Tag: spacex (page 2 of 2)

CEO of Tesla Motors is trying to bring the Internet to space

 Excerpt from cnet.com The SpaceX CEO wants to build a satellite network high above Earth that would speed up the Internet and bring access to underserved communities. And he'll use the profits to help colonize Mars.  Elon Musk, the man who...

View Article Here Read More

Cape hopes to be world’s busiest spaceport in 2016



A United Launch Alliance Delta IV rocket, with the
A United Launch Alliance Delta IV rocket, with the Air Force’s AFSPC-4 mission aboard.(Photo: United Launch Alliance)


Excerpt from news-press.com


With two dozen rockets projected to blast payloads into orbit, Cape Canaveral this year hopes to claim the title of "world's busiest spaceport," the Air Force's 45th Space Wing said Tuesday.
"It's a great time to be here," said Col. Thomas Falzarano, commander of the Wing's 45th Operations Group. "Business is booming."

Falzarano presented the Eastern Range launch forecast to several hundred guests at the National Space Club Florida Committee's meeting in Cape Canaveral.

Weather, technical issues and program changes frequently delay launches, so it's likely some of the missions will slip into next year. But the forecast shows the Space Coast launching at an increasingly busy clip even without human spaceflight missions, which aren't expected to resume for several years.

The 2015 forecast anticipates United Launch Alliance matching last year's total of 10 Cape launches, including eight by Atlas V rockets and two by Delta IV rockets.

And it assumes as many as 14 launches by SpaceX. Last year had six Falcon 9 flights.

That was SpaceX's most launches in a calendar year, but five fewer than was projected last January.


This year the company hopes to activate a second launch pad, complementing its existing one at Cape Canaveral Air Force Station.

The debut of the Falcon Heavy rocket from a former Apollo and shuttle pad at Kennedy Space Center would be one of this year's most highly anticipated launches.

In addition, SpaceX plans to launch more ISS resupply missions, and commercial and government satellites.


ULA's first launch of the year is coming up Tuesday, with an Atlas V targeting a 7:43 p.m. liftoff with a Navy communications satellite.

The Boeing-Lockheed Martin joint venture has its usual slate of high-value science and national security missions. The manifest includes a roughly $1 billion NASA science mission, an X-37B military space plane and more Global Positioning System satellites.

Overall last year, the 45th Space Wing supported 16 space launches — five less than projected last January (all attributed to SpaceX) — plus two Trident missile tests launched from submarines.
That ranked the Cape No. 2 behind the Baikonur Cosmodrome in Kazakstan, Falzarano said.

But with 24 missions potentially on the books this year and more than 30 in various planning stages for 2016, Falzarano said the Eastern Range is facing its busiest two-year stretch in more than two decades.

"The Cape, right here, is going to be the busiest spaceport in the world," he said.



Growing launch rate
2013: 14
2014: 18
2015: 24 (projected)
Source: U.S. Air Force 45th Space Wing

View Article Here Read More

Elon Musk Attempts Landing a Rocket on a Boat


Picture of the SpaceX Falcon 9 rocket at Cape Canaveral
A SpaceX Falcon 9 rocket stands ready to boost a Dragon capsule on its fifth commercial resupply mission to the International Space Station. If all goes as planned, the rocket will land on a barge on Saturday.

Excerpt from 
news.nationalgeographic.com


SpaceX chief aims to make rockets reusable by guiding them to a barge instead of letting them splash down. 

Rockets have landed on the moon and on Mars, but now SpaceX rocket maven Elon Musk aims to land one someplace really exotic—a barge floating in the Atlantic Ocean.

The barge, or "autonomous spaceport drone ship" as SpaceX calls it, is scheduled to land its returned rocket on Saturday, about 17 minutes after the planned 4:47 a.m. (EST) launch of a Dragon cargo spacecraft heading to the International Space Station from the Cape Canaveral Air Force Station in Florida.

The point of the barge landing is to recover the rocket's expensive engines and reuse them. Until now, rocket engines have typically been allowed to burn up on reentry or plummet into the ocean, either for disposal or recovery later by boat. If SpaceX pulls off the barge landing, it will be a first for ocean landings.

The barge's landing site, just 300 feet by 170 feet in size (about 90 by 50 meters), will act as the outfielder's glove to catch the massive first stage of the Falcon 9 launch rocket, maneuvered into place by remote control.

