Tag: technology (page 4 of 24)

Nanoparticles In Food and Water Found to Alter Gut Microbiome

Heather Callaghan, ContributorWaking TimesNanotechnology – that is, metal oxide particles* such as titanium dioxide – are increasingly used in the commercial food supply, consumer goods, body care and in water treatment.The gut microbiome is today’s most appealing topic of science because it was previously unacknowledged by the medical community just how important gut health is to the human brain, hormones, immunity, mental health and more. Maintaining a h [...]

View Article Here Read More

Desperately Seeking ET: Fermi’s Paradox Turns 65 ~ Part 2

Excerpt from huffingtonpost.comIntroductionWhy is it so hard to find ET? After 50 years of searching, the SETI project has so far found nothing. In the latest development, on April 14, 2015 Penn State researchers announced that after searching through...

View Article Here Read More

Nuclear Experimentation Year 70 – Playing With Madness

Ethan Indigo Smith, ContributorThe recent “news” on the nuclear situation in Iran brings to light the madhouse of cards on which the postmodern world is built. Or rather, it would bring the madness to light if the major media outlets of the world were not bought up and sold out to the military industrial complex, and therefore completely misinformed on the actions and dangers of the nuclear experimentation industry.The story is not just about [...]

View Article Here Read More

Desperately Seeking Extraterrestrials ~ Fermi’s Paradox Turns 65 ~ Part 1

Excerpt from huffingtonpost.comIntroduction 65 years ago, in 1950, while having lunch with colleagues Edward Teller and Herbert York, Nobel physicist Enrico Fermi suddenly blurted out, "Where is everybody?" His question is now known as Fermi's p...

View Article Here Read More

Could Google’s Project Fi be cable’s answer to wireless?

 Excerpt from cnet.com Google's Project Fi wireless service has the potential to turn the mobile industry on its head. But not in the way you might expect. Last week, Google announce...

View Article Here Read More

Lab for genetic modification of human embryos just $2,000 away – report


Reuters / Christian Charisius



Reuters

With the right expertise in molecular biology, one could start a basic laboratory to modify human embryos using a genome-editing computer technique all for a couple thousand dollars, according to a new report.

Genetic modification has received heightened scrutiny recently following last week’s announcement that Chinese researchers had, for the first time, successfully edited human embryos’ genomes. 
The team at Sun Yat-Sen University in Guangzhou, China, used CRISPR (clustered regularly interspaced palindromic repeats), a technique that relies on “cellular machinery” used by bacteria in defense against viruses. 

This machinery is copied and altered to create specific gene-editing complexes, which include the wonder enzyme Cas9. The enzyme works its way into the DNA and can be used to alter the molecule from the inside. The combination is attached to an RNA guide that takes the gene-editing complex to its target, telling Cas9 where to operate. 

Use of the CRISPR technique is not necessarily relegated to the likes of cash-flush university research operations, according to a report by Business Insider. 


Geneticist George Church, who runs a top CRISPR research program at the Harvard Medical School, said the technique could be employed with expert knowledge and about half of the money needed to pay for an average annual federal healthcare plan in 2014 -- not to mention access to human embryos. 

"You could conceivably set up a CRISPR lab for $2,000,” he said, according to Business Insider. 

Other top researchers have echoed this sentiment. 

"Any scientist with molecular biology skills and knowledge of how to work with [embryos] is going to be able to do this,” Jennifer Doudna, a biologist at the University of California, Berkeley, recently told MIT Tech Review, which reported that Doudna co-discovered how to edit genetic code using CRISPR in 2012. 

Last week, the Sun Yat-Sen University research team said it attempted to cure a gene defect that causes beta-thalassemia (a genetic blood disorder that could lead to severe anemia, poor growth, skeletal abnormalities and even death) by editing the germ line. For that purpose they used a gene-editing technique based on injecting non-viable embryos with a complex, which consists of a protective DNA element obtained from bacteria and a specific protein. 

"I suspect this week will go down as a pivotal moment in the history of medicine," wrote science journalist Carl Zimmer for National Geographic.


Response to the new research has been mixed. Some experts say the gene editing could help defeat genetic diseases even before birth. Others expressed concern. 

