Tag: sort (page 2 of 8)

How the Secession Movement Could Break Up the U.S.



new U.S. map
Excerpt from charismanews.com  
A new map of the U.S. could include a state called Jefferson, made up of Northern California and Southern Oregon, a new state called Western Maryland and a new state called North Colorado. (CBN)

If you mention the word secession most people think of the South during the Civil War. But today, a new movement is gaining steam because of frustration over a growing, out-of-control federal government.
A number of conservative, rural Americans are taking about seceding and creating their own states, meaning a new map of the United States of America could include the following:
  • A 51st state called Jefferson, made up of Northern California and Southern Oregon
  • A new state called Western Maryland
  • A new state called North Colorado
These are real movements gaining traction with voters across the country. Jeffrey Hare runs the 51st State Initiative in Colorado, an effort to fight an out-of-control legislature trying to ram big government policies down the throats of voters.
"We're at this point of irreconcilable differences," Hare told CBN News.





Secessionist talk has filled town hall meetings and the divide discussed is not just ideological.
"It's predominately left versus right, but it's urban versus rural because you typically find more typical conservative values in rural America," Hare said.
An Attack on Colorado?
That's the crux of the issue. Rural Americans across many states feel they're not being heard. Their laundry list is long and at the top of that list are stricter gun control laws.
According to Weld County, Colo., Sheriff John Cooke, the state legislature is out of control.
"They are out of touch with rural Colorado," he said. "There is an attack on rural Colorado and it's not just on gun control laws. It's on several of the other bills that they passed."
Government mandates on renewable energy, environmental policies restricting oil and gas drilling, and controversial social issues like gay marriage have also led to this divide and talk of secession.
Organizers want to create "North Colorado," an idea that went to voters in 11 counties this past fall. But not everyone in Colorado thinks secession is a great idea.
"I don't think that's necessarily the way to make something happen within the area you live," Colorado resident Greg Howe told CBN News. "You're supposed to work within our electoral services."
The so-called secession movement in Colorado had mixed results this past November. Some counties approved it. Others didn't.
But the organizers of the 51st State Initiative are undaunted, saying this type of movement takes time.
"Movements take a while; education takes time," Hare said. "People do have a hard time saying ,'I want to live in a different state,' even though physically they live in the same house."
"It's hard for them since their lives have been Coloradoans," he explained. "Their whole lives to say that 'I'm going to be a new Coloradoan' or 'I want to live in the state of liberty' or something different."
An 'Amicable' Divorce
That desire for something different can also be felt in Arizona, Michigan, and in Western Maryland where thousands have signed secession petitions.
One website reads, "We intend to exercise our right of self-determination and self-governance to better secure our rights to life, liberty, and the pursuit of happiness."

Scott Strzelczyk, the leader of the Western Maryland movement, is ready to get going.
"If they are not going to listen or take our needs into consideration and govern in a way that's more in accordance with the way we want to be governed we are seeking an amicable divorce," he said.
Meanwhile, in Northern California and Southern Oregon, activists want to come together in the state of "Jefferson."
Their proposed state flag includes two "Xs," representing their feeling of being double-crossed by the state capitals of Sacramento, Calif., and Salem, Ore.
No Small Task
Creating a new state isn't easy. The last time a state actually gave up territory was in 1820, when Maine split from Massachusetts. Since then, additional efforts have been unsuccessful. 
The first step is getting it passed by the state legislature and then the U.S. Congress.
"This is a valid constitutional process that our founding fathers specifically wrote into the Constitution," Hare said. "Well, if they didn't write this into the Constitution to be used, then why did they write it in?"
But supporters have an uphill battle since the media will not be their friend.
"The danger is once the outside media start to grab hold of it, the attention is on the difficulty, the almost impossibility of it happening," professor Derek Everett, with Metropolitan State University in Denver, explained.
Voter 'Disconnect'
State secession proponents, like Roni Bell Sylvester of Colorado, say they will keep fighting because the dismissive attitude of state legislative bodies must end.
"I find the sort of arrogant, dismissive to be further proof as to just how disconnected the urban is from the rural," Sylvester said.
Movements like the one in Colorado and other states could be just the beginning—at least that's the talk at town hall meetings in places like Colorado and elsewhere.
It's called 'voter disconnect" where the people say they've had enough and are crying out for something to be done.
"We, at some point, have to figure out a way to get our point across or at least be able to have a dialogue and not be ignored because you haven't seen anything yet over the next 5 to 10 years," one resident warned at a recent town hall meeting in Colorado.
As for Hare, he said it boils down to one simple concept.
"I think ultimately what people want, whether you look at it from a right or left paradigm, is government to stay out of their business," he said.

