Tag: subtle (page 1 of 5)

The World’s Food Seeds are Going Extinct, but You Can Help

Alex Pietrowski, Staff WriterMost of the truly important news of our times goes unnoticed, under-reported or ignored by the corporate media, and as they focus on the ever-evolving narrative of human political drama, we are missing opportunities to participate in the most important struggles of our time. Seven generations from now, the destruction of the world’s seed diversity by corporate greed will have a much greater impact on the human condition than as much as any [...]

View Article Here Read More

The Truth About Mind Control, Antibiotics and Beneficial Bacteria

Will Hartfield, ContributorMost of your body is, well, not human. Single-cell bacteria living in and on your body – mouth, nose, skin, but especially gut – outnumber your human cells by at least three to one, totaling a whooping 100 trillion(1). These bacteria are called microbiomes and together they form your personal microbiota, which has a huge impact on your physical as well as mental health. There’s a growing body of research that proves just how beneficial the [...]

View Article Here Read More

Roll Up Your Sleeves Folks: 271 New Vaccines in Big Pharma’s Pipeline

Gary Kohls, Green Med InfoAs of 2013, Big Pharma has had plans for the development of 271 new vaccines covering an array of diseases.  Into Whose Bodies Will They be Injected?“No vaccine manufacturer shall be liable…for damages arising from a vaccine-related injury or death.” – President Ronald Wilson Reagan, as he signed The National Childhood Vaccine Injury Act (NCVIA) of 1986, absolving drug companies from [...]

View Article Here Read More

Science: Plants Have Senses and Can Hear, Feel and Identify Attackers

Alisa Opar, GuestThe plant world is a violent place. When munching caterpillars or grazing cattle set their sights on a luscious leaf, a plant can’t hightail it out of harm’s way. Instead, flora fight back with noxious chemicals. But what repels one critter may not work on the next hungry mouth, explains Heidi Appel, a senior research scientist in the Bond Life Sciences Center at the University of Missouri. She’s found that some plants can actual [...]

View Article Here Read More

Astrophysicists Can Now Make Weather Forecasts For Distant Planets


Exoplanet day/night cycle
Cloudy mornings and scorching hot afternoons: the Kepler space telescope has provided weather forecasts for some distant exoplanets.


Excerpt from techtimes.com

A telescope observing distant planets has found evidence of weather patterns, allowing astrophysicists to "forecast" their conditions.

Analyzing data from NASA's Kepler space telescope, a team of astrophysicists at universities in Canada and Great Britain has identified signs of daily weather variations on six exoplanets.
They observed phase variations as different parts of the planets reflected light from their host stars, in much the same way that our moon cycles though different phases.

"We determined the weather on these alien worlds by measuring changes as the planets circle their host stars, and identifying the day-night cycle," said Lisa Esteves from the Department of Astronomy and Astrophysics at the University of Toronto.

"We traced each of them going through a cycle of phases in which different portions of the planet are illuminated by its star, from fully lit to completely dark," added Esteves, who the led the team on the study.

The scientists have offered up "forecasts" of cloudy mornings for four of the planets, and clear but scorching hot afternoons on two others.

They based their predictions on the planets' rotations, which produce an eastward motion of their atmospheric winds. That would blow clouds that formed over the cooler side of one of the planets around to its morning side — thus producing the "cloudy" morning forecast.

"As the winds continue to transport the clouds to the day side, they heat up and dissipate, leaving the afternoon sky cloud-free," said Esteves. "These winds also push the hot air eastward from the meridian, where it is the middle of the day, resulting in higher temperatures in the afternoon."

The Kepler telescope has proven to be the ideal instrument for studying phase variations on distant exoplanets, according to the researchers.

The massive amounts of data and the extremely precise measurements that the telescope is capable of permits them to detect even tiny, subtle signals coming from the distant world, and to separate them from the almost overwhelming light coming from their host stars.