“At present, the potential safety and efficacy issues arising from the use of this technology must be thoroughly investigated and understood before any attempts at human engineering are sanctioned, if ever, for clinical testing,” a group of scientists, including some who had worked to develop CRISPR, warned in Science magazine. 

Meanwhile, the director of the US National Institutes for Health (NIH) said the agency would not fund such editing of human embryo genes. 

“Research using genomic editing technologies can and are being funded by NIH,” Francis Collins said Wednesday. “However, NIH will not fund any use of gene-editing technologies in human embryos. The concept of altering the human germline in embryos for clinical purposes ... has been viewed almost universally as a line that should not be crossed.”

Although the discovery of CRISPR sequences dates back to 1987 – when it was first used to cure bacteria of viruses – its successes in higher animals and humans were only achieved in 2012-13, when scientists achieved a revolution by combining the resulting treatment system with Cas9 for the first time. 


On April 17, the MIT’s Broad Institute announced that has been awarded the first-ever patent for working with the Crisp-Cas9 system. 

The institute’s director, Eric Lander, sees the combination as “an extraordinary, powerful tool. The ability to edit a genome makes it possible to discover the biological mechanisms underlying human biology.”

The system’s advantage over other methods is in that it can also target several genes at the same time, working its way through tens of thousands of so-called 'guide' RNA sequences that lead them to the weapon to its DNA targets. 

Meanwhile, last month in the UK, a healthy baby was born from an embryo screened for genetic diseases, using karyomapping, a breakthrough testing method that allows doctors to identify about 60 debilitating hereditary disorders.

View Article Here Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here Read More

Study says the universe may be a hologram






Holograms are two-dimensional pictures that appear to the human eye as three-dimensional objects. Some scientists believe that our universe may behave similarly, existing as a sort of all-encompassing hologram.
As explained by Nature World News, “a mathematical description of the Universe actually requires one fewer dimension than it seems” according to the “holographic principle,” which would indicate that what appears to be a 3-D universe may actually “just be the image of 2-D processes on a huge cosmic horizon.”
Prior to this study, scientists looked into this holographic principle by applying their calculations to a universe presenting Anti de Sitter space. Anti de Sitter is the term used to describe space as having a hyperbolic shape, much like a saddle. This hyperbolic space shape behaves, mathematically, as special relativity would predict.
Special relativity is a theory put forth by Albert Einstein to describe the relationship between space and time, and is especially useful when studying very small particles moving at extreme speeds over cosmic distances. The concept of Anti de Sitter space assumes that spacetime itself is hyperbolic in its natural state, in the absence of matter or energy.
A team at the Vienne University of Technology looked at the holographic principle not in the usual Anti de Sitter space framework, but instead applied the principle to flat spacetime, as represents our physical universe.“Our Universe, in contrast, is quite flat – and on astronomic distances, it has positive curvature,” team member Daniel Grumiller said in a statement.
The team created several gravitational theories that apply to flat space to see if calculations regarding quantum gravity would indicate a holographic description as has occurred in former calculations with theories applied to Anti de Sitter space.
“If quantum gravity in a flat space allows for a holographic description by a standard quantum theory, then there must be physical quantities, which can be calculated in both theories – and the results must agree,” Grumiller said.
The team found that the amount of quantum entanglement required for gravitational theory models expressed the same value in flat quantum gravity as in a low dimensional field theory, showing that the theory of a holographic universe can be successfully applied to the reality of the relatively flat field of spacetime evident in our universe.
“This calculation affirms our assumption that the holographic principle can also be realized in flat spaces. It is evidence for the validity of this correspondence in our universe” team member Max Riegler said.
The results were published in the journal Physical Review Letters.


View Article Here Read More

Extremely distant exoplanet discovered



 



Excerpt from  thespacereporter.com

According to a NASA statement, the agency’s Spitzer Space Telescope has taken part in the discovery of one of the most distant exoplanets yet found. Spitzer observations were combined with data from the Polish Optical Gravitational Lensing Experiment’s Warsaw Telescope, part of the Las Campanas Observatory in Chile. The newly found exoplanet is approximately 13,000 light-years from Earth, and could yield new clues as to the distribution of planets throughout the Milky Way.

