Tag: store (page 2 of 6)

New Light on Our Accelerating Universe –"Not as Fast as We Thought"

 A Type Ia supernova, SN1994D, is shown exploding in lower left corner of the image at the top of the page of the galaxy NGC 4526 taken by the Hubble Space Telescope. (High-Z Supernova Search Team, HST, NASA)Excerpt from dailygalaxy.com Cer...

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

What It’s Like to Be at the 24th International UFO Congress







Excerpt from nbcnews.com
By Katie Linendoll
FOUNTAIN HILLS, Ariz. — If words like UFO, extraterrestrial, crops circles and abductee have ever piqued your paranormal interest, do yourself a favor and head to the International UFO Congress. 

The annual conference—which holds the Guinness record for being the largest convention dedicated to unidentified flying objects—takes place in the picturesque desert town of Fountain Hills, and this year it ran from Feb. 18 to 22. It's worth noting that Arizona is known as a hotbed of activity when it comes to sightings. Thousands flock to the annual event, which is produced by Open Minds, a paranormal research organization. 

Each attendee has his or her own reason for being there. My goal was to find out if modern science and technology have changed the game when it comes to UFO sightings and evidence gathering. 

"A lot of people think, go to a UFO convention, it's going to be tinfoil hats, but that's not what this is. We have NASA astrobiologists speak, scientists, high-ranking military officials, the works. I mean, there's a lot of really credible people covering this subject," said UFO Congress co-organizer and paranormal journalist Maureen Elsberry.

Air Force UFO documents now available online

When attending a UFO conference, the best approach is to come in with an open mind, ask lots of questions and talk with people about why they are there. Everyone has a story, from the speakers to the attendees, and even the vendors (some of whom double as ufologists). 

The highlight of this year's conference was undeniably the speaker series, and it was standing room only to see one man, Bob Lazar. Lazar first spoke out in 1989, claiming that he'd worked as a government scientist at a secret mountainside facility south of Area 51's main site, where he saw remarkably advanced UFO technology. Critics have sought to discredit Lazar, questioning his employment record and educational credentials. 

During the conference, George Knapp, an investigative TV reporter in Las Vegas who broke the Lazar story in '89, led an onstage question-and-answer session with Lazar, who discussed the work he did at a place called S4. Lazar spoke in detail about the alien UFO hangars and UFO propulsion systems he was allegedly asked to reverse engineer, and even loosely sketched them out for the audience. 

"All the science fiction had become reality," said Lazar, who was noticeably uncomfortable and clearly surprised by the fact that, decades later, he remains such a draw. 

You never know whom you'll bump into at the Congress. In the vendor hall, I met sculptor Alan Groves, who traveled all the way from Australia to peddle his "true to scale" Zetan alien figurines. I wondered if his side gig was lucrative, only to realize he was selling the figures like hotcakes. Then we talked about his day job, and he told me he's worked on special and creature effects for films such as "Star Wars," "Alien," "Labyrinth" and "Jurassic Park." 

Many of the attendees told me that hard evidence is a requirement for ufologists and paranormal field experts. Derrel Sims, also known as Alien Hunter, told me he spent two years in the CIA, and also has served as a police officer and licensed private investigator. 

He said his first alien encounter happened at age 4, and others in his family have also seen aliens. In 38-plus years of alien research, Sims has learned this: "If you look, the evidence is there." To date, he said, more than 4,000 pieces of that evidence exist. 

Sims is adamant about only working with evidence-based methods, using DNA tests and collecting samples as well as relying on ultraviolet, infrared and x-ray tools in his research. He said that, in 1992, he discovered aliens leave their own kind of fluorescent fingerprint, and he continues to test for these clues. He added that if you have had an alien encounter, it's important to react quickly to gather evidence: "fluorescence" stays on the skin for only 24 hours. He said that other marks aliens leave include "scoop" marks, which are an identifying thread some abductees have in common. 

Another commonality he's discovered is heritage. He said that, in his research, he has found 45 percent of all abductions happen to Native Americans, Irish and Celtic people, and he said that women also have a higher chance of being abducted. 