"The detection of light from these planets hundreds to thousands of light years away is on its own remarkable," said co-author Ernst de Mooij from the Astrophysics Research Centre from the School of Mathematics and Physics at Queen's University, Belfast.
"But when we consider that phase cycle variations can be up to 100,000 times fainter than the host star, these detections become truly astonishing."

There may come a day when a weather report for a distant planet is a common and unremarkable event, the researchers added.
"Someday soon we hope to be talking about weather reports for alien worlds not much bigger than Earth, and to be making comparisons with our home planet," said Ray Jayawardhana of York University in England.

This study was published in The Astrophysical Journal.

View Article Here Read More

13 Things Anyone Who Loves A Highly Sensitive Person Should Know

Excerpt from huffingtonpost.com When I was in kindergarten, a boy in my class tossed my favorite book over our elementary school fence. I remember crying profusely, not because I was sad to see it go, but because I was so furious that he was s...

View Article Here Read More

New Light on Our Accelerating Universe –"Not as Fast as We Thought"

 A Type Ia supernova, SN1994D, is shown exploding in lower left corner of the image at the top of the page of the galaxy NGC 4526 taken by the Hubble Space Telescope. (High-Z Supernova Search Team, HST, NASA)Excerpt from dailygalaxy.com Cer...

View Article Here Read More

Physicists: Black holes don’t erase information




Excerpt from earthsky.org
Since 1975, when Hawking showed that black holes evaporate from our universe, physicists have tried to explain what happens to a black hole’s information.

What happens to the information that goes into a black hole? Is it irretrievably lost? Does it gradually or suddenly leak out? Is it stored somehow? Physicists have puzzled for decades over what they call the information loss paradox in black holes. A new study by physicists at University at Buffalo – published in March, 2015 in the journal in Physical Review Letters – shows that information going into a black hole is not lost at all.

Instead, these researchers say, it’s possible for an observer standing outside of a black hole to recover information about what lies within.

Dejan Stojkovic, associate professor of physics at the University at Buffalo, did the research with his student Anshul Saini as co-author. Stojkovic said in a statement:
According to our work, information isn’t lost once it enters a black hole. It doesn’t just disappear.
What sort of information are we talking about? In principle, any information drawn into a black hole has an unknown future, according to modern physics. That information could include, for example, the characteristics of the object that formed the black hole to begin with, and characteristics of all matter and energy drawn inside.

Stojkovic says his research “marks a significant step” toward solving the information loss paradox, a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time, disappearing from the universe and taking their information with them. 

Disappearing information is a problem for physicists because it’s a violation of quantum mechanics, which states that information must be conserved.
According to modern physics, any information about an astronaut entering a black hole - for example, height, weight, hair color - may be lost.  Likewise, information about he object that formed the hole, or any matter and energy entering the hole, may be lost.  This notion violates quantum mechanics, which is why it's known as the 'black hole information paradox.


According to modern physics, any information related to an astronaut entering a black hole – for example, height, weight, hair color – may be lost. This notion is known as the ‘information loss paradox’ of black holes because it violates quantum mechanics. Artist’s concept via Nature.

Stojkovic says that physicists – even those who believed information was not lost in black holes – have struggled to show mathematically how the information is preserved. He says his new paper presents explicit calculations demonstrating how it can be preserved. His statement from University at Buffalo explained:
In the 1970s, [Stephen] Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it’s possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini’s new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such “correlations” have long been known to exist, but many scientists discounted them as unimportant in the past.
Stojkovic added:
These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference.
Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome.
Artist's impression of a black hole, via Icarus
Artist’s impression of a black hole, via Icarus

Bottom line: Since 1975, when Stephen Hawking and Jacob Bekenstein showed that black holes should slowly radiate away energy and ultimately disappear from the universe, physicists have tried to explain what happens to information inside a black hole. Dejan Stojkovic and Anshul Saini, both of University at Buffalo, just published a new study that contains specific calculations showing that information within a black hole is not lost.