The Warsaw Telescope gathers data through the phenomenon known as microlensing, which occurs when a star passes in front of another, more distant star as seen from Earth’s vantage point. The gravity of the nearer star magnifies and intensifies the distant star’s light; any planets orbiting the distant star appear as small disruptions in the magnification. So far, the microlensing methods has identified around 30 exoplanets, the most distant of which is around 25,000 light-years away.

However, the microlensing method cannot always show how far away are the more distant stars and their planets; the distances to about half of the exoplanets found with microlensing cannot be ascertained. Fortunately, Spitzer is able to help. Located 128 million miles from Earth, Spitzer is able to observe a microlensing event at a different time from the Warsaw Telescope, a method called parallax. In the case of the newly discovered exoplanet, the microlensing event was longer than norman, lasting 150 days. 
Spitzer observed the event 20 days earlier than Warsaw. This time delay allowed the distance to the newly found planet to be calculated. With the distance, the planet’s mass, approximately half that of Jupiter, also was determined.

“We’ve mainly explored our own solar neighborhood so far,” said Sebastiano Calchi Novati of NASA’s Exoplanet Science Institute at the California Institute of Technology. “Now we can use these single lenses to do statistics on planets as a whole and learn about their distribution in the galaxy.”

View Article Here Read More

Guiding Our Search for Life on Other Earths


The James Webb Telescope


Excerpt from space.com

A telescope will soon allow astronomers to probe the atmosphere of Earthlike exoplanets for signs of life. To prepare, astronomer Lisa Kaltenegger and her team are modeling the atmospheric fingerprints for hundreds of potential alien worlds. Here's how:
The James Webb Space Telescope, set to launch in 2018, will usher a new era in our search for life beyond Earth. With its 6.5-meter mirror, the long-awaited successor to Hubble will be large enough to detect potential biosignatures in the atmosphere of Earthlike planets orbiting nearby stars.
And we may soon find a treasure-trove of such worlds. The forthcoming exoplanet hunter TESS (Transiting Exoplanet Survey Satellite), set to launch in 2017, will scout the entire sky for planetary systems close to ours. (The current Kepler mission focuses on more distant stars, between 600 and 3,000 light-years from Earth.) 

Astronomer Lisa Kaltenegger




While TESS will allow for the brief detection of new planets, the larger James Webb will follow up on select candidates and provide clues about their atmospheric composition. But the work will be difficult and require a lot of telescope time.
"We're expecting to find thousands of new planets with TESS, so we'll need to select our best targets for follow-up study with the Webb telescope," says Lisa Kaltenegger, an astronomer at Cornell University and co-investigator on the TESS team.
To prepare, Kaltenegger and her team at Cornell's Institute for Pale Blue Dots are building a database of atmospheric fingerprints for hundreds of potential alien worlds. The models will then be used as "ID cards" to guide the study of exoplanet atmospheres with the Webb and other future large telescopes.
Kaltenegger described her approach in a talk for the NASA Astrobiology Institute's Director Seminar Series last December.
"For the first time in human history, we have the technology to find and characterize other worlds," she says. "And there's a lot to learn."

Detecting life from space  

In its 1990 flyby of Earth, the Galileo spacecraft took a spectrum of sunlight filtered through our planet's atmosphere. In a 1993 paper in the journal Nature, astronomer Carl Sagan analyzed that data and found a large amount of oxygen together with methane — a telltale sign of life on Earth. These observations established a control experiment for the search of extraterrestrial life by modern spacecraft.
"The spectrum of a planet is like a chemical fingerprint," Kaltenegger says. "This gives us the key to explore alien worlds light years away."
Current telescopes have picked up the spectra of giant, Jupiter-like exoplanets. But the telescopes are not large enough to do so for smaller, Earth-like worlds. The James Webb telescope will be our first shot at studying the atmospheres of these potentially habitable worlds.
Some forthcoming ground-based telescopes — including the Giant Magellan Telescope (GMT), planned for completion in 2020, and the European Extremely Large Telescope (E-ELT), scheduled for first light in 2024 — may also be able to contribute to that task. [The Largest Telescopes on Earth: How They Compare]
And with the expected discovery by TESS of thousands of nearby exoplanets, the James Webb and other large telescopes will have plenty of potential targets to study. Another forthcoming planet hunter, the Planetary Transits and Oscillations of stars (PLATO), a planned European Space Agency mission scheduled for launch around 2022-2024, will contribute even more candidates.
However, observation time for follow-up studies will be costly and limited.
"It will take hundreds of hours of observation to see atmospheric signatures with the Webb telescope," Kaltenegger says. "So we'll have to pick our targets carefully."