When it comes to filming hard-to-explain phenomena, Patty Greer, who makes documentaries about crop circles, said that quadcopters — a.k.a. drones — have added production value to her films. Lynne Kitei, who covered a mass UFO sighting in her book and in the documentary The Phoenix Lights, said that even low-tech tools, like the 35mm film she used, are still a reliable way to gather proof of inexplicable flying craft, especially because they offer something an iPhone doesn't: negatives.

White House responds to UFO request

Night vision also offers added opportunities for UFO researchers, according to Ben Hansen, who was the host and lead investigator of SyFy channel's "Fact or Faked: Paranormal Files." He's now the owner of Night Vision Ops, an online store that sells night-vision technology. Hansen said that the consumer accessibility of new military-grade technologies in thermal and light amplification scopes are upping the game for the everyday UFO enthusiast. 

To close out an intense few days on site at the Congress, Hansen's team invited me to a night watch near Arizona's Superstition Mountains. It was fascinating to see the latest optics add incredible clarity to the night sky, amplifying available light up to 50,000 times beyond what the unaided eye can see. Using the right technology, we were also able to see that a certain flying object, which made everyone nearby jump, wasn't a UFO after all. It was a bat. 

I was surrounded by some serious tech all weekend, and it was eye-opening to see the ways that UFO hunters are gathering scientific evidence to learn more about the paranormal world. But I have to say, the gadget that was the most useful to me at the conference was my iPhone, which I used to download a free nightlight app for kids. For the few hours I managed to sleep, it was with the soothing illumination provided by "Kiwi the Green Koala." In short, I was officially freaked out.

View Article Here Read More

‘God Particle’ analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor


The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • uperconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

View Article Here Read More

A ‘bionic leaf’ that turns sunlight into fuel


Excerpt from cnbc.com

By Robert Ferris



The invention could pave the way for numerous innovations—by converting solar power into biofuels, it may help solve the vexing difficulty of storing unused solar energy, which is one of the most common criticisms of solar power as a viable energy source.
The process could also help make plastics and other chemicals and substances useful to industry and research.


The current experiment builds on previous research led by Harvard engineer Daniel Nocera, who in 2011 demonstrated an "artificial leaf" device that uses solar power to generate usable energy. 

Nocera's original invention was a wafer-like electrode suspended in water. When a current runs through the electrode from a power source such as a solar panel, for example, it causes the water to break down into its two components: hydrogen and oxygen. 

Nocera's device garnered a lot of attention for opening up the possibility of using sunlight to create hydrogen fuel—once considered a possible alternative to gasoline. 

But hydrogen has not taken off as a fuel source, even as other alternative energy sources survive and grow amid historically low oil prices. Hydrogen is expensive to transport, and the costs of adopting and distributing hydrogen are high. A gas station owner could more easily switch a pump from gasoline to biofuel, for example.


Now, Nocera and a team of Harvard researchers figured out how to use the bionic leaf to make a burnable biofuel, according to a study published Monday in the journal PNAS. The biologists on the team genetically modified a strain of bacteria that consumes hydrogen and produces isopropanol—the active ingredient in rubbing alcohol. In doing so, they successfully mimicked the natural process of photosynthesis—the way plants use energy from the sun to survive and grow.

This makes two things possible that have always been serious challenges for alternative energy space—solar energy can be converted into a storable form of energy, and the hydrogen can generate a more easily used fuel.


To be sure, the bionic leaf developments are highly unlikely to replace fossil fuels such as oil and natural gas any time soon—especially as the prices of both are currently so low. But it could be a good supplemental source. 

"One idea Dan [Nocera] and I share, which might seem a little wacky, is personalized energy" that doesn't rely on the power grid, biochemist Pamela Silver, who participated in the study, told CNBC in a telephone interview. 


Typically, people's energy needs are met by central energy production facilities—they get their electricity from the power grid, which is fed by coal- or gas-burning power plants, or solar farms, for example. Silver said locally produced energy could be feasible in developing countries that lack stable energy infrastructure, or could even appeal to people who choose to live off the grid.

"Instead of having to buy and store fuel, you can have your bucket of bacteria in your backyard," Silver said. 

Besides, the experiment was an attempt at proof-of-concept—the scientists wanted to demonstrate what could be done, Silver said. Now that they have mastered this process, further possibilities can be explored.  

"No insult to chemists, but biology is the best chemist there is, so we don't even know what we can make," said Silver. "We can make drugs, materials—we are just at the tip of the iceberg." 