View Article Here Read More

Exoplanet Imager Begins Hunt for Alien Worlds


This infrared image shows the dust ring around the nearby star HR 4796A in the southern constellation of Centaurus.


Excerpt from news.discovery.com

By Ian O'Neill

A new instrument attached to one of the most powerful telescopes in the world has been switched on and acquired its ‘first light’ images of alien star systems and Saturn’s moon Titan.
The Spectro-Polarimetric High-contrast Exoplanet REsearch (or SPHIRES) instrument has been recently installed at the ESO’s Very Large Telescope’s already impressive suite of sophisticated instrumentation. The VLT is located in the ultra-dry high-altitude climes of the Atacama Desert in Chile.

In the observation above, an ‘Eye of Sauron‘-like dust ring surrounding the star HR 4796A in the southern constellation of Centaurus, a testament to the sheer power of the multiple technique SPHIRES will use to acquire precision views of directly-imaged exoplanets.

The biggest problem with trying to directly image a world orbiting close to its parent star is that of glare; stars are many magnitudes brighter that the reflected light from its orbiting exoplanet, so how the heck are you supposed to gain enough contrast between the bright star and exoplanet to resolve the two? The SPHIRES instrument is using a combination of three sophisticated techniques to remove a star’s glare and zero-in on its exoplanetary targets.

This infrared image of Saturn’s largest moon, Titan, was one of the first produced by the SPHERE instrument soon after it was installed on ESO’s Very Large Telescope in May 2014.
ESO 
The first technique, known as adaptive optics, is employed by the VLT itself. By firing a laser into the Earth’s atmosphere during the observation, a gauge on the turbulence in the upper atmospheric gases can be measured and the effects of which can be removed from the imagery. Any blurriness caused by our thick atmosphere can be adjusted for.

Next up is a precision coronograph inside the instrument that blocks the light from the target star. By doing this, any glare can be removed and any exoplanet in orbit may be bright enough to spot.

But the third technique, which really teases out any exoplanet signal, is the detection of different polarizations of light from the star system. The polarization of infrared light being generated by the star and the infrared glow from the exoplanet are very subtle. SPHIRES can differentiate between the two, thereby further boosting the observation’s contrast.

“SPHERE is a very complex instrument. Thanks to the hard work of the many people who were involved in its design, construction and installation it has already exceeded our expectations. Wonderful!” said Jean-Luc Beuzit, of the Institut de Planétologie et d’Astrophysique de Grenoble, France and Principal Investigator of SPHERE, in an ESO press release.

The speed and sheer power of SPHIRES will be an obvious boon to astronomers zooming in on distant exoplanets, aiding our understanding of these strange new worlds.


The star HR 7581 (Iota Sgr) was observed in SPHERE survey mode (parallel observation in the near infrared with the dual imaging camera and the integral field spectrograph ). A very low mass star, more than 4000 times fainter that its parent star, was discovered orbiting Iota Sgr at a tiny separation of 0.24". This is a vital demonstration of the power of SPHERE to image faint objects very close to bright ones.
ESO

View Article Here Read More

Planck telescope puts new datestamp on first stars


Polarisation of the sky
Planck has mapped the delicate polarisation of the CMB across the entire sky



Excerpt from bbc.com

Scientists working on Europe's Planck satellite say the first stars lit up the Universe later than previously thought.

The team has made the most precise map of the "oldest light" in the cosmos.

Earlier observations of this radiation had suggested the first generation of stars were bursting into life by about 420 million years after the Big Bang.

Planck's data indicates this great ignition was well established by some 560 million years after it all began.

"This difference of 140 million years might not seem that significant in the context of the 13.8-billion-year history of the cosmos, but proportionately it's actually a very big change in our understanding of how certain key events progressed at the earliest epochs," said Prof George Efstathiou, one of the leaders of the Planck Science Collaboration.