Giant Magellan Telescope
Set to see its first light in 2021, The Giant Magellan Telescope will be the world’s largest telescope.

Getting a head start

To guide that process, Kaltenegger and her team are putting together a database of atmospheric fingerprints of potential alien worlds. "The models are tools that can teach us how to observe and help us prioritize targets," she says.
To start, they have modeled the chemical fingerprint of Earth over geological time. Our planet's atmosphere has evolved over time, with different life forms producing and consuming various gases. These models may give astronomers some insight into a planet's evolutionary stage.
Other models take into consideration the effects of a host of factors on the chemical signatures — including water, clouds, atmospheric thickness, geological cycles, brightness of the parent star, and even the presence of different extremophiles.
"It's important to do this wide range of modeling right now," Kaltenegger said, "so we're not too startled if we detect something unexpected. A wide parameter space can allow us to figure out if we might have a combination of these environments."
She added: "It can also help us refine our modeling as fast as possible, and decide if more measurements are needed while the telescope is still in space. It's basically a stepping-stone, so we don't have to wait until we get our first measurements to understand what we are seeing. Still, we'll likely find things we never thought about in the first place."
 

A new research center

The spectral database is one of the main projects undertaken at the Institute for Pale Blue Dots, a new interdisciplinary research center founded in 2014 by Kaltenegger. The official inauguration will be held on May 9, 2015.
"The crux of the institute is the characterization of rocky, Earth-like planets in the habitable zone of nearby stars," Kaltenergger said. "It's a very interdisciplinary effort with people from astronomy, geology, atmospheric modeling, and hopefully biology."
She added: "One of the goal is to better understand what makes a planet a life-friendly habitat, and how we can detect that from light years away. We're on the verge of discovering other pale blue dots. And with Sagan's legacy, Cornell University is a really great home for an institute like that."

View Article Here Read More

17 Surprising Reasons You’re Stressed Out





Excerpt from huffingtonpost.com
By Amanda MacMillan


You're probably all too aware of the major sources of stress in your life -- money, your terrible commute, the construction workers who start jackhammering at 5 a.m. But stress and anxiety don't have to just come from obvious or even negative sources. "There are plenty of chronic strains and low-grade challenges that don't necessarily overwhelm you in the moment, but almost take more of a toll in the long run," says Scott Schieman, Ph.D., professor of sociology at the University of Toronto. These are some of unexpected reasons why you might feel anxious or agitated. By recognizing them for what they are, says Schieman, you can better prepare to cope.

1. Your Significant Other
Even if you have a blissfully happy relationship with your live-in partner or spouse, you're both bound to do things that get on each other's nerves. "Early in the relationship, it's usually about space and habits -- like whether you squeeze the toothpaste from the middle or the bottom of the tube," says Ken Yeager, Ph.D., associate professor of psychiatry at the Ohio State University Wexner Medical Center. "Later on, you might clash over parenting style or financial issues, and finding a unified front to face these issues together." So what's the key to surviving and thriving in your life together? Finding balance, says Yeager: spending the right amount of time together (not too much and not too little), making compromises, keeping communication open and honest, and remembering to acknowledge what you love about each other on a daily basis.


2. Everyday Annoyances
We're told not to sweat the small stuff, but sometimes it's the little things that have the biggest impact on our mood: the never-ending phone calls with your insurance company, the rude cashier at the grocery store, the 20 minutes you lose looking for a parking space. "We let these things bother us because they trigger unconscious fears," says Yeager -- fears of being seen as irresponsible, of being bullied or embarrassed, or of being late all the time, for example. "Sometimes you need to take a step back and realize that you're doing the best you can given the circumstances." 