The team hopes to develop many different kinds of bacteria that can produce all sorts of substances. That would mean, potentially at least, setting up the bionic leaf device and then plugging in whatever kind of bacteria might be needed at the moment.

For now, they want to increase the efficiency of the device, which is already much more efficient at photosynthesizing than plants are. Then they will focus on developing other kinds of bacteria to plug into the device.

"The uber goal, which is probably 20 years out," Silver said, "is converting the commodity industry away from petroleum."

View Article Here Read More

Moonquakes and blazing heat: What would life really be like on the Moon?


Lunar Base Made with 3D Printing


Excerpt from space.com

The idea of building a lunar outpost has long captured people's imaginations. But what would it really be like to live on the moon?
Space exploration has long focused on the moon, with Earth's satellite the setting for a number of significant missions. A 1959 Soviet spacecraft photographed the moon's far side for the first time, and in 1969, NASA landed people on the lunar surface for the first time. Numerous missions followed, including NASA's Lunar Reconnaissance Orbiter that beamed home the highest-resolution topographical lunar map to date, covering 98.2 percent of the moon's surface. 

Altogether, data beamed back from numerous missions suggest that no place on the moon would be a pleasant place to live, at least compared with Earth. Lunar days stretch for about 14 Earth days with average temperatures of 253 degrees Fahrenheit (123 degrees Celsius), while lunar nights also last 14 Earth days (due to the moon's rotation) and maintain a frigid cold of minus 387 degrees Fahrenheit (minus 233 degrees Celsius). 

"About the only place we could build a base that wouldn't have to deal with these extremes is, oddly enough, near the lunar poles," said Rick Elphic, project scientist for NASA's LADEE probe, which studied the moon's atmosphere and dust environment before performing a planned crash into the natural satellitein April 2014. These areas likely store vast amounts of water-ice and enjoy low levels of light from the sun for several months at a time.

"Instead of the blazing heat of lunar noon, it is a kind of perpetual balmy sunset, with temperatures around 0 degrees Celsius [32 degrees Fahrenheit] due to the low angle of the sun," Elphic added.

Vacations away from pole outposts would offer up sights unlike anything on Earth. Decorating the moon's vast lava plains are large impact-borne "mountains," the tallest of which is 3.4 miles (5.5 kilometers) high, about the size of Mount Saint Elias on the border of Alaska and Canada. "Skylight" holes puncture some of the plains where lava likely drained into sub-surface caverns — the perfect adventure for lunar spelunkers.

The moon also sports huge craters, such as the 25-mile-wide (40 km) Aristarchus crater. A view from the rim of Aristarchus would "dwarf the Grand Canyon and make Meteor Crater in Arizona look like a hole in a putting green," Elphic told Space.com via email.


Lunar athletes would not need to check the forecast, however. Because of its very tenuous atmosphere, the moon has no weather. "Every day is sunny with no chance of rain!" Elphic added. You would, however, have to look out for so-called space weather, which includes meteor particles that can be as large as golf balls and highly energetic particles from solar flares.

Another potential danger would be moonquakes. Seismometers left on the lunar surface during Apollo show that the moon is still seismically active, and even has rare, hour-long quakes measuring up to 5.5 on the Richter scale. These quakes would be strong enough to cause structural damage to buildings.

"So don't leave Earth for your home on the moon thinking you've left seismic activity behind," Elphic said. "Make sure your lunar house is up to code."

View Article Here Read More

Google Chairman Eric Schmidt: "The Internet Will Disappear"


 


Excerpt from hollywoodreporter.com

Google executive chairman Eric Schmidt on Thursday predicted the end of the Internet as we know it.

At the end of a panel at the World Economic Forum in Davos, Switzerland, where his comments were webcast, he was asked for his prediction on the future of the web. “I will answer very simply that the Internet will disappear,” Schmidt said.

“There will be so many IP addresses…so many devices, sensors, things that you are wearing, things that you are interacting with that you won’t even sense it,” he explained. “It will be part of your presence all the time. Imagine you walk into a room, and the room is dynamic. And with your permission and all of that, you are interacting with the things going on in the room.”

Concluded Schmidt: “A highly personalized, highly interactive and very, very interesting world emerges.”