Subtle signal

The assessment is based on studies of the "afterglow" of the Big Bang, the ancient light called the Cosmic Microwave Background (CMB), which still washes over the Earth today.
Prof George Efstathiou: "We don't need more complicated explanations"

The European Space Agency's (Esa) Planck satellite mapped this "fossil" between 2009 and 2013.

It contains a wealth of information about early conditions in the Universe, and can even be used to work out its age, shape and do an inventory of its contents.

Scientists can also probe it for very subtle "distortions" that tell them about any interactions the CMB has had on its way to us.

Forging elements

One of these would have been imprinted when the infant cosmos underwent a major environmental change known as re-ionisation.

Prof Richard McMahon: "The two sides of the bridge now join"
It is when the cooling neutral hydrogen gas that dominated the Universe in the aftermath of the Big Bang was then re-energised by the ignition of the first stars.

These hot giants would have burnt brilliant but brief lives, producing the very first heavy elements. But they would also have "fried" the neutral gas around them - ripping electrons off the hydrogen protons.

And it is the passage of the CMB through this maze of electrons and protons that would have resulted in it picking up a subtle polarisation.

ImpressionImpression: The first stars would have been unwieldy behemoths that burnt brief but brilliant lives


The Planck team has now analysed this polarisation in fine detail and determined it to have been generated at 560 million years after the Big Bang.

The American satellite WMAP, which operated in the 2000s, made the previous best estimate for the peak of re-ionisation at 420 million years. 

The problem with that number was that it sat at odds with Hubble Space Telescope observations of the early Universe.

Hubble could not find stars and galaxies in sufficient numbers to deliver the scale of environmental change at the time when WMAP suggested it was occurring.

Planck's new timing "effectively solves the conflict," commented Prof Richard McMahon from Cambridge University, UK.

"We had two groups of astronomers who were basically working on different sides of the problem. The Planck people came at it from the Big Bang side, while those of us who work on galaxies came at it from the 'now side'. 

"It's like a bridge being built over a river. The two sides do now join where previously we had a gap," he told BBC News.

That gap had prompted scientists to invoke complicated scenarios to initiate re-ionisation, including the possibility that there might have been an even earlier population of giant stars or energetic black holes. Such solutions are no longer needed.

No-one knows the exact timing of the very first individual stars. All Planck does is tell us when large numbers of these stars had gathered into galaxies of sufficient strength to alter the cosmic environment. 

By definition, this puts the ignition of the "founding stars" well before 560 million years after the Big Bang. Quite how far back in time, though, is uncertain. Perhaps, it was as early as 200 million years. It will be the job of the next generation of observatories like Hubble's successor, the James Webb Space Telescope, to try to find the answer.

JWSTBeing built now: The James Webb telescope will conduct a survey of the first galaxies and their stars
line
The history of the Universe

Graphic of the history of time
  • Planck's CMB studies indicate the Big Bang was 13.8bn years ago
  • The CMB itself can be thought of as the 'afterglow' of the Big Bang
  • It spreads across the cosmos some 380,000 years after the Big Bang
  • This is when the conditions cool to make neutral hydrogen atoms
  • The period before the first stars is often called the 'Dark Ages'
  • When the first stars ignite, they 'fry' the neutral gas around them
  • These giants also forge the first heavy elements in big explosions
  • 'First Light', or 'Cosmic Renaissance', is a key epoch in history
line

The new Planck result is contained in a raft of new papers just posted on the Esa website. 

