassive black hole that lives at the center of the Milky Way, scientists report in an article in this week’s edition of the journal Science.

Before it was sent streaming across the galaxy, US 708 was once a cool giant star, but it was stripped of nearly all of its hydrogen by a closely orbiting partner. Scientists suspect it was this feeding that triggered the partner’s detonation.

If confirmed, these types of ejected stars may provide more insight into how supernova explosions occur. Since the explosions give off a fairly standard amount of radiation, scientists can calculate their distances by measuring how bright or dim they appear and determine how fast the universe is expanding.

View Article Here Read More

Astronomers Discover Ancient Dust Filled Galaxy ~ Debunks earlier theories that earliest galaxies had no dust only gas


2262451851_21c1c74069


Excerpt from voicechronicle.com


Astronomers have discovered a dust-filled ancient galaxy from the very early universe, which debunks earlier theories that earliest galaxies had no dust but gas. Astronomers from the University of Copenhagen used the Very Large Telescope’s X-shooter instrument along with the Atacama Large Millimeter/submillimeter Array and discovered a galaxy, named Galaxy A1689-zD1, which is an ancient galaxy and far from Earth.
The astronomers stated that the galaxy which
they were surprised to discover is far more evolved system than expected. It had a fraction of dust similar to a very mature galaxy, such as the Milky Way. Such dust is vital to life, because it helps form planets, complex molecules and normal stars. 

According to the astronomers A1689-zD1 is only observable by virtue of its brightness being amplified more than nine times by a gravitational lens in the form of the spectacular galaxy cluster. Without the gravitational boost, the glow from this very faint galaxy would have been too weak to detect.

The astronomers stated that they are viewing A1689-zD1 when the Universe was only about 700 million years old, which is 5% of its present age. According to them, it is a relatively modest system — much less massive and luminous than many other objects that have been studied before at this stage in the early universe and hence a more typical example of a galaxy at that time.

A1689-zD1 is being observed as it was during the period of reionization, when the earliest stars brought with them a cosmic dawn, illuminating for the first time an immense and transparent universe and ending the extended stagnation of the Dark Ages. Expected to look like a newly formed system, the galaxy surprised the observers with its rich chemical complexity and abundance of interstellar dust.

Dust plays an extremely important role in the universe – both in the formation of planets and new stars.

Darach Watson, Associate Professor at Dark Cosmology Centre, University of Copenhagen, and the lead author of the study, said, “After confirming the galaxy’s distance using the VLT we realized it had previously been observed with ALMA. We didn’t expect to find much, but I can tell you we were all quite excited when we realized that not only had ALMA observed it, but that there was a clear detection. One of the main goals of the ALMA Observatory was to find galaxies in the early Universe from their cold gas and dust emissions — and here we had it!”

The researchers hope that future observations of a large number of distant galaxies could help unravel how frequently such evolved galaxies occur in this very early epoch of the history of the universe.

View Article Here Read More

This Awesome 3D View Of Deep Space May Be The Best Ever

The background image in this composite shows the Hubble Space Telescope image of the region known as the Hubble Deep Field South. The boxes show distant galaxies that were invisible to Hubble.Excerpt from  huffingtonpost.comAlong with Earthrise ...

View Article Here Read More

Monster Black Hole Is the Largest and Brightest Ever Found



Largest and Brightest Black Hole
An artist's illustration of a monster supermassive black hole at the heart of a quasar in the distant universe. Scientists say the newfound black hole SDSS J010013.02+280225.8 is the largest and brightest ever found.

Excerpt from space.com

Astronomers have discovered the largest and most luminous black hole ever seen — an ancient monster with a mass about 12 billion times that of the sun — that dates back to when the universe was less than 1 billion years old.

It remains a mystery how black holes could have grown so huge in such a relatively brief time after the dawn of the universe, researchers say.

Supermassive black holes are thought to lurk in the hearts of most, if not all, large galaxies. The largest black holes found so far in the nearby universe have masses more than 10 billion times that of the sun. In comparison, the black hole at the center of the Milky Way is thought to have a mass only 4 million to 5 million times that of the sun. 


Although not even light can escape the powerful gravitational pulls of black holes — hence, their name — black holes are often bright. That's because they're surrounded by features known as accretion disks, which are made up of gas and dust that heat up and give off light as it swirl into the black holes. Astronomers suspect that quasars, the brightest objects in the universe, contain supermassive black holes that release extraordinarily large amounts of light as they rip apart stars.
So far, astronomers have discovered 40 quasars — each with a black hole about 1 billion times the mass of the sun — dating back to when the universe was less than 1 billion years old. Now, scientists report the discovery of a supermassive black hole 12 billion times the mass of the sun about 12.8 billion light-years from Earth that dates back to when the universe was only about 875 million years old.

This black hole — technically known as SDSS J010013.02+280225.8, or J0100+2802 for short — is not only the most massive quasar ever seen in the early universe but also the most luminous. It is about 429 trillion times brighter than the sun and seven times brighter than the most distant quasar known.

The light from very distant quasars can take billions of years to reach Earth. As such, astronomers can see quasars as they were when the universe was young.

This black hole dates back to a little more than 6 percent of the universe's current age of 13.8 billion years.

"This is quite surprising because it presents serious challenges to theories of black hole growth in the early universe," said lead study author Xue-Bing Wu, an astrophysicist at Peking University in Beijing.

