Tag: spot (page 3 of 7)

NASA Finds Mysterious Bright Spot on Dwarf Planet Ceres: What Is It?

A mysterious white spot can be seen in the newest images from NASA's Dawn space telescope, which is rapidly approaching the dwarf planet. Excerpt from space.com A strange, flickering white blotch found on the dwarf planet Ceres by a NASA spacecra...

View Article Here Read More

Spacecraft found on Mars – and it’s ours




Computer image of the Beagle 2


Excerpt from skyandtelescope.com
By Kelly Beatty  


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.  It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). 

Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester - See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf


Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers. Beagle 2 on Mars  The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life. Beagle 2 consortium  But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?  Now, thanks to HiRISE, we know more of the story.  
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester 


Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry. Beagle 2 seen from orbit by HiRISE  

One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent...


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.
It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers.
Beagle 2 on Mars
The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life.
Beagle 2 consortium
But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?
Now, thanks to HiRISE, we know more of the story. Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry.
Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014.
NASA / JPL / Univ. of Arizona / Univ. of Leicester
One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent.
The initial images didn't just show up. They'd been requested and searched by Michael Croon of Trier, Germany, who'd served on the Mars Express operations team. Croon had asked for specific camera targeting through a program called HiWish, through which anyone can submit suggestions for HiRISE images. Read more about this fascinating sleuthing story.
"Not knowing what happened to Beagle 2 remained a nagging worry," comments Rudolf Schmidt in an ESA press release about the find. "Understanding now that Beagle 2 made it all the way down to the surface is excellent news." Schmidt served as the Mars Express project manager at the time.
Built by a consortium of organizations, Beagle 2 was the United Kingdom's first interplanetary spacecraft. The 32-kg (73-pound) lander carried six instruments to study geochemical characteristics of the Martian surface and to test for the presence of life using assays of carbon isotopes. It was named for HMS Beagle, the ship that carried a crew of 73 (including Charles Darwin) on an epic voyage of discovery in 1831–36.
- See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf

View Article Here Read More

The Best Bet for Alien Life May Be in Planetary Systems Very Different From Ours




Excerpt from wired.com


In the hunt for extraterrestrial life, scientists started by searching for a world orbiting a star just like the sun. After all, the steady warmth of that glowing yellow ball in the sky makes life on Earth possible.

But as astronomers continue to discover thousands of planets, they’re realizing that if (or when) we find signs of extraterrestrial life, chances are good that those aliens will orbit a star quite different from the sun—one that’s redder, cooler, and at a fraction of the sun’s size and mass. So in the quest for otherworldly life, many astronomers have set their sights on these small stars, known as red dwarfs or M dwarfs.

At first, planet-hunting astronomers didn’t care so much about M dwarfs. After the first planet outside the solar system was discovered in 1995, scientists began hunting for a true Earth twin: a rocky planet like Earth with an orbit like ours around a sun-like star. Indeed, the search for that kind of system drove astronomers through most of the 2000s, says astronomer Phil Muirhead of Boston University.

But then astronomers realized that it might be technically easier to find planets around M dwarfs. Detecting another planet is really hard, and scientists rely on two main methods. In the first, they look for a drop in a star’s brightness when a planet passes in front of it. In the second, astronomers measure the slight wobble of a star, caused by the gentle gravitational tug of an orbiting planet. With both of these techniques, the signal is stronger and easier to detect for a planet orbiting an M dwarf. A planet around an M dwarf also orbits more frequently, increasing the chances that astronomers will spot it.

M dwarfs got a big boost from the Kepler space telescope, which launched in 2008. By staring at small patch of the sky, the telescope searches for suddenly dimming stars when a planet passes in front of them. In doing so, the spacecraft discovered a glut of planets—more than 1,000 at the latest count—it found a lot of planets around M dwarfs. “Kepler changed everything,” Muirhead said. Because M-dwarf systems are easier to find, the bounty of such planets is at least partly due to a selection effect. But, as Muirhead points out, Kepler is also designed to find Earth-sized planets around sun-like stars, and the numbers so far suggest that M-dwarfs may offer the best odds for finding life.

“By sheer luck you would be more likely to find a potentially habitable planet around an M dwarf than a star like the sun,” said astronomer Courtney Dressing of Harvard. She led an analysis to estimate how many Earth-sized planets—which she defined as those with radii ranging from one to one-and-a-half times Earth’s radius—orbit M dwarfs in the habitable zone, the region around the star where liquid water can exist on the planet’s surface. According to her latest calculations, one in four M dwarfs hosts such a planet.