These papers accompany the latest data release from the satellite that can now be used by the wider scientific community, not just collaboration members.
Dr Andrew Jaffe: "The simplest models for inflation are ruled out"
Two years ago, the data dump largely concerned interpretations of the CMB based on its temperature profile. It is the CMB's polarisation features that take centre-stage this time.
It was hoped that Planck might find direct evidence in the CMB's polarisation for inflation - the super-rapid expansion of space thought to have occurred just fractions of a second after the Big Bang. This has not been possible. But all the Planck data - temperature and polarisation information - is consistent with that theory, and the precision measurements mean new, tighter constraints have been put on the likely scale of the inflation signal, which other experiments continue to chase.
What is clear from the Planck investigation is that the simplest models for how the super-rapid expansion might have worked are probably no longer tenable, suggesting some exotic physics will eventually be needed to explain it.
"We're now being pushed into a parameter space we didn't expect to be in," said collaboration scientist Dr Andrew Jaffe from Imperial College, UK. "That's OK. We like interesting physics; that's why we're physicists, so there's no problem with that. It's just we had this naïve expectation that the simplest answer would be right, and sometimes it just isn't."

View Article Here Read More

Time to see Comet Lovejoy fly past Pleiades before it leaves for 8,000 years

Comet C/2014 Q2 (Lovejoy) is visible to sky watchers using binoculars on clear nights in January 2015. (Jet Propulsion Laboratory)California sky watchers may be able to see two celestial bodies zooming past Earth in the next few days with just a pair...

View Article Here Read More

How will the world end? From ‘demonic’ AI to nuclear war — seven scenarios that could end human race




news.nationalpost.com 


Humanity may have already created its own nemesis, Professor Stephen Hawking warned last week. The Cambridge University physicist claimed that new developments in the field of artificial intelligence (AI) mean that within a few decades, computers thousands of times more powerful than in existence today may decide to usurp their creators and effectively end humanity’s 100,000-year dominance of Earth.
This Terminator scenario is taken seriously by many scientists and technologists. Before Prof. Hawking made his remarks, Elon Musk, the genius behind the Tesla electric car and PayPal, had stated that “with artificial intelligence, we are summoning the demon,” comparing it unfavourably with nuclear war as the most potent threat to humanity’s existence.
Aside from the rise of the machines, many potential threats have been identified to our species, our civilization, even our planet. To keep you awake at night, here are seven of the most plausible.
Getty Images / ThinkStock
Getty Images / ThinkStockAn artist's depiction of an asteroid approaching Earth.
1. ASTEROID STRIKE
Our solar system is littered with billions of pieces of debris, from the size of large boulders to objects hundreds of kilometres across. We know that, from time to time, these hit the Earth. Sixty-five-million years ago, an object – possibly a comet a few times larger than the one on which the Philae probe landed last month – hit the Mexican coast and triggered a global winter that wiped out the dinosaurs. In 1908, a smaller object hit a remote part of Siberia and devastated hundreds of square kilometres of forest. Last week, 100 scientists, including Lord Rees of Ludlow, the Astronomer Royal, called for the creation of a global warning system to alert us if a killer rock is on the way.
Probability: remote in our lifetime, but one day we will be hit.
Result: there has been no strike big enough to wipe out all life on Earth – an “extinction-level event” – for at least three billion years. But a dino-killer would certainly be the end of our civilization and possibly our species.
Warner Bros.
Warner Bros.When artificial intelligence becomes self-aware, there is a chance it will look something like this scene from Terminator 3.
2. ARTIFICIAL INTELLIGENCE
Prof. Hawking is not worried about armies of autonomous drones taking over the world, but something more subtle – and more sinister. Some technologists believe that an event they call the Singularity is only a few decades away. This is a point at which the combined networked computing power of the world’s AI systems begins a massive, runaway increase in capability – an explosion in machine intelligence. By then, we will probably have handed over control to most of our vital systems, from food distribution networks to power plants, sewage and water treatment works, and the global banking system. The machines could bring us to our knees without a shot being fired. And we cannot simply pull the plug, because they control the power supplies.