Accretion discs limit the speed of modern black holes' growth. First, as gas and dust in the disks get close to black holes, traffic jams slow down any other material that's falling into them. Second, as matter collides in these traffic jams, it heats up, emitting radiation that drives gas and dust away from the black holes.

Newfound Quasar SDSS J0100+2802
The newfound quasar SDSS J0100+2802 has the most massive black hole and the highest luminosity among all known distant quasars, as shown in this comparison chart of the black hole's mass and brightness.


Scientists still do not have a satisfactory theory to explain how these supermassive objects formed in the early universe, Wu said.

"It requires either very special ways to quickly grow the black hole or a huge seed black hole," Wu told Space.com. For instance, a recent study suggested that because the early universe was much smaller than it is today, gas was often denser, obscuring a substantial amount of the radiation given off by accretion disks and thus helping matter fall into black holes.

The researchers noted that the light from this black hole could help provide clues about the dark corners of the distant cosmos. As the quasar's light shines toward Earth, it passes through intergalactic gas that colors the light. By deducing how this intergalactic gas influenced the spectrum of light from the quasar, scientists can deduce which elements make up this gas. This knowledge, in turn, can provide insight into the star-formation processes that were at work shortly after the Big Bang that produced these elements.

"This quasar is the most luminous one in the early universe, which, like a lighthouse, will provide us chances to use it as a unique tool to study the cosmic structure of the dark, distant universe," Wu said.
The scientists detailed their findings in the Feb. 26 issue of the journal Nature.

View Article Here Read More

Monster Black Hole’s Mighty Belch Could Transform Our Entire Galaxy

This artist's illustration depicts the furious cosmic winds streaming out from a monster supermassive black hole as detected by NASA's NuSTAR space telescope and the European Space Agency's XMM-Newton X-ray observatory.
This artist's illustration depicts the furious cosmic winds streaming out from a monster supermassive black hole as detected by NASA's NuSTAR space telescope and the European Space Agency's XMM-Newton X-ray observatory.


Except from space.com

A ravenous, giant black hole has belched up a bubble of cosmic wind so powerful that it could change the fate of an entire galaxy, according to new observations.
Researchers using two X-ray telescopes have identified a cosmic wind blowing outward from the supermassive black hole at the center of galaxy PDS 456. Astronomers have seen these winds before, but the authors of the new research say this is the first observation of a wind moving away from the center in every direction, creating a spherical shape.
The wind could have big implications for the future of the galaxy: It will cut down on the black hole's food supply, and slow star formation in the rest of the galaxy, the researchers said. And it's possible that strong cosmic winds are a common part of galaxy evolution — they could be responsible for turning galaxies from bright, active youngsters to quiet middle-agers. 

Big eater

The supermassive black hole at the center of PDS 456 is currently gobbling up a substantial amount of food: A smorgasbord of gas and dust surrounds the black hole and is falling into the gravitational sinkhole.
As matter falls, it radiates light. The black hole at the center of PDS 456 is devouring so much matter, that the resulting radiation outshines every star in the galaxy. These kinds of bright young galaxies are known as quasars: a galaxy with an incredibly bright center, powered by a supermassive black hole with a big appetite.
New observations of PDS 456 have revealed a bubble of gas moving outward, away from the black hole. Using NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton, the authors of the new research imaged the galaxy on five separate occassions in 2013 and 2014. The researchers say they can show that the photons of light emitted by the in-falling matter are pushing on nearby gas, creating the wind.
Scientists have studied these cosmic winds before, but the authors of the new research say their work goes a step further.
"It tells us that the shape of the wind is not just a narrow beam pointed in our direction. It is really a wind that is flowing in every direction away from the black hole," said Emanuele Nardini, a postdoctoral researcher at Keele University in Staffordshire, England. "With a spherical wind, the amount of mass it carries out is much larger than just a narrow beam."
According to a statement from NASA, galaxy PDS 456 "sustains winds that carry more energy every second than is emitted by more than a trillion suns." Such powerful winds could change the entire landscape of PDS 456, the researchers say. First, the wind will blow through the disk of matter surrounding the black hole — this disk currently serves as the black hole's food supply. The cosmic wind created by the black hole's appetite could significantly reduce or destroy the disk. In other words, the black hole cannot have its cake and eat it, too. 

Bright young things

With no matter left to fall into the black hole, the radiation would cease as well. The brilliant center of the quasar will dim. By diminishing the black hole's food supply, they may turn quasars and other "active galaxies" like PDS 456 into quiescent galaxies like the Milky Way. Theorists have proposed that cosmic winds could explain why there are more young active galaxies than old active galaxies.
"We know that in almost every galaxy, a supermassive black hole resides in the center," said Nardini. "But, most of the galaxies we see today are quiescent, they are not active in any way. The fact that galaxies today are quiescent — we have to find an explanation for that in something that happened a long time ago."
In addition to quenching the radiation from an active black hole, these cosmic winds may slow down star formation in galaxies. The cosmic wind could blow through regions thick with gas and dust, where young stars form, and thin out the fertile stellar soil.
"If you have a black hole with this kind of wind, in millions of years [the winds] will be able to quench star formation and create a galaxy like our own," Nardini said. Stars will still form in the Milky Way, but not at the high rate of many young galaxies.
It's possible that these cosmic winds are a central reason why most galaxies go from being brightly burning active youngsters to quiet middle-agers.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