View Article Here Read More

Radio bursts from space reveal strange mathematical pattern





Excerpt from foxnews.com

Eleven fast radio bursts from space seem to follow a strange mathematical pattern, according to a new study – and it has researchers scratching their heads. 

According to study co–authors Michael Hippke of the Institute of Data Analysis in Neukirchen-Vluyn,  Germany, and John Learned of the University of Hawaii in Manoa, the bursts– which were first detected in 2001 – all had dispersion measures that were integer multiples of the same number: 187.5. “The astronomers that found [the bursts] have not seen such things before and do not understand them,” Learned told FoxNews.com.

Nobody knows what causes fast radio bursts, known as FRBs. They only last a few milliseconds, and only one so far has been captured live (by the Parkes Telescope in Australia last year). Though the bursts release just as much energy in a few milliseconds as the sun does in a month, their brevity indicates that the source must be small, with estimates being several hundred miles across at most.

Researchers use dispersion measures, which records how much “space gunk” the burst has passed through, to estimate the distance an FRB has travelled. For instance, a low frequency FRB will have more gunk on it, indicating a longer trip, whereas a high frequency FRB will be cleaner, indicating it came from closer to Earth.
The fact that all of the FRBs’ dispersion measures are integer multiples of 187.5 has, according to Hippke and Learned’s team’s calculations, a 5 in 10,000 chance of being coincidental. The dispersion measures also indicate that their origin is relatively close to Earth, but unlikely from within our own galaxy.

There are numerous theories on where these bursts came from, including speculation that the messages are from extraterrestrial intelligence. To the scientific community, however, this theory doesn’t really hold water, and is seen as more of a last resort only after all other avenues have been exhausted.

“We think these are likely from some very energetic process, like a burst from a high magnetic field neutron star or energy released [when] two neutron stars merge,” Professor Maura McLaughlin of the West Virginia University Center for Astrophysics explained. “The thing that made people think they were possibly from ETs was a recent paper that showed that one fundamental property is quantized in a way that wouldn't be expected if the signals were naturally occurring. However, I imagine that correlation will totally go away once more are discovered.”

Learned himself is dubious of an alien source as well, noting that he and Hippke only noted the dispersion measures’ “peculiar” pattern, and that they may even be coming from Earth. “We are now leaning more towards a terrestrial, anthropogenic interpretation,” he said. “At this point I would place my money on some sort of governmental satellite, not a natural phenomena, but I would not bet much.  More data, which reportedly [is] being analyzed but which we have no insider information about yet, will be most interesting and refute or confirm our hypotheses.” He also noted that he’d only look to an ETI interpretation once all other possibilities have been eliminated.

As for McLaughlin, she believes there’s no way the FRBs could be messages from aliens, as the signals are very broadband and emitted over a wide range of radio frequencies. “It would take a LOT of energy for an alien civilization to produce these bursts - they'd need to harness the energy of many, many suns - and there's no real advantage for communication to send a signal over such a large bandwidth.”

View Article Here Read More

An Alien Radio Beacon? Possibly Not This Time



An Alien Radio Beacon? Possibly Not This Time.

Excerpt from postpioneer.com


For practically a decade, astronomers have puzzled over strong bursts of radio energy that appear to be hailing from billions of light years away. Recently, we received reports of a new wrinkle to this mystery: The bursts seem to comply with a mathematical...

For practically a decade, astronomers have puzzled over strong bursts of radio energy that appear to be hailing from billions of light years away. Recently, we received reports of a new wrinkle to this mystery: The bursts seem to comply with a mathematical pattern, one that does not line up with something we know about cosmic physics.

And, of course, when we hear “mathematical pattern,” “radio transmission,” and “outer space,” all strung collectively, we straight away jump to our preferred explanation—aliens! (Or, you know, a decaying pulsar star, an unmapped spy satellite, or a cell telephone tower.)

It’s also probable that the pattern doesn’t basically exist.

Because 2007, telescopes have picked up almost a dozen so-known as “fast radio bursts,” pulses that last for mere milliseconds, but erupt with as a great deal power as the sun releases in a month. Where could they be coming from? To come across out, a group of researchers took advantage of a basic principle: That higher frequency radio waves encounter less interference as they traverse space, and are detected by our telescopes earlier than reduce frequency waves. The time delay, or “dispersion measure”, in between larger and reduce frequency radio waves from the very same pulse event can be applied to figure out the distance those waves traveled.