"Our main mission is to get cargo to the space station," said SpaceX's Hans Koenigsmann, speaking last week at a NASA briefing. "I'm pretty sure it will be pretty exciting," he said of the attempted controlled landing of the 14-story-tall first stage of the rocket on a flat floating platform.

Failure an Option

SpaceX has successfully landed rocket stages on land, and made a controlled landing on water after a past cargo launch, which still led to the loss of the rocket stage in the drink. Musk has previously suggested that barge landings of stages would expedite their reuse, leading to cheaper rocketry.

Musk gave 50 percent odds of the barge landing working out. ("I pretty much made that up. I have no idea," he added in a recent web chat on Reddit.)

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

NASA partnering with four companies to develop a new commercial space program


NASA-partnering-four-companies

Excerpt from
capitalberg.com 

NASA will collaborate with four U.S. based companies to develop a new commercial space program.

NASA will collude with Space Exploration Technologies (SpaceX), Final Frontier Design, United Launch Alliance and the ATK Space Systems. NASA named this initiative as the Collaborations for Commercial Space Capabilities (CCSC).

Phil McAlister, NASA’s commercial spaceflight development head, said “Companies in all shapes and sizes are investing their own capital toward innovative commercial space capabilities. This collaboration demonstrates the diversity and maturity of the commercial space industry. We look forward to working with these partners to advance space capabilities and make them available to NASA and other customers in the coming years,”

The program includes the development of new vehicles that shall aid space exploration and flourish intra-vehicular activity space suits.

View Article Here Read More

SpaceX Will Try to Land Rocket on Floating Ocean Platform

 Excerpt from space.com  SpaceX will apparently attempt something truly epic during next week's cargo launch to the International Space Station. During the Dec. 16 launch from Florida's Cape Canaveral Air Force Station, which will send ...

View Article Here Read More

Mars Capsule Test Heralds New Space Age With Musk Alongside NASA




Excerpt from
bloomberg.com

The U.S. is preparing to launch the first craft developed to fly humans to Mars, presaging a second space age -- this one fueled by billionaires like Elon Musk rather than a Cold War contest with the Soviet Union. 

An unmanned version of the Orion spaceship built by Lockheed Martin Corp. (LMT) is scheduled for liftoff tomorrow to an altitude of 3,600 miles (5,800 kilometers), the farthest from Earth by a vehicle designed for people since the Apollo program was scrapped in 1972. 

Entrepreneurs such as Musk and longtime contractors like Lockheed are helping shape the technology needed to find other homes for humanity in the solar system with an eye to one day commercializing their work. 

“These are really exciting times for space exploration and for our nation as we begin to return to the ability to fly humans to space,” said Jim Crocker, vice president and general manager of civil space at Lockheed Martin Space Systems. “What Orion is about is going further into space than humans have ever gone before.”
Photographer: Brent Lewis/The Denver Post via Getty Images

Launched from Kennedy Space Center in Florida atop a Delta IV rocket, the Orion capsule will test the riskiest systems needed to carry astronauts far beyond the moon, although its first flight will cover only about 2 percent of the 238,900-mile distance to the lunar surface.

Speed Limit

After orbiting earth twice, Orion will accelerate to 20,000 miles per hour during descent, mimicking the speeds of a craft returning from a mission to deep space. The capsule is supposed to make a parachute-cushioned splashdown in the Pacific Ocean off Mexico’s Baja peninsula. 

To explore the universe, the National Aeronautics and Space Administration must first redevelop capabilities abandoned more than 40 years ago when the U.S. shifted focus from Apollo’s lunar forays to rocketing crews a few hundred miles to low Earth orbit.
NASA has used Russian craft to reach the International Space Station since the space shuttle program ended in 2011. 

In a strategic shift, the Obama administration canceled plans to return to the moon, turning some flights to commercial companies while setting its sights -- and limited funds -- on pioneering deep space. The Orion capsule was originally commissioned in 2006 for the defunct Constellation program.

Musk, Bezos

Those moves paved the way for technology chieftains including Musk and Amazon.com Inc. (AMZN) founder Jeff Bezos to pursue their own space ambitions. 

Musk founded Hawthorne, California-based SpaceX in 2002 with the goal of enabling people to live on other planets, a massive endeavor that would require innovations such as reusable rocket stages to lower costs. 

Mars is also in focus for NASA as the space agency maps plans to “pioneer the space frontier,” according to a May 29 white paper.

$22 Billion

NASA proposes an initial $22 billion effort that includes two other Orion missions over the next eight years and building a powerful new rocket. The Delta IV being used tomorrow is manufactured by United Launch Alliance, a Lockheed-Boeing Co. (BA) venture.