The panel, entitled The Future of the Digital Economy, also featured Facebook COO Sheryl Sandberg and others.
Earlier in the debate, Schmidt discussed the issue of market dominance. The European Union has been looking at Google’s search market dominance in a long-running antitrust case, and the European parliament late last year even called for a breakup.
“You now see so many strong tech platforms coming, and you are seeing a reordering and a future reordering of dominance or leaders or whatever term you want to use because of the rise of the apps on the smartphone,” Schmidt said Thursday. “All bets are off at this point as to what the smartphone app infrastructure is going to look like” as a “whole new set” of players emerges to power smartphones, which are nothing but super-computers, the Google chairman argued. “I view that as a completely open market at this point.”

Asked about his recent trip to North Korea, Schmidt said the country has many Internet connections through data phones, but there is no roaming and web usage is “heavily supervised.” Schmidt said “it’s very much surveillance of use,” which he said was not good for the country and others.

Sandberg and Schmidt lauded the Internet as an important way to give more people in the world a voice. Currently, only 40 percent of people have Internet access, the Facebook COO said, adding that any growth in reach helps extend people’s voice and increase economic opportunity. “I’m a huge optimist,” she said about her outlook for the industry. “Imagine what we can do” once the world gets to 50 percent, 60 percent and more in terms of Internet penetration.
She cited women as being among the beneficiaries, saying the Internet narrows divides.

Schmidt similarly said that broadband can address governance issues, information needs, personal issues, women empowerment needs and education issues. “The Internet is the greatest empowerment of citizens … in many years,” he said. “Suddenly citizens have a voice, they can be heard.”
During another technology panel at the World Economic Forum on Thursday, Yahoo CEO Marissa Mayer, Liberty Global CEO Mike Fries and others answered questions on the need to regulate privacy standards on the Internet and for tech companies following the Snowden case, the Sony hack and the like.


Mayer said that the personalized Internet “is a better Internet,” emphasizing: “We don’t sell your personal data … We don’t transfer your personal data to third parties.” She said users own their data and need to have control, adding that people give up data to the government for tax assessment, social services and other purposes.
Fries said Liberty Global subscribers view billions of hours of content and generate billions of clicks, but added that “today we do nothing.” He explained: “We generate zero revenue from all of that information.” But he acknowledged that big data was big business for a lot of people.

Both executives said transparency was important to make sure users know privacy standards and the like.

Gunther Oettinger, a conservative German politician serving as the European Union’s commissioner for digital economy and society, said on the panel that “we need a convincing global understanding, we need a UN agency for data protection and security.” Asked what form that “understanding” should have, he said he was looking for “clear, pragmatic, market-based regulation.” Explained Oettinger: “It’s a public-private partnership.”

Fries said such a solution was likely not to happen in the near term, given the size of the EU. “I think it is going to take several years,” he said, adding that some countries’ parliaments would likely take a stab at it.

But he warned that a joint solution would make more sense. “We don’t want Germany to have its own Internet,” Fries said. “Some countries may build their own Internets” and “balkanize” the web, he warned.

Mayer said on the issue of regulation: “I like Tim’s idea better of the beneficent marketplace.” She spoke of fellow panelist and computer specialist Tim Berners-Lee, known as the inventor of the World Wide Web.

Asked how Yahoo stores and handles client records, she said the online giant “changed the way we store and communicate data” after Snowden and also changed encryptions between data centers. And the company protects users through encryption methods, she added. Mayer said that trust and confidence of Yahoo users has rebounded since.

Mayer was also asked what happens if a government asks for a user’s data, a question that has new significance after the recent terrorist attacks in Paris, which have led some to call for increased surveillance powers of the Internet for governments. Mayer said Yahoo always assesses if such a request is reasonable. “We have a very good track record for standing up to what’s not reasonable,” she said.

View Article Here Read More

How Much Does it Cost to Build a Tiny House?




Excerpt from tinyhousetalk.com

If you’ve been wondering how much does it cost to build a tiny house you’re at the right place. Designing and building your own tiny house is a great way to create a mortgage-free lifestyle fast.
So it’s no wonder that you’d be interested… But the question is, “how much?”

Question: So How Much Does it Cost to Build a Tiny House?