That’s higher than the estimated number of Earth-sized planets around a sun-like star, she says. For example, an analysis by astronomer Erik Petigura of UC Berkeley suggests that fewer than 10 percent of sun-like stars have a planet with a radius between one and two times that of Earth’s.

This illustration shows Kepler-186f, the first rocky planet found in a star's habitable zone. Its star is an M dwarf.
This illustration shows Kepler-186f, the first rocky planet found in a star’s habitable zone. Its star is an M dwarf. NASA Ames/SETI Institute/JPL-Caltech


M dwarfs have another thing going for them. They’re the most common star in the galaxy, comprising an estimated 75 percent of the Milky Way’s hundreds of billions of stars. If Dressing’s estimates are right, then our galaxy could be teeming with 100 billion Earth-sized planets in their stars’ habitable zones.

To be sure, these estimates have lots of limitations. They depend on what you mean by the habitable zone, which isn’t well defined. Generally, the habitable zone is where it’s not too hot or too cold for liquid water to exist. But there are countless considerations, such as how well a planet’s atmosphere can retain water. With a more generous definition that widens the habitable zone, Petigura’s numbers for Earth-sized planets around a sun-like star go up to 22 percent or more. Likewise, Dressing’s numbers could also go up.
Astronomers were initially skeptical of M-dwarf systems because they thought a planet couldn’t be habitable near this kind of star. For one, M dwarfs are more active, especially during within the first billion years of its life. They may bombard a planet with life-killing ultraviolet radiation. They can spew powerful stellar flares that would strip a planet of its atmosphere.

And because a planet will tend to orbit close to an M dwarf, the star’s gravity can alter the planet’s rotation around its axis. When such a planet is tidally locked, as such a scenario is called, part of the planet may see eternal daylight while another part sees eternal night. The bright side would be fried while the dark side would freeze—hardly a hospitable situation for life.

But none of these are settled issues, and some studies suggest they may not be as big of a problem as previously thought, says astronomer Aomawa Shields of UCLA. For example, habitability may depend on specific types and frequency of flares, which aren’t well understood yet. Computer models have also shown that an atmosphere can help distribute heat, preventing the dark side of a planet from freezing over.

View Article Here Read More

4 Sky Events This Week: Inner Planets Dance While Saturn Dazzles


Illustration of moon pairing with star in the Virgo constellation
The moon pairs with the brightest star in the constellation Virgo on Tuesday.
Illustration by A.Fazekas, SkySafari


Excerpt from news.nationalgeographic.com

An eclipse of a volcanic moon by the king of planets, Jupiter, will thrill stargazers this week, as Earth's moon rides above the ringed world, Saturn.

Moon meets Maiden. On Tuesday, January 13, early birds will enjoy a particularly close encounter with the last quarter moon of the month and with the bright star Spica. All the action takes place in the constellation Virgo, the Maiden, halfway up the southern sky at dawn.

The 250-light-year-distant star appears only 2 degrees below the moon, a distance equal to about the width of your thumb held at arm's length.

It's amazing to realize that the light from Spica left on its journey to Earth back in 1765. That's the year that Great Britain passed the Stamp Act, the first direct tax levied on the American colonies and a prelude of the parliamentary oversteps that led to the American Revolution.

Mercury at its best. Look for faint Mercury about a half-hour after sunset on Wednesday, January 14, just above the southwestern horizon.

The innermost planet will appear at its farthest point away from the sun, a moment called the greatest elongation. Sitting 19 degrees east of the sun, it would be challenging to track down its faint point of light if it weren't for the nearby, superbright Venus.

The planetary duo will appear only 1.3 degrees apart, making the pair particularly impressive when viewed through binoculars or a small telescope. Look carefully and you may notice that Mercury appears to be a miniature version of the half-lit moon...

Illustration of Venus and Mercury in close conjunction in the southwest sky
This skychart shows Venus and Mercury in close conjunction in the southwest sky after sunset on Wednesday.
Illustration by A.Fazekas, SkySafari

Volcanic moon eclipse. Sky-watchers armed with telescopes will witness a distant eclipse of Jupiter's moon Io in the early morning hours of Friday, January 16.

At 12:27 a.m. EST, the gas giant's own shadow will glide across the tiny disk of the volcanic moon, which will be visible to the west of the planet.

