Tag: speeding (page 1 of 3)

MAKE THIS VIRAL! WEEKLY ASCENSION MEDITATION

  It is time to take action again! It is time to take the destiny of our world in our own hands! We all agree that the process of planetary liberation is taking too long. Here is our chance to collectively speed up the process. Therefore we are up...

View Article Here Read More

Weekly Event Meditation

  It is still of the utmost importance for as many people a possible to join our Weekly Meditation each Sunday. The light forces have instructed us to change Weekly Liberation Meditation into Weekly Event Meditation to change focus from the proces...

View Article Here Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here Read More

Astronomers find star speeding out of the galaxy





(Reuters) - Astronomers have found a star hurtling through the galaxy faster than any other, the result of being blasted away by the explosion of a massive partner star, researchers said on Thursday.
The star, known as US 708, is traveling at about 746 miles (1,200 km) per second, fast enough to actually leave the Milky Way galaxy in about 25 million years, said astronomer Stephan Geier with Germany-based European Southern Observatory, which operates three telescopes in Chile.

"At that speed you could travel from Earth to the moon in five minutes," noted University of Hawaii astronomer Eugene Magnier.
US 708 is not the first star astronomers have found that is moving fast enough to escape the galaxy, but it is the only one so far that appears to have been slingshot in a supernova explosion.

The 20 other stars discovered so far that are heading out of the galaxy likely got their impetus from coming too close to the supermassive black hole that lives at the center of the Milky Way, scientists report in an article in this week’s edition of the journal Science.

Before it was sent streaming across the galaxy, US 708 was once a cool giant star, but it was stripped of nearly all of its hydrogen by a closely orbiting partner. Scientists suspect it was this feeding that triggered the partner’s detonation.

If confirmed, these types of ejected stars may provide more insight into how supernova explosions occur. Since the explosions give off a fairly standard amount of radiation, scientists can calculate their distances by measuring how bright or dim they appear and determine how fast the universe is expanding.

View Article Here Read More

Birth of the Nibiru Legend? Astronomers Say Alien Star System Buzzed Our Sun

Scholz's star - shown in this artist's impression - is currently 20 light-years away. But it once came much closerExcerpt from bbc.comAn alien star passed through our Solar System just 70,000 years ago, astronomers have discovered.  No othe...

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

Get ready! NASA spacecraft soon to rendezvous with dwarf planet Ceres




Excerpt from latimes.com

After voyaging 2.4 billion miles through space, NASA’s Dawn spacecraft is finally in the home stretch of its journey to Ceres, the largest member of the asteroid belt and one of five dwarf planets in the solar system.
Dawn was launched in 2007 to study two very different asteroids and learn more about the building blocks of our solar system. Ceres is Dawn’s second stop; its first was Vesta, which the spacecraft circled from July 2011 to September 2012.

Now, after leaving Vesta and traveling through space for more than two years, the spacecraft is roughly 400,000 miles away from Ceres and speeding toward it at about 450 mph, with a rendezvous set for March 6.
Ceres is a dwarf planet, along with Haumea, Makemake, Pluto and Eris (whose discovery led to Pluto’s infamous planetary demotion). At 590 miles across and holding roughly a third of the mass of the asteroid belt, Ceres is large enough that its own gravity pulls it into a spherical shape – which is part of why it was once considered to be very planet-like. In fact, Ceres was listed as a planet for decades after its discovery in 1801, and was briefly reconsidered during the 2006 debate surrounding Pluto’s planetary status.
Ceres is the only dwarf planet in the inner solar system. Although it’s much larger than Vesta, it’s more of a mystery. Scientists have meteorites that they believe are from Vesta, which they can study and compare to Dawn’s observations of the asteroid; but no such fragments found on Earth have been linked to Ceres. Until now, fuzzy images taken by NASA’s Hubble Space Telescope have provided our best view of the icy dwarf planet. But that should change by the end of January, as Dawn approaches its target.


Why are these two "protoplanets" so different? Scientists think Vesta formed earlier, when radioactive material was more abundant and produced more heat, leaving the asteroid very dry. Ceres may have formed later. Some researchers also think that Ceres may have originated much farther out in the solar system, before being yanked into its current position during a dramatic upheaval earlier in the solar system’s development.

As building blocks of our solar system that never became full planets, these protoplanets’ divergent life stories could shed light on the early solar system’s history.


View Article Here Read More

Amazon, Google, IBM & Microsoft Want to Store Your Genome


Excerpt from  technologyreview.com


By Antonio Regalado

 For $25 a year, Google will keep a copy of any genome in the cloud.

Google is approaching hospitals and universities with a new pitch. Have genomes? Store them with us.

The search giant’s first product for the DNA age is Google Genomics, a cloud computing service that it launched last March but went mostly unnoticed amid a barrage of high profile R&D announcements from Google...

Google Genomics could prove more significant than any of these moonshots. Connecting and comparing genomes by the thousands, and soon by the millions, is what’s going to propel medical discoveries for the next decade. The question of who will store the data is already a point of growing competition between Amazon, Google, IBM, and Microsoft.