Probability: unknown, although computing power is doubling every 18 months. We do not know if machines can be conscious or “want” to do anything, and sceptics point out that the cleverest computers in existence are currently no brighter than cockroaches.
Result: if the web wakes up and wants to sweep us aside, we may have a fight on our hands (perhaps even something similar to the man vs. machines battle in the Terminator films). But it is unlikely that the machines will want to destroy the planet – they “live” here, too.
Handout/AFP/Getty Images
Handout/AFP/Getty ImagesLaboratory technicians and physicians work on samples during research on the evolving Ebola disease in bats, at the Center for Emerging and Zoonotic Diseases research Laboratory of the National Institute for Communicable Diseases in Pretoria on Nov. 21, 2011.
3. A GENETICALLY CREATED PLAGUE
This is possibly the most terrifying short-term threat because it is so plausible. The reason Ebola has not become a worldwide plague – and will not do so – is because it is so hard to transmit, and because it incapacitates and kills its victims so quickly. However, a modified version of the disease that can be transmitted through the air, or which allows its host to travel around for weeks, symptom-free, could kill many millions. It is unknown whether any terror group has the knowledge or facilities to do something like this, but it is chilling to realize that the main reason we understand Ebola so well is that its potential to be weaponized was quickly realized by defence experts.
Probability: someone will probably try it one day.
Result: potentially catastrophic. “Ordinary” infectious diseases such as avian-flu strains have the capability to wipe out hundreds of millions of people.
AP Photo/U.S. Army via Hiroshima Peace Memorial Museum
AP Photo/U.S. Army via Hiroshima Peace Memorial MuseumA mushroom cloud billows about one hour after a nuclear bomb was detonated above Hiroshima, Japan Aug. 6, 1945.
4. NUCLEAR WAR
This is still the most plausible “doomsday” scenario. Despite arms-limitations treaties, there are more than 15,000 nuclear warheads and bombs in existence – many more, in theory, than would be required to kill every human on Earth. Even a small nuclear war has the potential to cause widespread devastation. In 2011, a study by NASA scientists concluded that a limited atomic war between India and Pakistan involving just 100 Hiroshima-sized detonations would throw enough dust into the air to cause temperatures to drop more than 1.2C globally for a decade.
Probability: high. Nine states have nuclear weapons, and more want to join the club. The nuclear wannabes are not paragons of democracy.
Result: it is unlikely that even a global nuclear war between Russia and NATO would wipe us all out, but it would kill billions and wreck the world economy for a century. A regional war, we now know, could have effects far beyond the borders of the conflict.
CERN)/MCT
CERN)/MCTThis is one of the huge particle detectors in the Large Hadron Collider, a 17 mile-long tunnel under the French-Swiss border. Scientists are searching for evidence of what happened right after- and perhaps before- the Big Bang.
5. PARTICLE ACCELERATOR DISASTER
Before the Large Hadron Collider (LHC), the massive machine at CERN in Switzerland that detected the Higgs boson a couple of years ago, was switched on, there was a legal challenge from a German scientist called Otto Rossler, who claimed the atom-smasher could theoretically create a small black hole by mistake – which would then go on to eat the Earth.
The claim was absurd: the collisions in the LHC are far less energetic than those caused naturally by cosmic rays hitting the planet. But it is possible that, one day, a souped-up version of the LHC could create something that destroys the Earth – or even the universe – at the speed of light.
Probability: very low indeed.
Result: potentially devastating, but don’t bother cancelling the house insurance just yet.
AP Photo/Oculus Rift/Fox
AP Photo/Oculus Rift/FoxThis photo shows a scene fromX-Men: Days of Future Past virtual reality experience. Oxford University philosopher Nick Bostrom has speculated that our universe may be one of countless "simulations" running in some alien computer, much like a computer game.
6. ‘GOD’ REACHES FOR THE OFF-SWITCH
Many scientists have pointed out that there is something fishy about our universe. The physical constants – the numbers governing the fundamental forces and masses of nature – seem fine-tuned to allow life of some form to exist. The great physicist Sir Fred Hoyle once wondered if the universe might be a “put-up job”.
More recently, the Oxford University philosopher Nick Bostrom has speculated that our universe may be one of countless “simulations” running in some alien computer, much like a computer game. If so, we have to hope that the beings behind our fake universe are benign – and do not reach for the off-button should we start misbehaving.
Probability: according to Professor Bostrom’s calculations, if certain assumptions are made, there is a greater than 50% chance that our universe is not real. And the increasingly puzzling absence of any evidence of alien life may be indirect evidence that the universe is not what it seems.
Result: catastrophic, if the gamers turn against us. The only consolation is the knowledge that there is absolutely nothing we can do about it.
AP Photo/Charles Rex Arbogast
AP Photo/Charles Rex ArbogastFloodwaters from the Souris River surround homes near Minot State University in Minot, N.D. on June 27, 2011. Global warming is rapidly turning America the beautiful into America the stormy and dangerous, according to the National Climate Assessment report released Tuesday, May 6, 2014.
7. CLIMATE CATASTROPHE
Almost no serious scientists now doubt that human carbon emissions are having an effect on the planet’s climate. The latest report by the Intergovernmental Panel on Climate Change suggested that containing temperature rises to below 2C above the pre-industrial average is now unlikely, and that we face a future three or four degrees warmer than today.
This will not literally be the end of the world – but humanity will need all the resources at its disposal to cope with such a dramatic shift. Unfortunately, the effects of climate change will really start to kick in just at the point when the human population is expected to peak – at about nine billion by the middle of this century. Millions of people, mostly poor, face losing their homes to sea-level rises (by up to a metre or more by 2100) and shifting weather patterns may disrupt agriculture dramatically.
Probability: it is now almost certain that CO2 levels will keep rising to 600 parts per billion and beyond. It is equally certain that the climate will respond accordingly.
Result: catastrophic in some places, less so in others (including northern Europe, where temperature rises will be moderated by the Atlantic). The good news is that, unlike with most of the disasters here, we have a chance to do something about climate change now.