A new Space Launch System rocket being developed by the partnership is slated to hoist the next Orion craft beyond the moon in fiscal 2018, Lockheed’s Crocker said in a phone interview. The first manned Orion mission is slated for early in the next decade.
NASA’s plans are “sketchy” beyond that, aside from broad goals to capture asteroid samples in the 2020s and reach Mars a decade later, said Marco Caceres, director of space studies with Fairfax, Virginia-based consultant Teal Group. 

Average Distance

While Mars’s distance from Earth varies because of the two planets’ orbits, the average is about 140 million miles, almost 600 times longer than a trip to the moon. It’s so far that radio communications take as long as 20 minutes to travel each way, according to Bill Hill, NASA’s deputy associate administrator for exploration systems development. 


Entrepreneurs such as Musk will have opportunities to get involved as NASA refines capsule and rocket designs. NASA plans to develop two larger rockets beyond the initial launch vehicle, which will be capable of hauling a 70-metric ton payload. 

“We’re not taking any options off the table,” Hill said. “We want to be sufficiently flexible so that if we find a new path, we can introduce it and not change course.” 

Expense, shifting political priorities and the lack of a clear NASA road map could still derail the latest effort as they did the Apollo program in the early 1970s, said Micah Walter-Range, director of research analysis with the Space Foundation, a non-profit organization based in Colorado Springs, Colorado. 

“All of the challenges that exist are surmountable,” Walter-Range said by phone. “It’s just a question of having the money to do it.”

View Article Here Read More

Elon Musk fears our progress in artificial intelligence is ‘seriously dangerous’


 


Excerpt from
sciencerecorder.com



Visionary technology figure Elon Musk has been warning the public for months about possible threats posed by artificial intelligence. But now he has a timeline.

Musk, the South African-born CEO of Tesla Motors and SpaceX, wrote that “the risk of something seriously dangerous happening is in the five year time frame. 10 years at most.”

Musk penned this comment at the bottom of an essay written by virtual pioneer Jaron Lanier called “The Myth of A.I.” The essay appeared in the publication Edge.org last week and was followed by comments from such technology notables as George Dyson, Peter Diamandis, and Kevin Kelly.

While Musk’s comment was deleted, it was picked up by sites such as Mashable and Reddit, which preserved it for a larger audience. According to these sites, Musk zeroed in on companies such as DeepMind, a British artificial intelligence company that Musk once invested in before it was purchased by Google.

“The pace of progress in artificial intelligence (I’m not referring to narrow AI) is incredibly fast,” Musk’s piece read. “Unless you have direct exposure to groups like DeepMind, you have no idea how fast-it is growing at a pace close to exponential.”

Musk mentioned that AI companies “recognize the danger” and were working to ameliorate any negative intelligences “from escaping into the Internet.”

While Musk had sent his comment privately to Edge.org by email, it was published by a site editor before it was taken down. A Musk spokesperson has said that Musk will write a longer piece outlining his thoughts on the dangers of artificial intelligence, presumably to be published on the same website.

Previously, Musk has compared AI to “summoning the demon,” nuclear war, and the “Terminator” series.

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

Microsoft co-founder’s company may fund space-bound passenger plane



Sierra Nevada’s Dream Chaser


thespacereporter.com


Stratolaunch Systems, a commercial spaceflight startup company, might purchase a three-passenger version of Sierra Nevada’s Dream Chaser in a bid to implement its goals of putting both satellites and people into orbit beginning in 2018.
Sierra Nevada recently filed a complaint against NASA for awarding commercial spaceflight contracts to its competitors, Boeing and Space Exploration Technologies, or SpaceX, to develop vehicles to transport astronauts to the International Space Station (ISS) in three years, ending American dependence on Russia’s Soyuz capsule for the task.
The Colorado company is arguing its proposed vehicle, the seven-passenger Dream Chaser, would cost $900 million less than Boeing’s vehicle.
A decision on Sierra Nevada’s complaint is expected to be issued by the U.S. General Accountability Office in early January.
Stratolaunch, owned by Microsoft co-founder Paul Allen, envisions using a smaller version of the Dream Chaser as part of a space transportation system it is currently developing.
Its plans include construction of a huge airplane with a 117-meter wingspan that will carry both satellites and passengers into space. The airplane,which will be powered by six 747 engines, will be capable of carrying satellites of up to 6,124 kg.
The Dream Chaser, which will have its own upper stage motor, could ride on top of the airplane, which will be capable of launching objects as high as 2000 km over the planet.
While Stratolaunch has not made a final decision on the purchase, the company’s executive director Charles Beames publicly expressed confidence in Sierra Nevada’s vehicle.
“Dream Chaser seemed to be the logical way to go. We feel pretty good that we have enough analysis there,” he said.
Allen plans to make a decision by year’s end regardless of the outcome of Sierra Nevada’s complaint against NASA.
An infusion of funding from Stratolaunch could give new life to the Dream Chaser in the wake of its failed contract bid.