Answer: Usually Around $25,000 to $30,000

This is for a relatively ‘high end’ tiny home on wheels with all of the amenities of home you’d be looking at around $25,000 to $30,000 in materials to build it yourself.

This figure normally includes buying a brand new trailer, professional construction plans, your appliances, and other materials brand new at the store.

Of course it’s always possible to do it for $13,173, $9,802, $21,204, or even $65,439 but this is just an estimation so you know what to expect and what I’ve believe to be most common but..


Here’s How You Can Do It For Less

  • Find and use recycled materials on places like Craigslist and Habitat Restores.
  • Use less expensive but reliable materials and appliances.
  • Do absolutely all of the labor yourself and with the help of friends and family.
  • Do your due diligence researching and designing to avoid costly mistakes.
  • Take time to find a good deal on the right used trailer instead of buying a brand new one.
  • Take the time to salvage another structure or recreational vehicle so you can use them to build your tiny home.
  • Find useful or reclaimable appliances on Craigslist or your nearest Habitat ReStore.

View Article Here Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here Read More

Amazon, Google, IBM & Microsoft Want to Store Your Genome


Excerpt from  technologyreview.com


By Antonio Regalado

 For $25 a year, Google will keep a copy of any genome in the cloud.

Google is approaching hospitals and universities with a new pitch. Have genomes? Store them with us.

The search giant’s first product for the DNA age is Google Genomics, a cloud computing service that it launched last March but went mostly unnoticed amid a barrage of high profile R&D announcements from Google...

Google Genomics could prove more significant than any of these moonshots. Connecting and comparing genomes by the thousands, and soon by the millions, is what’s going to propel medical discoveries for the next decade. The question of who will store the data is already a point of growing competition between Amazon, Google, IBM, and Microsoft.

Google began work on Google Genomics 18 months ago, meeting with scientists and building an interface, or API, that lets them move DNA data into its server farms and do experiments there using the same database technology that indexes the Web and tracks billions of Internet users.

This flow of data is smaller than what is routinely handled by large Internet companies (over two months, Broad will produce the equivalent of what gets uploaded to YouTube in one day) but it exceeds anything biologists have dealt with. That’s now prompting a wide effort to store and access data at central locations, often commercial ones. The National Cancer Institute said last month that it would pay $19 million to move copies of the 2.6 petabyte Cancer Genome Atlas into the cloud. Copies of the data, from several thousand cancer patients, will reside both at Google Genomics and in Amazon’s data centers.

The idea is to create “cancer genome clouds” where scientists can share information and quickly run virtual experiments as easily as a Web search, says Sheila Reynolds, a research scientist at the Institute for Systems Biology in Seattle. “Not everyone has the ability to download a petabyte of data, or has the computing power to work on it,” she says.

Also speeding the move of DNA data to the cloud has been a yearlong price war between Google and Amazon. Google says it now charges about $25 a year to store a genome, and more to do computations on it. Scientific raw data representing a single person’s genome is about 100 gigabytes in size, although a polished version of a person’s genetic code is far smaller, less than a gigabyte. That would cost only $0.25 cents a year.


The bigger point, he says, is that medicine will soon rely on a kind of global Internet-of-DNA which doctors will be able to search. “Our bird’s eye view is that if I were to get lung cancer in the future, doctors are going to sequence my genome and my tumor’s genome, and then query them against a database of 50 million other genomes,” he says. “The result will be ‘Hey, here’s the drug that will work best for you.’ ”


At Google, Glazer says he began working on Google Genomics as it became clear that biology was going to move from “artisanal to factory-scale data production.” He started by teaching himself genetics, taking an online class, Introduction to Biology, taught by Broad’s chief, Eric Lander. He also got his genome sequenced and put it on Google’s cloud.

Glazer wouldn’t say how large Google Genomics is or how many customers it has now, but at least 3,500 genomes from public projects are already stored on Google’s servers. He also says there’s no link, as of yet, between Google’s cloud and its more speculative efforts in health care, like the company Google started this year, called Calico, to investigate how to extend human lifespans. “What connects them is just a growing realization that technology can advance the state of the art in life sciences,” says Glazer.