3. Other People's Stress
Stress is contagious, according to a 2014 German study: In a series of experiments, most participants who simply observed others completing a stressful task experienced an increase themselves in production of the stress hormone cortisol -- a phenomenon known as empathic stress. You can also experience stress when someone you know is affected by a traumatic event, like a car crash or a chronic illness. "You start to worry, 'Oh my gosh, could that happen to me?'," says Yeager. "We tend not to think about these things until they hit close to home."


4. Social Media social media
It may seem like Facebook is the only way you keep up with the friends you don't see regularly -- which, during particularly busy times, can be just about all of them. The social network also has a downside, according to a 2015 study from the Pew Research Center: It can make you aware of stressful situations in your friends' lives, which in turn can add more stress to your life. The Pew report didn't find that social media users, overall, had higher levels of stress, but previous studies have suggested that frequent social-media use can be associated with negative body image and prolonged breakup pain.


5. Distraction
A distraction can be a good thing then when it takes your mind off of a stressful situation or difficult decision, like when you take a break from work to meet a friend for lunch. But it works the other way, as well: When you're so busy thinking about something else that you can't enjoy what's going on around you, that kind of distraction can be a recipe for stress. Practicing mindfulness gives you brain the refresh it needs, says Richard Lenox, director of the Student Counseling Center at Texas Tech University. Paying full attention to your surroundings when you're walking and driving can help, he adds. "Stress and anxiety tend to melt away when our mind is focused on the present." 


6. Your Childhood
Traumatic events that happened when you were a kid can continue to affect your stress levels and overall health into adulthood. A 2014 University of Wisconsin-Madison study found that these childhood experiences may actually change parts of the brain responsible for processing stress and emotion. The way you were raised can also have a lasting impact on your everyday angst, suggests a 2014 Johns Hopkins University study. Researchers found that children of parents with social anxiety disorders are more likely to develop "trickle-down anxiety" -- not simply because of their genes, but because of their parents' behaviors toward them such as a lack of warmth and emotion, or high levels of criticism and doubt.


7. Tea And Chocolate
You probably know to take it easy on the coffee when you're already feeling on edge. "Caffeine is always going to make stress worse," says Yeager. But you may not think as much about drinking several cups of tea at once, or chowing down on a bar of dark chocolate -- both of which can contain nearly as much caffeine as a cup of joe. "Chocolate is a huge caffeine source," says Yeager. "I know people who don't drink coffee but they'll eat six little candy bars in a two-hour period because they want the same kind of jolt." Too much caffeine, in any form, can cause problems with sleep, digestion, and irritability. 


8. Your Expectations woman trail running
When things don't go the way you've planned, do you tend to get upset and act defensively, or do you roll with the punches and set off on a new plan? If it's the former, you could be contributing to a mindset of pessimism and victimization that will slowly wear you down, even when things may not be as bad as they seem. "Your level of serenity is inversely proportionate to your expectations," says Yeager. That doesn't mean you shouldn't set ambitious goals for yourself or settle for less than what you want, of course, but being realistic about what's truly possible is important, as well.


9. Your Reaction To Stress
If you tend to deal with stressful situations by working long hours, skipping your workouts, and bingeing on junk food, we've got some bad news: You're only making it worse. "We know that physical activity and healthy foods will help your body better deal with stress, and yet we often avoid them when we need them the most," says Yeager. "People really need to think about this downward spiral we get into and work harder to counteract it."


10. Multitasking
Think you're being super efficient by tackling four tasks at once? Chances are you're not -- and it's only decreasing your productivity while increasing your stress. A 2012 University of Irvine study, for example, found that people who responded to emails all day long while also trying to get their work done experienced more heart-rate variability (an indicator of mental stress) than those who waited to respond to all of their emails at one time. Focusing on one task at a time can ensure that you're doing that job to the best of your abilities and getting the most out of it, so you won't have to worry about or go back and fix it later, says Schieman. And don't worry: You'll have enough time to do it all. In fact, you may discover you have more time than you thought.


11. Your Favorite Sport
Watching a tight game of college hoops can stress you out -- even if your alma mater wins. "The body doesn't distinguish between 'bad' stress from life or work and 'good' stress caused by game-day excitement," says Jody Gilchrist, a nurse practitioner at the University of Alabama at Birmingham’s Heart and Vascular Clinic. Watching sports can even trigger the body's sympathetic nervous system, releasing adrenaline and reducing blood flow to the heart. Those temporary consequences aren't usually anything to be concerned about, but over time, chronic stress can lead to high blood pressure and increased disease risk. And, of course, it doesn't help if you're adding alcohol and binge-eating to a situation that's already stressful on your body. You may not be able to control the outcome of the game, says Gilchrist, but you can limit its effects on your own body. 