Also early on Thursday night at 10:56 p.m. EST, Jupiter's massive storm, the Great Red Spot, crosses the middle of the planet's disk. Appearing as an orange-pink oval structure, this hurricane circles the planet every 12 hours or so and is three times larger than the Earth. 

Illustration of Jupiter in the late night southwest sky
This wide-angle skychart shows the location of Jupiter in the southeast sky on Thursday evening and early morning Friday. The insert telescope view shows Jupiter and location of its moon Io just before it enters the planet’s shadow.
Illustration by A.Fazekas, SkySafari
Luna and Saturn. Later on, near dawn on Friday, January 16, the waning crescent moon will appear to park itself just 2 degrees north of Lord of the Rings.

The ringed world can't be missed with the naked eye since it is the brightest object visible in the southeastern predawn sky. Its proximity to the moon will make it that much easier to identify.
Train a telescope on this yellow-tinged point of light, and it will readily reveal its stunning rings, tilted a full 25 degrees toward Earth. Currently Saturn sits nearly 994,000 miles (1.6 billion kilometers) away from Earth, which means that the reflected sunlight off its cloud tops takes 87.4 minutes to reach our eyes.
Happy hunting!

View Article Here Read More

Kepler Space Telescope Finds More Earth-like Planets ~ Learn how to join the search


 


Excerpt from
waaytv.com

NASA's Kepler Space Telescope has been hunting the cosmos for exoplanets since March of 2009.  In its nearly five years of searching the stars, it has found thousands of possible candidates.  Scientists recently verified the thousandth planet Kepler had found, and even more exciting, they announced that Kepler had found three more Earth-like planets.
Those three planets bring Kepler's Earth-like planet count to a total of eight.  In order to qualify as "Earth-like," these exoplanets must be less than twice the size of the Earth and orbit their own sun within the habitable zone.  This "Goldilocks zone" is a belt in solar systems where it's neither too hot nor too cold for liquid water to exist.

"Each result from the planet-hunting Kepler mission's treasure trove of data takes us another step closer to answering the question of whether we are alone in the Universe," said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “The Kepler team and its science community continue to produce impressive results with the data from this venerable explorer."

The Kepler team has also found super-Earths and gas giants like Jupiter around other stars.  NASA artists compiled retro-style travel posters from three discovered planets.
Kepler finds planets by watching distant stars for fluctuation in light.  If the light hitting the telescope drops dramatically and then returns to normal levels, chances are a planet came in between the star and Kepler.  Scientists can analyze the data and light filtered by the candidate planet's atmosphere to make guesses at the size, mass and composition.

"With each new discovery of these small, possibly rocky worlds, our confidence strengthens in the determination of the true frequency of planets like Earth," said co-author Doug Caldwell, SETI Institute Kepler scientist at NASA's Ames Research Center at Moffett Field, California. "The day is on the horizon when we’ll know how common temperate, rocky planets like Earth are.”

The space telescope actually has two crippled stabilizing gyros.  But instead of giving up on the mission, engineers are using pressure from photons emitted by the sun to stabilize the telescope.  The first space telescope looking for alien worlds is literally balancing on a sunbeam to continue its mission, and that's not science fiction, that's science fact.

Citizen scientists can also participate in the mission.  The website PlanetHunters.org contains catalogs of data from K1, the original Kepler mission, and K2, the extended mission making use of the sun to balance the telescope.  The K2 data has been sorted through, but Planet Hunters still needs help sifting through the K1 data.
The website's instructions read:

"As the planet passes in front of (or transits) a star, it blocks out a small amount of the star’s light, making the star appear a little bit dimmer. You’re looking for points on the light curve that appear lower than the rest. When you spot a potential transit, mark each one on the light curve."

View Article Here Read More

Surprising discovery finds proteins can be assembled without genetic instructions ~ Sends scientists back to drawing board





Excerpt from news.bioscholar.com


A study has shown for the first time that the building blocks of proteins can be assembled without instructions from DNA or messenger RNA (mRNA).

A protein, Rqc2, was found playing a role similar to that of mRNA and specifying which amino acids, the building blocks of proteins, to be added in cell mechanism.

“In this case, we have a protein playing a role normally filled by mRNA,” said Adam Frost, assistant professor at University of California, San Francisco.

“This surprising discovery reflects how incomplete our understanding of biology is,” said first author Peter Shen, a postdoctoral fellow in biochemistry at the University of Utah in the US.

The researchers added that the findings have implications for new therapies to treat neurodegenerative diseases such as Alzheimer’s, Amyotrophic lateral sclerosis (ALS) or Huntington’s.