Google began work on Google Genomics 18 months ago, meeting with scientists and building an interface, or API, that lets them move DNA data into its server farms and do experiments there using the same database technology that indexes the Web and tracks billions of Internet users.

This flow of data is smaller than what is routinely handled by large Internet companies (over two months, Broad will produce the equivalent of what gets uploaded to YouTube in one day) but it exceeds anything biologists have dealt with. That’s now prompting a wide effort to store and access data at central locations, often commercial ones. The National Cancer Institute said last month that it would pay $19 million to move copies of the 2.6 petabyte Cancer Genome Atlas into the cloud. Copies of the data, from several thousand cancer patients, will reside both at Google Genomics and in Amazon’s data centers.

The idea is to create “cancer genome clouds” where scientists can share information and quickly run virtual experiments as easily as a Web search, says Sheila Reynolds, a research scientist at the Institute for Systems Biology in Seattle. “Not everyone has the ability to download a petabyte of data, or has the computing power to work on it,” she says.

Also speeding the move of DNA data to the cloud has been a yearlong price war between Google and Amazon. Google says it now charges about $25 a year to store a genome, and more to do computations on it. Scientific raw data representing a single person’s genome is about 100 gigabytes in size, although a polished version of a person’s genetic code is far smaller, less than a gigabyte. That would cost only $0.25 cents a year.


The bigger point, he says, is that medicine will soon rely on a kind of global Internet-of-DNA which doctors will be able to search. “Our bird’s eye view is that if I were to get lung cancer in the future, doctors are going to sequence my genome and my tumor’s genome, and then query them against a database of 50 million other genomes,” he says. “The result will be ‘Hey, here’s the drug that will work best for you.’ ”


At Google, Glazer says he began working on Google Genomics as it became clear that biology was going to move from “artisanal to factory-scale data production.” He started by teaching himself genetics, taking an online class, Introduction to Biology, taught by Broad’s chief, Eric Lander. He also got his genome sequenced and put it on Google’s cloud.

Glazer wouldn’t say how large Google Genomics is or how many customers it has now, but at least 3,500 genomes from public projects are already stored on Google’s servers. He also says there’s no link, as of yet, between Google’s cloud and its more speculative efforts in health care, like the company Google started this year, called Calico, to investigate how to extend human lifespans. “What connects them is just a growing realization that technology can advance the state of the art in life sciences,” says Glazer.

Datta says some Stanford scientists have started using a Google database system, BigQuery, that Glazer’s team made compatible with genome data. It was developed to analyze large databases of spam, web documents, or of consumer purchases. But it can also quickly perform the very large experiments comparing thousands, or tens of thousands, of people’s genomes that researchers want to try. “Sometimes they want to do crazy things, and you need scale to do that,” says Datta. “It can handle the scale genetics can bring, so it’s the right technology for a new problem.”

View Article Here Read More

David Wilcock – The Solar System Is Moving Into A New Area Of Vibration

According to the research of David Wilcock, there is an impending shift going on within our solar system that will give us all the opportunity to make a quantum leap in consciousness.I was watching a "Contact In The Desert" video featuringDavid Wilcock and he brought up some information that is quite fascinating.The following is an excerpt from "The Brown Notebook" which is a channeling from Walt Rogers that was done in the 1950's.   Much of what was channeled is proving to be tr [...]

View Article Here Read More

Shadow People

Have you ever seen some energy out of the corner of your eye and when you looked, nothing was there?  More and more people are talking about seeing shadow people and are wondering who they are and what their purpose is. Who are shadow people? Shadow people are commonly reported as being seen through peripheral vision and while you may feel something was there, the shadow person is either gone or quickly moving away from you by the time you turn your head. Parallel dimensional beings I [...]

View Article Here Read More

Schumann Resonance And The Time Speeding Up Phenomenon

Time is actually speeding up (or collapsing). For thousands of years the Schumann Resonance or pulse (heartbeat) of Earth has been 7.83 cycles per second, The military have used this as a very reliable reference. However, since 1980 this resonance has been slowly rising. Some scientists believe that it is rising faster than we can measure seeing as it is constantly rising while measuring.This is from a member of the Physics Forum:"The universe is expanding; interstellar distances [...]

View Article Here Read More

Galactic Federation of Light Archangel Michael May-19-2013

The expanding awareness of Self. — channeled by Ron Head
http://oraclesandhealers.wordpress.com/2013/05/19/the-expanding-awareness-of-self-channeled-by-ron-head/#more-3304

Michael

We wish now to discuss with you the expanding awareness of Self. You will note that we

View Article Here Read More

Galactic Federation of Light Mother Mary May-19-2013

Mother Mary: Let Yourself Soar Into The Stillness That Is Your Core ~ Channeled through Fran Zepeda ~ May 19, 2013
Thanks to Franheal: http://franheal.wordpress.com/2013/05/19/mother-mary-let-yourself-soar-into-the-stillness-that-is-your-core-channeled-through-fran-zepeda-may-19-2013-3/

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