12. Digital Devices laptop in bed
Whether you're using it for work or play, technology may play a large role in your mental health, says Yeager. Using computers or e-readers too close to bedtime could lead to sleep problems, he says, and spending too much time virtually socializing can make real-life interactions seem extra stressful. (Plus, texting doesn't trigger the same feel-good hormones as face-to-face talk does.) Then there's the dreaded "work creep," says Schieman, when smartphones allow employees to be tethered to their jobs, even during off-hours. "People say they're only going to check email for an hour while they're on vacation, but the problem with email is that they're filled with responsibilities, new tasks, and dilemmas that are going to be hard to compartmentalize and put out of your head once that hour is up."


13. Your (Good) Health
While it may not be as stressful as having a chronic illness or getting bad news at the doctor's office, even people in the best shape of their lives worry about their bodies, their diets, and their fitness levels. In fact, people who take healthy living to an extreme may experience some rather unhealthy side effects. People who follow low-carb diets, for example, are more likely to report being sad or stressed out, while those on any kind of restrictive meal plan may feel more tired than usual. And it's not unheard of for someone to become obsessed with healthy eating (known as orthorexia) or working out (gymorexia). Like any form of perfectionism, these problems can be stressful at best, and extremely dangerous at worst.


14. Housework
Does folding laundry help you feel calm, or does it make your blood boil? If you're in a living situation where you feel you're responsible for an unfair share of work, even chores you once enjoyed may start to feel like torture. "Dividing up housework and parenting responsibilities can be tricky, especially if both partners work outside the home," says Schieman. "And whether you define that division of labor as equal or unequal can really change your attitude toward it."


15. Uncertainty
Stress can be defined as any perceived or actual threat, says Yeager, so any type of doubt that's looming over you can contribute to your anxiety levels on a daily basis. "When you know something could change at any minute, you always have your guard up and it's hard to just relax and enjoy anything." Financial uncertainty may be the most obvious stressor -- not being sure if you'll keep your job during a round of layoffs, or not knowing how you'll pay your credit card bill. Insecurities in other areas of life, like your relationship or your housing status, can eat away at you too.


16. Your Pet bulldog puppy
No matter how much you love your furry friends, there's no question that they add extra responsibility to your already full plate. Even healthy animals need to be fed, exercised, cleaned up after, and given plenty of attention on a regular basis -- and unhealthy ones can be a whole other story. "Pets can be the most positive source of unconditional love, but at the same time they require an extreme amount of energy," says Yeager. People also tend to underestimate the stress they'll experience when they lose a pet. "I've had people in my office tell me they cried more when their dog died than when their parent died. It's a very emotional connection."


17. Your Education
Having a college degree boosts your odds of landing a well-paying job, so although you're less likely to suffer from money-related anxiety, your education can bring on other types of stress, according to a 2014 study by Schieman and his University of Toronto colleagues. His research found that highly educated people were more likely to be stressed out thanks to job pressures, being overworked, and conflicts between work and family. "Higher levels of authority come with a lot more interpersonal baggage, such as supervising people or deciding whether they get promotions," says Schieman. "With that type of responsibility, you start to take things like incompetency and people not doing their jobs more personally, and it bothers you more."

View Article Here Read More

Is In-Flight Refueling Coming to Commercial Airlines?




Excerpt from space.com

This article was originally published on The Conversation. The publication contributed this article to Space.com's Expert Voices: Op-Ed & Insights.

There’s real pressure on the aviation industry to introduce faster, cheaper and greener aircraft, while maintaining the high safety standards demanded of airlines worldwide.

Airlines carry more than three billion passengers each year, which presents an enormous challenge not only for aircraft manufacturers but for the civil aviation infrastructure that makes this extraordinary annual mass-migration possible. Many international airports are close to or already at capacity. The International Air Transport Association (IATA) has estimated that, without intervention, many global airports – including major hubs such as London Heathrow, Amsterdam Schiphol, Beijing and Dubai – will have run out of runway or terminal capacity by 2020. 