The researchers described that ribosomes are machines on a protein assembly line, linking together amino acids in an order specified by the genetic code.

RCQ protein
A new finding goes against dogma, showing for the first time that the building blocks of a protein, called amino acids, can be assembled by another protein, and without genetic instructions). The Rqc2 protein (yellow) binds tRNAs (dark blue, teal) which add amino acids (bright spot in middle) to a partially made protein (green). The complex binds the ribosome (white). Image Credit: Janet Iwasa, Ph.D., University of Utah

When something goes wrong, the ribosome is generally disassembled, the blueprint is discarded and the partly made protein is recycled.

The new study, however, revealed that before the incomplete protein is recycled, Rqc2 can prompt the ribosomes to add just two amino acids (of a total of 20) – alanine and threonine – over and over, and in any order.

The nonsensical sequence likely serves specific purposes. The code could signal that the partial protein must be destroyed, or it could be part of a test to see whether the ribosome is working properly, the researchers noted.

For the study, they fine-tuned a technique called cryo-electron microscopy to flash freeze, and then visualse, the quality control machinery in cells in action.

The findings appeared in the journal Science.

View Article Here Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here Read More

Ring in the New Year with comet Lovejoy





Excerpt from smnweekly.com

Comet Lovejoy is scheduled to make an appearance right before New Year’s Day, a treat for astronomers looking forward to 2015.

Most revelers will be looking up to the sky to see the ball drop on New Year’s Eve, but skywatchers could be in for a treat if it’s not cloudy out: at around 11 PM local time the little comet, which looks a bit like a fuzzy green caterpillar, should be visible as it passes across the shins of the constellation Orion.

Of course not everyone is going to be interested in freezing their chestnuts off, especially in the colder climates of North America. If it’s too chilly for you to strain your eyes in order to spot the magnitude 5 comet, you can stay inside in the warmth and just wait for Lovejoy to grow a bit brighter. In fact, astronomers say you can expect the magnitude 5 comet to brighten to magnitude 4.1 over the next few weeks.

Best viewing conditions for New Year’s Eve will likely involve a bit of luck in not having any cloud cover. In addition, if you’ve got a pair of binoculars or a decent telescope you shouldn’t have any trouble spotting it – in fact, according to Alan MacRobert, senior editor of Sky and Telescope magazine, Lovejoy was clearly visible by using a pair of 10×50 magnification binoculars in a region that had more than its fair share of light pollution.


View Article Here Read More

Need Storage Space? Clutter the Moon With Your Old Junk

Excerpt from techtimes.com The Moon could be the next great dumping ground of the human race, an extraterrestrial garbage dump for castoff remains of unwanted pen sets, ugly sweaters, and dolls.Since the start of the space age, the Moon has beco...

View Article Here Read More

Top 10 Ridiculously Common Science Myths






listverse.com
There is nothing better than a bit of mythbusting (which accounts for the popularity of the television program of the same name), so here we are again, presenting you with a new list of terribly common misconceptions and myths – this time about science.

10
Evolutionary Improvements
Evolution Std.Jpg
The Myth: Evolution causes something to go from “lower” to “higher”
While it is a fact that natural selection weeds out unhealthy genes from the gene pool, there are many cases where an imperfect organism has survived. Some examples of this are fungi, sharks, crayfish, and mosses – these have all remained essentially the same over a great period of time. These organisms are all sufficiently adapted to their environment to survive without improvement.
Other taxa have changed a lot, but not necessarily for the better. Some creatures have had their environments changed and their adaptations may not be as well suited to their new situation. Fitness is linked to their environment, not to progress.