View Article Here Read More

The World is Not Enough: A New Theory of Parallel Universes is Proposed



Excerpt from universetoday.com

by Tim Reyes



Do we exist in a space and time shared by many worlds? And are all these infinite worlds interacting? A new theory of everything is making the case.

Imagine if you were told that the world is simple and exactly as it seems, but that there is an infinite number of worlds just like ours.

They share the same space and time, and interact with each other.
These worlds behave as Newton first envisioned, except that the slightest interactions of the infinite number create nuances and deviations from the Newtonian mechanics. What could be deterministic is swayed by many worlds to become the unpredictable.

This is the new theory about parallel universes explained by Australian and American theorists in a paper published in the journal Physics Review X. Called  the “Many Interacting Worlds” theory (MIW), the paper explains that rather than standing apart, an infinite number of universes share the same space and time as ours.

They show that their theory can explain quantum mechanical effects while leaving open the choice of theory to explain the universe at large scales. This is a fascinating new variant of Multiverse Theory that, in a sense, creates not just a doppelganger of everyone but an infinite number of them all overlaying each other in the same space and time.


Rather than island universes as proposed by other theories, Many Interacting Worlds (MIW) proposes many all lying within one space and time. (Photo Credit: Public Domain)
Rather than island universes as proposed by other multiverse theories, Many Interacting Worlds (MIW) proposes many all lying within one space and time.

Cosmology is a study in which practitioners must transcend their five senses. Einstein referred to thought experiments, and Dr. Stephen Hawking — surviving and persevering despite having ALS — has spent decades wondering about the Universe and developing new theories, all within his mind.

The “Many Interacting Worlds” theory, presented by Michael Hall and Howard Wiseman from Griffith University in Australia, and Dirk-André Deckert from the University of California, Davis, differs from previous multiverse theories in that the worlds — as they refer to universes — coincide with each other, and are not just parallel. 

The theorists explain that while the interactions are subtle, the interaction of an infinite number of worlds can explain quantum phenomena such as barrier tunneling in solid state electronics, can be used to calculate quantum ground states, and, as they state, “at least qualitatively” reproduce the results of the double-slit experiment.

