Tag: spitzer space telescope

Extremely distant exoplanet discovered



 



Excerpt from  thespacereporter.com

According to a NASA statement, the agency’s Spitzer Space Telescope has taken part in the discovery of one of the most distant exoplanets yet found. Spitzer observations were combined with data from the Polish Optical Gravitational Lensing Experiment’s Warsaw Telescope, part of the Las Campanas Observatory in Chile. The newly found exoplanet is approximately 13,000 light-years from Earth, and could yield new clues as to the distribution of planets throughout the Milky Way.

The Warsaw Telescope gathers data through the phenomenon known as microlensing, which occurs when a star passes in front of another, more distant star as seen from Earth’s vantage point. The gravity of the nearer star magnifies and intensifies the distant star’s light; any planets orbiting the distant star appear as small disruptions in the magnification. So far, the microlensing methods has identified around 30 exoplanets, the most distant of which is around 25,000 light-years away.

However, the microlensing method cannot always show how far away are the more distant stars and their planets; the distances to about half of the exoplanets found with microlensing cannot be ascertained. Fortunately, Spitzer is able to help. Located 128 million miles from Earth, Spitzer is able to observe a microlensing event at a different time from the Warsaw Telescope, a method called parallax. In the case of the newly discovered exoplanet, the microlensing event was longer than norman, lasting 150 days. 
Spitzer observed the event 20 days earlier than Warsaw. This time delay allowed the distance to the newly found planet to be calculated. With the distance, the planet’s mass, approximately half that of Jupiter, also was determined.

“We’ve mainly explored our own solar neighborhood so far,” said Sebastiano Calchi Novati of NASA’s Exoplanet Science Institute at the California Institute of Technology. “Now we can use these single lenses to do statistics on planets as a whole and learn about their distribution in the galaxy.”

View Article Here Read More

Ground-based telescope spots alien ‘Super-Earth’

An artist's conception shows the size of super-Earth 55 Cancri e compared to Earth. A ground-based telescope in Spain was able to identify 55 Cancri e, which suggests that telescopes on the ground help in the search for habitable planets around other stars.


Excerpt from csmonitor.com

A telescope on the Canary Islands has spotted a planet twice the size of Earth as it passed in front of a star, the first time a planet in this category has been detected by a ground-based telescope.

Finding Earthlike planets beyond our solar system has largely been the work of space-based telescopes, but new observations from a remote island suggest that could change.

The Nordic Optical Telescope on La Palma — one of the Canary Islands off the west coast of Africa — observed 55 Cancri e, a planet twice the size of Earth, as it passed in front of its parent star and caused a dip in the star's brightness, according to a new study. This is the first time a planet in this "super-Earth" size category orbiting a sunlike star has been observed by a ground-based telescope using this detection method, the researchers say.

First identified in 2004 by a space-based telescope, 55 Cancri e has a diameter of about 16,000 miles (26,000 kilometers) — about twice that of Earth. The alien world is eight times as massive as Earth, making it a so-called super-Earth, a planet more massive than Earth but significantly smaller than gas giants like Neptune and Uranus. While not habitable, the planet's size and position around a sunlike star make it similar to planets that might support life, researchers say. 

The planet's detection with the Nordic telescope shows that observatories on the ground could use what's called the transit method — watching for dips in the brightness of a star to indicate a planet passing in front of it — to assist space-based telescopes in follow-up studies of super-Earths or Earthlike exoplanets, scientists say.

Nearly 2,000 exoplanets have now been confirmed, and upcoming exoplanet searches promise to expand that catalog. 

"We expect these surveys to find so many nearby terrestrial worlds that space telescopes simply won't be able to follow up on all of them. Future ground-based instrumentation will be key, and this study shows it can be done," Mercedes Lopez-Morales, co-author of the new research and a researcher at the Harvard-Smithsonian Center for Astrophysics (CfA), said in a statement.

Five exoplanets orbit the star 55 Cancri, which is located 40 light-years from Earth and is visible to the naked eye. The closest-orbiting of those five is 55 Cancri e, which completes one lap around the star every 18 hours. When the planet passes between Earth and the parent star, 55 Cancri appears to dim by 1/2000th (or 0.05 percent) for almost 2 hours, researchers said.


Daytime temperatures on 55 Cancri e likely reach higher than 3,100 degrees Fahrenheit (1,700 degrees Celsius) — hot enough to melt metal and much too hot to support life. But scientists involved with the study say this approach could help characterize the atmosphere of more hospitable Earthlike or super-Earth planets.


After its initial detection, 55 Cancri e also became the first super-Earth seen by NASA's Spitzer Space Telescope, using light directly from the planet. Thus, it has now served twice as a litmus test for super-Earth detection methods. 

In addition to the wealth of planets identified by NASA's Kepler Space Telescope, the space agency's Transiting Exoplanet Survey Satellite (TESS) mission, scheduled for launch in 2017, is expected to "discover thousands of exoplanets in orbit around the brightest stars in the sky," according to the TESS website. The European Space Agency's Planetary Transits and Oscillations of stars (PLATO) mission, planned for launch in 2024, will also search for a large number of exoplanets.

View Article Here Read More

NASA’s Spitzer Telescope captures asteroid collision

Artist's conception of asteroid collision techtimes.comWhen NASA's Spitzer Space Telescope spotted a huge eruption of dust surrounding a distant star, scientists knew they were watching history in the making.Scientists had been regularly tracking the...

View Article Here Read More

‘We finally found it’: Scientists get first look at ‘monster’ galaxy’s formation




theweek.com

Yale astronomers have at last gotten a first look at the formation of "the universe's monster galaxies," Phys.org reports, and the results are fascinating.

The research, which used data from NASA's Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's Herschel Space Observatory, and the W.M. Keck Observatory in Hawaii, was published Wednesday in the journal Nature. It marks the first time astronomers have seen the earliest stages of a massive galaxy's formation.

The Keck II telescope's Near Infrared Spectograph allowed the astronomers to watch the galaxy — officially called GOODS-N-774 but nicknamed "Sparky" — produce massive amounts of stars. Witnessing this formation gave them new insight into how ancient galaxies may have formed 11 billion years ago — only 3 billion years after the Big Bang.

The scientists found that Sparky's formation is unique to the early universe that it developed in: its rapid gas movement was often violent, and it produced as many as 300 stars per year — an astounding amount of stars, especially considering its relatively tiny size (it measured roughly 6,000 light-years across). The Milky Way, by contrast, only produces roughly 10 stars annually, but spans 100,000 light-years.

"I think our discovery settles the question of whether this mode of building galaxies actually happened or not," said Pieter van Dokkum, one of the Yale astronomers. "The question now is, 'How often did this occur?' We suspect there are other galaxies like this that are even fainter in near-infrared wavelengths. We had been searching for this galaxy for years, and it's very exciting that we finally found it." --Meghan DeMaria

View Article Here Read More

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