Datta says some Stanford scientists have started using a Google database system, BigQuery, that Glazer’s team made compatible with genome data. It was developed to analyze large databases of spam, web documents, or of consumer purchases. But it can also quickly perform the very large experiments comparing thousands, or tens of thousands, of people’s genomes that researchers want to try. “Sometimes they want to do crazy things, and you need scale to do that,” says Datta. “It can handle the scale genetics can bring, so it’s the right technology for a new problem.”

View Article Here Read More

Future Tech Watch ~ Will this technology replace herds of Walmart Rascals?


Honda’s Walking Assist with Stride Management: Coming to a Hospital Near You!

en.akihabaranews.com

If, that is, you’re connected to one of 50 Japanese medical institutions now testing and evaluating a pair of the semi-robotic exoskeletal assistive devices. Honda breaks down the what’s-it-do-and-how as follows:

“The [Walking Assist Device’s] control computer activates motors based on information obtained from hip angle sensors while walking to improve the symmetry of the timing of each leg lifting from the ground and extending forward, and to promote a longer stride for an easier walk.”
 Honda Stride Assist Device



Shoppers utilizing Rascals at Wal-Mart 
Honda’s worked closely with several medical institutions throughout development of the Walking Assist Device, but last week’s announcement of the 100-unit roll-out signals what is effectively their flagship field testing effort; a medical trial to collect feedback and evaluations from professionals and patients, and data from the devices themselves, of course. But it’s much sexier than your average medical trial. Because robots. Obviously.
Each rehabilitation and/or physical therapy-focused recipient medical facility gets one medium- and one large-sized device. Details on the cost and duration of the leases haven’t been disclosed, but we do have the following specs:




If successful, the devices will very likely see wider domestic trials, possibly moving beyond rehabilitation and making their way into the homes of Japan’s rapidly aging population. In addition to recovery, the Walking Assist Device could provide just the boost needed for walking to the grocery store, visiting a friend or family member, a healthy stroll around the shopping center, or, for Japan’s endangered farming population, 50% of whom are within 5-10 years of retirement, another trip out to the field.
Given sufficient demand, and should they be cheap enough to produce, the Walking Assist Devices could perhaps be enlarged for populations a bit more… uhhh, let’s be nice and say “a bit more robust.” Among other developed nations, the U.S. also has a growing population of retirees who’d definitely appreciate the extra spring in their step. But Honda, remember, you’re going to need some bigger springs. Sorry about that. It’s a problem. Sorry.

Honda’s Ongoing Assistive Robotics Commitment – Respect Due:

While Honda began specific work on walking-assist devices in 1999, the devices weren’t widely public until 2009. Differences between the current and early iterations are visible in the main image above: on the right and left are the earlier, bulkier, more metallic devices – the middle image, included in last week’s press release, shows the sleeker, current model (the middle image has actually been out in the wild for at least a year, so one assumes the 50 medium and 50 large devices now shipping are the same, possibly with some under-the-hood upgrades and/or modifications).

Unless you’re of a certain level of robo-dorkiness, you might not know that Honda’s actually been pounding away on bipedal humanoid robotics tech since the mid-1980s. You might be unaware of their proactive efforts toward addressing Japan’s aging population crisis through assistive robotics (Akihabara News coverage). And, you could have missed news that Honda’s pursuing a robotics-in-the-home partnership with Sekisui House (even more Akihabara News coverage!).*

Cars, ATVs, a lawnmower perhaps, maybe a sprinkling of ASIMO – that’s the standard mental image of Honda.
Consider upgrading?

View Article Here Read More

Consuming Canned Foods Increases Toxic Exposure 1000 Fold

April McCarthy, Prevent DiseaseConsuming a daily serving of canned food products has a more than 1,000% increase in urinary bisphenol A (BPA) concentrations compared with when the same individuals consumed fresh food daily. The study is one of the first to quantify BPA levels in humans after ingestion of canned foods.The findings were published in the Journal of the American Medical Association (JAMA).In 2009, the North American Metal Packaging Alliance, a Washington-based trade [...]

View Article Here Read More

Intention and the Rite of Disengagement

What we participate in is pretty much the name of the game. What do we spend our time, energy and intention on? What are we consciously and/or subconsciously empowering that’s leading to our own dis-empowerment? Where attention and thus intention goes, energy flows. Where is ours going, collectively and individually? Something to seriously consider on a continual basis in this massively manipulated energetic world.I’ve been blown away recently by the rapid rise in consciousness [...]

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