View Article Here Read More

NASA Partners With Boeing And SpaceX To Send Astronauts Up In Space Taxis



techcrunch.com

NASA has announced a deal with SpaceX and Boeing to build space taxis to shuttle astronauts to the International Space Station. This deal will end NASA’s reliance on expensive Russian crew transport by 2017. The cost was a whopping $71 million per seat. However, the rising tensions in Ukraine may have also been a factor in the push for U.S. contracts.
It’s still not clear which company is going to get to command the first mission to carry humans into low-Earth orbit on a spacecraft, but according to NASA, the vehicles chosen will either be Boeing’s CST-100 or SpaceX’s Dragon. The total potential contract value is $4.2 billion for Boeing and $2.6 billion for SpaceX.
NASA also considered a bid from privately owned Sierra Nevada Corp. but went with Boeing and SpaceX instead. It should be noted that Boeing and SpaceX have won most of NASA’s development funds.
SpaceX already has a $1.3 billion NASA contract to fly cargo to the space station. SpaceX will now upgrade its Dragon freighter and is expected to launch on top of the company’s Falcon 9 rocket to the orbiting outpost this week, according to Space.com. It will be packed with more than 5,000 lbs of materials for the crew – including the first ever 3D printer in space.
NASA also has a $1.9 billion contract for resupply missions with Orbital Sciences Corp.
Here’s a video of what could potentially be the first ever space taxi, the SpaceX Dragon, for reference:

 Click to zoom

View Article Here Read More

Tesla owner wants to build cities on Mars

By , computerworld.com 

Calling Mars a real 'fixer upper,' Elon Musk looks to colonize Red Planet


Elon Musk, CEO and co-founder of SpaceX, not only wants to send astronauts to Mars, he wants to build a city there. 

SpaceX is vying with Boeing Co. for a $3 billion project that would have astronauts in spacecraft launching from U.S. soil again. Since the U.S. retired its fleet of space shuttles in 2011, NASA has been dependent on Russia to ferry its astronauts back and forth to the International Space Station.

That arrangement has proved to be increasingly sticky given the increased tensions between the two countries since Russia has aggressively moved to annex Ukraine. 

NASA executives hope to have the spacecraft and launching capabilities to send humans into orbit by 2017. 

SpaceX, one of two private companies ferrying supplies, food and scientific experiments to the space shuttle, wants to be the company ferrying humans as well. 

And in a press conference last week, Musk reportedly reiterated that he wants to populate Mars and he wants SpaceX to be the company at the core of that project. 

Musk told a group of reporters that winning the $3 billion project, which is expected to be announced this month, would be a solid step toward his goal of creating cities on Mars, according to a report in Bloomberg.com

In last week's press conference, Musk echoed what he said over the summer in an interview with Stephen Colbert, host of the TV show, The Colbert Report

"We're aspiring to send people to Mars," Musk said on the show. "If humanity is on more than one planet – if we're a multi-planet species… then civilization as we know it -- the light of consciousness -- will likely propagate much further than if we're a single-planet species. And although I'm quite optimistic about life on Earth, at some point there's likely to be some calamity, either natural or man made. I'm not a doomsdayer but that preserves the future of humanity. It's like life insurance, collectively." 

Other than hoping to save the human species, Musk also said colonizing Mars would be thrilling.
"It would be just the greatest adventure ever," he said. "It would be really exciting and inspiring… It is a fixer upper of a planet. It's going to take some work but it's possible to transform Mars into an Earth-like planet." 

SpaceX is scheduled to launch a resupply mission to the space station on Sept. 20 from Cape Canaveral Air Force Station in Florida. Along with cargo of food and equipment, the spacecraft also will carry what's been dubbed the ISS-RapidScat instrument. 

The instrument is a replacement for NASA's QuikScat Earth satellite, which has been monitoring ocean winds for climate research, weather predictions, and hurricane monitoring.

View Article Here Read More
Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