Schrödinger, in explaining his wave function and the interaction of two particles (EPR paradox) coined the term “entanglement”. In effect, the MIW theory is an entanglement of an infinite number of worlds but not in terms of a wave function. The theorists state that they were compelled to develop MIW theory to eliminate the need for a wave function to explain the Universe. It is quite likely that Einstein would have seen MIW as very appealing considering his unwillingness to accept the principles laid down by the Copenhagen interpretation of Quantum Theory.

While MIW theory can reproduce some of the most distinctive quantum phenomena, the theorists emphasize that MIW is in an early phase of development. They state that the theory is not yet as mature as long-standing unification theories. In their paper, they use Newtonian physics to keep their proofs simple. Presenting this new “many worlds” theory indicates they had achieved a level of confidence in its integrity such that other theorists can use it as a starter kit – peer review but also expand upon it to explain more worldly phenomena.



Two of the perpetrators of the century long problem of unifying General Relativity Theory and Quantum Physics, A. Einstein, E. Schroedinger.
Two of the perpetrators of the century-long problem of unifying General Relativity Theory and Quantum Physics – Albert Einstein, Erwin Schroedinger.

The theorists continue by expounding that MIW could lead to new predictions. If correct, then new predictions would challenge experimentalists and observers to recreate or search for the effects.
Such was the case for Einstein’s Theory of General Relativity. For example, the bending of the path of light by gravity and astronomer Eddington’s observing starlight bending around Sun during a total Solar Eclipse. Such new predictions and confirmation would begin to stand MIW theory apart from the many other theories of everything.

Multiverse theories have gained notoriety in recent years through the books and media presentations of Dr. Michio Kaku of the City College of New York and Dr. Brian Greene of Columbia University, New York City. Dr. Green presented a series of episodes delving into the nature of the Universe on PBS called “The Fabric of the Universe” and “The Elegant Universe”. The presentations were based on his books such as “The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos.”

Hugh Everett’s reinterpretation of Dr. Richard Feynman’s cosmological theory, that the world is a weighted sum of alternative histories, states that when particles interact, reality bifurcates into a set of parallel streams, each being a different possible outcome. In contrast to Feynmann’s theory and Everett’s interpretation, the parallel worlds of MIW do not bifurcate but simply exist in the same space and time.  MIW’s parallel worlds are not a consequence of “quantum behavior” but are rather the drivers of it.


Professor Howard Wiseman, Director of Griffith University's Centre for Quantum Dynamics and coauthor of the paper on the "Many Interacting World" theory. (Photo Credit: Griffith University)
Professor Howard Wiseman, Director of Griffith University’s Centre for Quantum Dynamics and coauthor of the paper on the “Many Interacting World” theory. (Photo Credit: Griffith University)

Hall states in the paper that simple Newtonian Physics can explain how all these worlds evolve. This, they explain, can be used effectively as a first approximation in testing and expanding on their theory, MIW. Certainly, Einstein’s Special and General Theories of Relativity completes the Newtonian equations and are not dismissed by MIW. However, the paper begins with the simpler model using Newtonian physics and even explains that some fundamental behavior of quantum mechanics unfolds from a universe comprised of just two interacting worlds.

So what is next for the Many Interacting Worlds theory? Time will tell. Theorists and experimentalists shall begin to evaluate its assertions and its solutions to explain known behavior in our Universe. With new predictions, the new challenger to Unified Field Theory (the theory of everything) will be harder to ignore or file away with the wide array of theories of the last 100 years. Einstein’s theories began to reveal that our world exudes behavior that defies our sensibility but he could not accept the assertions of Quantum Theory. Einstein’s retort to Bohr was “God does not throw dice.” The MIW theory of Hall, Deckert, and Wiseman might be what Einstein was seeking until the end of his life. In titling this review of their theory as “The World is not Enough,” I would also add that their many interacting worlds is like a martini shaken but not stirred.
References: Quantum Phenomena Modeled by Interactions between Many Classical Worlds

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