9
Humans Pop In Space
Ed-White.Jpg
The Myth: When exposed to the vacuum of space, the human body pops
This myth is the result of science fiction movies which use it to add excitement or drama to the plot. In fact, a human can survive for 15 – 30 seconds in outer space as long as they breathe out before the exposure (this prevents the lungs from bursting and sending air into the bloodstream). After 15 or so seconds, the lack of oxygen causes unconsciousness which eventually leads to death by asphyxiation.
8
Brightest Star
800Px-Sirius A And B Artwork.Jpg
The Myth: Polaris is the brightest star in the northern hemisphere night sky
Sirius is actually brighter with a magnitude of ?1.47 compared to Polaris’ 1.97 (the lower the number the brighter the star). The importance of Polaris is that its position in the sky marks North – and for that reason it is also called the “North Star”. Polaris is the brightest star in the constellation Ursa Minor and, interestingly, is only the current North Star as pole stars change over time because stars exhibit a slow continuous drift with respect to the Earth’s axis.
7
Five Second Rule
5Seconds1.Jpg
The Myth: Food that drops on the floor is safe to eat if you pick it up within five seconds
This is utter bunkum which should be obvious to most readers. If there are germs on the floor and the food lands on them, they will immediately stick to the food. Having said that, eating germs and dirt is not always a bad thing as it helps us to develop a robust immune system. I prefer to have a “how-tasty-is-it” rule: if it is something really tasty, it can sit there for ten minutes for all I care – I will still eat it.
6
Dark side of the Moon
179077120 (1)
The Myth: There is a dark side of the moon
Actually – every part of the moon is illuminated at sometime by the sun. This misconception has come about because there is a side of the moon which is never visible to the earth. This is due to tidal locking; this is due to the fact that Earth’s gravitational pull on the moon is so immense that it can only show one face to us. Wikipedia puts it rather smartly thus: “Tidal locking occurs when the gravitational gradient makes one side of an astronomical body always face another; for example, one side of the Earth’s Moon always faces the Earth. A tidally locked body takes just as long to rotate around its own axis as it does to revolve around its partner. This synchronous rotation causes one hemisphere constantly to face the partner body.”


5
Brain Cells
Brain Cell.Jpg
The Myth: Brain cells can’t regenerate – if you kill a brain cell, it is never replaced
The reason for this myth being so common is that it was believed and taught by the science community for a very long time. But in 1998, scientists at the Sweden and the Salk Institute in La Jolla, California discovered that brain cells in mature humans can regenerate. It had previously been long believed that complex brains would be severely disrupted by new cell growth, but the study found that the memory and learning center of the brain can create new cells – giving hope for an eventual cure for illnesses like Alzheimer’s.
4
Pennies from Heaven
Empirestatebuilding.Jpg
The Myth: A penny dropped from a very high building can kill a pedestrian below
This myth is so common it has even become a bit of a cliche in movies. The idea is that if you drop a penny from the top of a tall building (such as the Empire State Building) – it will pick up enough speed to kill a person if it lands on them on the ground. But the fact is, the aerodynamics of a penny are not sufficient to make it dangerous. What would happen in reality is that the person who gets hit would feel a sting – but they would certainly survive the impact.
3
Friction Heat
20050825-Meteor-Artist-Impression-110436.Jpg
The Myth: Meteors are heated by friction when entering the atmosphere
When a meteoroid enters the atmosphere of the earth (becoming a meteor), it is actually the speed compressing the air in front of the object that causes it to heat up. It is the pressure on the air that generates a heat intense enough to make the rock so hot that is glows brilliantly for our viewing pleasure (if we are lucky enough to be looking in the sky at the right time). We should also dispel the myth about meteors being hot when they hit the earth – becoming meteorites. Meteorites are almost always cold when they hit – and in fact they are often found covered in frost. This is because they are so cold from their journey through space that the entry heat is not sufficient to do more than burn off the outer layers.
2
Lightning
Lightning.Jpg
The Myth: Lightning never strikes the same place twice
Next time you see lightning strike and you consider running to the spot to protect yourself from the next bolt, remember this item! Lightning does strike the same place twice – in fact it is very common. Lightning obviously favors certain areas such as high trees or buildings. In a large field, the tallest object is likely to be struck multiple times until the lightning moves sufficiently far away to find a new target. The Empire State Building gets struck around 25 times a year.
1
Gravity in Space
Astronaut Banjo.Jpg
The Myth: There is no gravity in space
In fact, there is gravity in space – a lot of it. The reason that astronauts appear to be weightless because they are orbiting the earth. They are falling towards the earth but moving sufficiently sideways to miss it. So they are basically always falling but never landing. Gravity exists in virtually all areas of space. When a shuttle reaches orbit height (around 250 miles above the earth), gravity is reduced by only 10%.
Inspired by an excellent LiveScience Article. This article is licensed under the GFDL because it contains quotations from Wikipedia.

View Article Here Read More

Comet Lander Update: Sleeping Philae, Finally Spotted, Could Still Wake Up ~ New images of comet

Selfie of Philae lander with comet in background



Excerpt from 
christiantimes.com


After finally spotting the refrigerator-sized probe on comet 67P Churyumov-Gerasminko on Monday, the European Space Agency said there is still a chance that the sleeping robot could continue its epic journey across four billion miles of space.