The obvious approach to tackling this problem is to extend and enlarge airport runways and terminals – such as the long-proposed third runway at London Heathrow. However there may be other less conventional alternatives, such as introducing in-flight refuelling for civil aircraft on key long-haul routes. Our project, Research on a Cruiser-Enabled Air Transport Environment (Recreate), began in 2011 to evaluate whether this was something that could prove a viable, and far cheaper, solution.

If in-flight refuelling seems implausible, it’s worth remembering that it was first trialed in the 1920s, and the military has continued to develop the technology ever since. The appeal is partly to reduce the aircraft’s weight on take-off, allowing it to carry additional payload, and partly to extend its flight range. Notably, during the Falklands War in 1982 RAF Vulcan bombers used in-flight refuelling to stage what was at the time the longest bombing mission ever, flying 8,000 miles non-stop from Ascension Island in the South Atlantic to the Falklands and back.

Reducing take-off weight could offer many benefits for civilian aircraft too. Without the need to carry so much fuel the aircraft can be smaller, which means less noise on take-off and landing and shorter runways. This opens up the network of smaller regional airports as new potential sites for long-haul routes, relieving pressure on the major hubs that are straining at the seams.

There are environmental benefits too, as a smaller, lighter aircraft requires less fuel to reach its destination. Our initial estimates from air traffic simulations demonstrate that it’s possible to reduce fuel burn by up to 11% over today’s technology by simply replacing existing global long-haul flight routes with specifically designed 250-seater aircraft with a range of 6,000nm after one refuelling – roughly the distance from London to Hong Kong. This saving could potentially grow to 23% with further efficiencies, all while carrying the same number of passengers the same distance as is possible with the current aircraft fleet, and despite the additional fuel burn of the tanker aircraft.

Tornado fighter jets in-flight refuel
Imagine if these Tornado fighter jets were 250-seater passenger aircraft and you’ve got the idea.

However, this is not the whole picture – in-flight refuelling will require the aerial equivalent of petrol stations in order to deliver keep passenger aircraft in the sky. With so much traffic it simply wouldn’t be possible to refuel any aircraft any time, anywhere it was needed. The location of these refuelling zones, coupled with the flight distance between the origin and destination airports can greatly affect the potential benefits achievable, possibly pulling flights away from their shortest route, and even making refuelling on some routes impossible – if for example the deviation to the nearest refuelling zone meant burning as much fuel as would have been saved.

Safety and automation

As with all new concepts – particularly those that involve bringing one aircraft packed with people and another full of fuel into close proximity during flight – it’s quite right to ask whether this is safe. To try and answer this question, the Dutch National Aerospace Laboratory and German Aerospace Centre used their flight simulators to test the automated in-flight refuelling flight control system developed as part of the Recreate project.

One simulator replicated the manoeuvre from the point of view of the tanker equipped with an in-flight refuelling boom, the other simulated the aircraft being refuelled mid-flight. Critical test situations such as engine failure, high air turbulence and gusts of wind were simulated with real flight crews to assess the potential danger to the operation. The results were encouraging, demonstrating that the manoeuvre doesn’t place an excessive workload on the pilots, and that the concept is viable from a human as well as a technical perspective.

So far we’ve demonstrated the potential aerial refuelling holds for civilian aviation, but putting it into practice would still pose challenges. Refuelling hubs would need to be established worldwide, shared between airlines. There would need to be fundamental changes to airline pilot training, alongside a wider public acceptance of this departure from traditional flight operations.

However, it does demonstrate that, in addition to all the high-tech work going into designing new aircraft, new materials, new engines and new fuels, the technology we already have offers solutions to the long-term problems of ferrying billions of passengers by air around the world.

View Article Here Read More

New Light on Our Accelerating Universe –"Not as Fast as We Thought"

 A Type Ia supernova, SN1994D, is shown exploding in lower left corner of the image at the top of the page of the galaxy NGC 4526 taken by the Hubble Space Telescope. (High-Z Supernova Search Team, HST, NASA)Excerpt from dailygalaxy.com Cer...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