This will happen if it reawakens in the coming weeks or months as the comet flies closer to the Sun. More sunlight means more energy to recharge the lander's batteries, said Dr. Stephan Ulamec, the Rosetta mission's Philae Lander Manager at the DLR German Aerospace Center in Darmstadt, Germany.

The comet – and Philae, together with its mother ship Rosetta – will reach their closest point to the Sun on Aug.13 next year at a distance of about 115 million miles, roughly between the orbits of Earth and Mars.

Mission control lost contact with Philae on Saturday when Rosetta flew below the comet's horizon.

In the meantime, focus is now on the mother ship, which is maneuvering back into the comet's orbit after dropping off Philae.
Next year, as the comet becomes more active as it approaches the Sun, ESA officials said Rosetta will fly unbound "orbits," making brief fly-bys to within five miles of the comet's surface.

On Monday, ESA scientists announced that they have finally spotted Philae on comet 67P Churyumov-Gerasminko based on the images taken and relayed by Rosetta.

Although the robot is barely visible in the pictures, a faint glint and shadow can be seen indicating the spot where it landed after it bounced off from its original landing site. Two harpoons that were supposed to anchor the probe to the ground failed to deploy, causing Philae to bounce half a mile back into space after its initial touchdown.

The latest images confirmed that the probe finally settled in the shadow of a crater wall where its solar panels could not absorb enough energy from sunlight.

Meanwhile, ESA has released mind-blowing close-up images of comet 67P taken by Rosetta and Philae before and after the comet landing. The images have been given Creative Commons license which means the public is free to share and use them. 

ESA image
This montage was captured about 10 km away from the comet's center.
ESA image
A "beauty shot" taken from 10 km away from the comet.
ESA image
This is one of the images that have been brightened to reveal the comet's surface since 67P has been described as "blacker than coal."
ESA image
This is a composite of the first two photographs ever taken from the surface of a comet.
ESA image
Philae’s intended landing site on the comet can be seen at the top of this image.
ESA image
The comet seen from 28.5 km away. How those craters got there is still debated.

View Article Here Read More

Comet lander: Camera sees Philae’s hairy landing

This collection of images was acquired when Rosetta was about 15km above the surface of 67P  Excerpt from bbc.com By Jonathan Amos Science correspondent, BBC NewsHigh-resolution pictures have now been released of the Philae pr...

View Article Here Read More

Rosetta Mission: European Space Agency Scientists Worry Philae Probe Is Running Out of Battery Power


Philae lander harpooned into comet

Excerpt from online.wsj.com

By Gautam Naik & Robert Wall

Situation Could Mean Early End for Important Experiments on Comet 


Scientists at the European Space Agency fear that the Philae probe now sitting on a comet’s surface may be on the verge of running out of battery power, a scenario that could bring key scientific experiments to a premature end.

The researchers will only know whether the primary batteries have drained or not late Friday, when they try to re-establish a radio link to the probe via Rosetta, a spacecraft in orbit around the comet. The probe and Rosetta can typically communicate twice a day because at other times the orbiter is below the horizon and can’t establish a direct signal.

Scientists are hoping to get contact around 10 p.m. German time, said Stephan Ulamec, who oversees operation for the lander. But if Philae fails to send a signal, he added, it would mean the battery had run out of juice.

The plan was for Philae to do scientific experiments for an initial 2 ½ days on primary battery power and then switch to solar panels that would keep it ticking for another three months. But because of an awkward landing near the face of cliff, the probe’s solar panels are being exposed to far less sunlight than was expected.

Despite the hitch, Philae has already done a significant amount of science on its new home. Its 10 instruments have so far garnered between 80%-90% of the data they were designed to collect, according to Dr. Ulamec.

It has beamed back detailed photographs of the comet’s rough terrain, analyzed the gases, and taken the comet’s temperature. It is now using radio waves to probe the comet’s nucleus and searching for organic molecules on the hostile surface.

Anticipating a possible loss of battery power, ESA scientists activated a drill during their last contact with the lander. The machine is designed to dig up the comet’s subsurface material and rotate it through an onboard oven to investigate its components. 

There may still be a way to extend Philae’s working life. During every 12-hour rotation of the comet, one of the lander’s solar panels is now exposed to an hour and 20 minutes of sunlight, while two other panels get the sun for less than 30 minutes each. 

Provided the signal to Philae can be re-established, scientists said they could rotate the lander slightly so that one of its larger solar panels can catch more sunlight. Another option is to eject the probe from its current location in the hope it lands in a spot where there is more sun.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