Here’s where things got weird. When researchers calculated the dispersion distance for each and every of eleven rapid radio bursts, they identified that every distance is an integer many of a single number: 187.5. When plotted on a graph, as the researchers show us in Figure 1 of their paper, the points type a striking pattern.

A single explanation is that the bursts are coming from distinctive sources, all at on a regular basis spaced intervals from the Earth, billions of light years away. They could also be brought on by a smaller cosmic object a lot closer to residence, such as a pulsar star, behaving according to some sort of physics we don’t yet understand. And then there’s the possibility that aliens are trying to communicate, by blasting simple numeric patterns into space.

But no matter how you slice it, eleven data points is a tiny sample set to draw any meaningful conclusions from. A handful of deviant observations could bring about the complete pattern to unravel.

And that is precisely what seems to be happening. As Nadia Drake reports for National Geographic, newer observations, not integrated in the most up-to-date scientific report or other well known media articles, don’t fit:

“There are 5 quickly radio bursts to be reported,” says Michael Kramer of Germany’s Max Planck Institute for Radioastronomy. “They do not fit the pattern.”
Rather of aliens, unexpected astrophysics, or even Earthly interference, the mysterious mathematical pattern is probably an artifact produced by a little sample size, Ransom says. When working with a limited quantity of data – say, a population of 11 quickly radio bursts – it’s straightforward to draw lines that connect the dots. Usually, on the other hand, these lines disappear when much more dots are added.
“My prediction is that this pattern will be washed out quite immediately after a lot more fast radio bursts are located,” says West Virginia University’s Duncan Lorimer, who reported the very first burst in 2007. “It’s a great instance of how apparently considerable final results can be identified in sparse information sets.”

That is a bit of a bummer, but nevertheless, these radio bursts are fascinating, and what could be causing them remains as a lot of a mystery as ever. It could even nonetheless be aliens, if not an alien beacon. As SETI Institute Director Seth Shostak told me in an e mail:

“If it is a signal, nicely, it is surely NOT a message — except perhaps to say ‘here we are’. There’s not actual bandwidth to it, which suggests these speedy radio bursts can not encode several bits. But there are so many other possibilities, I feel that automatically attributing one thing in the sky that we don’t (at very first) understand to the operate of aliens is … premature!”

If there’s 1 point that is clear in this whole organization, it is that we’ve nonetheless got plenty to discover about the patterns woven into the universe around us.

View Article Here Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here Read More

MRSA superbug killed by 1,100-year-old home remedy, researchers say


MRSA attacks a human cell. The bacteria shown is the strain MRSA 252, a leading cause of hospital-associated infections. (Rocky Mountain Laboratories, NIAID, NIH)


Excerpt from washingtonpost.com
By Justin Wm. Moyer 

Even in the age of AIDS, avian flu and Ebola, methicillin-resistant Staphylococcus aureus, better known as MRSA, is terrifying.

The superbug, which is resistant to conventional antibiotics because of their overuse, shrugs at even the deadliest weapons modern medicine offers. The Centers for Disease Control and Prevention estimated MRSA contributed to the deaths of more than 5,000 people in the United States in 2013. It even attacked the NFL, and some say it could eventually kill more people than cancer. And presidential commissions have advised that technological progress is the only way to fight MRSA.

But researchers in the United Kingdom now report that the superbug proved vulnerable to an ancient remedy. The ingredients? Just a bit of garlic, some onion or leek, copper, wine and oxgall — a florid name for cow’s bile.

This medicine sounds yucky, but it’s definitely better than the bug it may be able to kill.

“We were absolutely blown away by just how effective the combination of ingredients was,” Freya Harrison of the University of Nottingham, who worked on the research, told the BBC.

The oxgall remedy, billed as an eye salve, was found in a manuscript written in Old English from the 10th century called “Bald’s Leechbook” — a sort of pre-Magna Carta physician’s desk reference. Garlic and copper are commonly thought to have antibiotic or antimicrobial properties, but seeing such ingredients in a home remedy at Whole Foods is a far cry from researchers killing a superbug with it.

According to Christina Lee, an associate professor in Viking studies at Nottingham, the MRSA research was the product of conversations among academics of many stripes interested in infectious disease and how people fought it before antibiotics.

“We were talking about the specter of antibiotic resistance,” she told The Washington Post in a phone interview. The medical researchers involved in the discussions said to the medievalists: “In your period, you guys must have had something.”

Not every recipe in Bald’s Leechbook is a gem. Other advice, via a translation from the Eastern Algo-Saxonist: “Against a woman’s chatter; taste at night fasting a root of radish, that day the chatter cannot harm thee.” And: “In case a man be a lunatic; take skin of a mereswine or porpoise, work it into a whip, swinge the man therewith, soon he will be well. Amen.”

Though the Leechbook may include misses, it may help doctors find a solution to a problem that only seems to be getting worse.

If the oxgall remedy proves effective against MRSA outside of the lab — which researchers caution it may not — it would be a godsend. Case studies of MRSA’s impact from the CDC’s charmingly named Morbidity and Mortality Weekly Report seem medieval.

In July 1997, a 7-year-old black girl from urban Minnesota was admitted to a tertiary-care hospital with a temperature of 103 F.” Result: Death from pulmonary hemorrhage after five weeks of hospitalization.

In January 1998, a 16-month-old American Indian girl from rural North Dakota was taken to a local hospital in shock and with a temperature of 105.2 F.” Result: After respiratory failure and cardiac arrest, death within two hours of hospital admission.

In January 1999, a 13-year-old white girl from rural Minnesota was brought to a local hospital with fever, hemoptysis” — that’s coughing up blood — “and respiratory distress.” The result: Death from multiple organ failure after seven days in the hospital.

“We believe modern research into disease can benefit from past responses and knowledge, which is largely contained in non-scientific writings,” Lee told the Telegraph. “But the potential of these texts to contribute to addressing the challenges cannot be understood without the combined expertise of both the arts and science.”

Lee stressed that it was the combination of ingredients that proved effective against MRSA — which shows that people living in medieval times were not as barbaric as popularly thought. Even 1,000 years ago, when people got sick, other people tried to figure out how to help.

“We associate ‘medieval’ with dark, barbaric,” Lee said. “… It’s not. I’ve always believed in the pragmatic medieval ages.”
The research will be presented at the Annual Conference of the Society for General Microbiology in Birmingham. In an abstract for the conference, the team cautioned oxgall was no cure-all.

“Antibacterial activity of a substance in laboratory trials does not necessarily mean the historical remedy it was taken from actually worked in toto,” they wrote.

Lee said researchers hope to turn to other remedies in Bald’s Leechbook — including purported cures for headaches and ulcers — to see what other wisdom the ancients have to offer.

“At a time when you don’t have microscope, medicine would have included things we find rather odd,” she said. “In 200 years, people will judge us.”

View Article Here Read More

Scientist Claims to Discover Sounds of Stars






Excerpt from clapway.com

If you can remember your primary school’s astronomy classes, the surface of a star is a very volatile place with tons of chemical reactions and extreme motions, and with immense gravitational pull. Generally a place you would not want to be. But researchers are now saying that if you were to orbit a star, it may be possible, with the right equipment, to hear what a star is saying! Or Singing?
Would you want to hear the sounds of stars?

The sound, unfortunately, is so high pitched that no mammal, not even a dolphin or bat, would be able to hear it, and couldn’t be heard anyway because space is a vacuum and there is no air medium for the sound to travel in.

With a frequency of nearly one trillion hertz, the sound was not only unexpected, but six million times higher than what any mammal can hear. But the researchers have developed a method to hear what they poetically refer to as “singing” or a star’s “song.”

Britain’s University of York’s researchers of hydrodynamics – the study of fluids in motion – fired a laser beam at the plasma in the laboratory and found that within a trillionth of a second, the plasma quickly moved from high-density to low-density areas.Plasma is a state of matter that makes up most things in the known universe and a few things on earth like lightning strikes and neon signs. It is basically a gas that has been charged with enough energy to loose the electrons from the atoms holding them together.

The spot where the low-density and high-density areas meet led to what the University researchers called a “traffic jam,” and resulted in an apparent sound wave, allowing us to know the sounds of stars.

Though this was achieved in the laboratory, scientists have yet to try to hear the sounds of a real star.

Dr. Pasley, a scientist from the Tata Institute of Fundamental Research in Mumbai, India, , said: “One of the few locations in nature where we believe this effect would occur is at the surface of stars. When they are accumulating new material stars could generate sound in a very similar manner to that which we observed in the laboratory–so the stars might be singing–but since sound cannot propagate through the vacuum of space, no-one can hear them.”

The technique used to observe the sound waves in the laboratory sort of works like a police speed camera, allowing scientists to accurately measure how the fluid would sound at the point of being struck by the laser at very minute timescales. The research was published in Physical Review Letters.

Perhaps in the future we might be able to listen in on the sounds of stars instead of just viewing it, and hear what they have to say!

View Article Here Read More

Billionaire teams up with NASA to mine the moon




Excerpt from cnbc.com
By Susan Caminiti



Moon Express, a Mountain View, California-based company that's aiming to send the first commercial robotic spacecraft to the moon next year, just took another step closer toward that lofty goal. 

Earlier this year, it became the first company to successfully test a prototype of a lunar lander at the Kennedy Space Center in Florida. The success of this test—and a series of others that will take place later this year—paves the way for Moon Express to send its lander to the moon in 2016, said company co-founder and chairman Naveen Jain.

Moon Express conducted its tests with the support of NASA engineers, who are sharing with the company their deep well of lunar know-how. The NASA lunar initiative—known as Catalyst—is designed to spur new commercial U.S. capabilities to reach the moon and tap into its considerable resources.In addition to Moon Express, NASA is also working with Astrobotic Technologies of Pittsburgh, Pennsylvania, and Masten Space Systems of Mojave, California, to develop commercial robotic spacecrafts. 

Jain said Moon Express also recently signed an agreement to take over Space Launch Complex 36 at Cape Canaveral. The historic launchpad will be used for Moon Express's lander development and flight-test operations. Before it was decommissioned, the launchpad was home to NASA's Atlas-Centaur rocket program and its Surveyor moon landers.

"Clearly, NASA has an amazing amount of expertise when it comes to getting to the moon, and it wants to pass that knowledge on to a company like ours that has the best chance of being successful," said Jain, a serial entrepreneur who also founded Internet companies Infospace and Intelius. He believes that the moon holds precious metals and rare minerals that can be brought back to help address Earth's energy, health and resource challenges. 

Among the moon's vast riches: gold, cobalt, iron, palladium, platinum, tungsten and Helium-3, a gas that can be used in future fusion reactors to provide nuclear power without radioactive waste. "We went to the moon 50 years ago, yet today we have more computing power with our iPhones than the computers that sent men into space," Jain said. "That type of exponential technological growth is allowing things to happen that was never possible before."

An eye on the Google prize

Source: MoonExpress

Helping to drive this newfound interest in privately funded space exploration is the Google Lunar X Prize. It's a competition organized by the X Prize Foundation and sponsored by Google that will award $30 million to the first company that lands a commercial spacecraft on the moon, travels 500 meters across its surface and sends high-definition images and video back to Earth—all before the end of 2016.

Moon Express is already at the front of the pack. In January it was awarded a $1 million milestone prize from Google for being the only company in the competition so far to test a prototype of its lander. "Winning the X prize would be a great thing," said Jain. "But building a great company is the ultimate goal with us." When it comes to space exploration, he added, "it's clear that the baton has been passed from the government to the private sector."

Testing in stages

Jain said Moon Express has been putting its lunar lander through a series of tests at the space center. The successful outing earlier this year involved tethering the vehicle—which is the size of a coffee table—to a crane in order to safely test its control systems. "The reason we tethered it to the crane is because the last thing we wanted was the aircraft to go completely haywire and hurt someone," he said. 

At the end of March, the company will conduct a completely free flight test with no tethering. The lander will take off from the pad, go up and sideways, then land back at the launchpad. "This is to test that the vehicle knows where to go and how to get back to the launchpad safely," Jain explained.


Once all these tests are successfully completed, Jain said the lander—called MX-1—will be ready to travel to the moon. The most likely scenario is that it will be attached to a satellite that will take the lander into a low orbit over the Earth. From there the MX-1 will fire its own rocket, powered by hydrogen peroxide, and launch from that orbit to complete its travel to the moon's surface. 

The lander's first mission is a one-way trip, meaning that it's not designed to travel back to the Earth, said Jain. "The purpose is to show that for the first time, a company has developed the technology to land softly on the moon," he said. "Landing on the moon is not the hard part. Landing softly is the hard part." 

That's because even though the gravity of the moon is one-sixth that of the Earth's, the lander will still be traveling down to the surface of the moon "like a bullet," Jain explained. Without the right calculations to indicate when its rockets have to fire in order to slow it down, the lander would hit the surface of the moon and break into millions of pieces. "Unlike here on Earth, there's no GPS on the moon to tell us this, so we have to do all these calculations first," he said. 

Looking ahead 15 or 20 years, Jain said he envisions a day when the moon is used as a sort of way station enabling easier travel for exploration to other planets. In the meantime, he said the lander's second and third missions could likely involve bringing precious metals, minerals and even moon rocks back to Earth. "Today, people look at diamonds as this rare thing on Earth," Jain said.
He added, "Imagine telling someone you love her by giving her the moon."

View Article Here Read More

8 possible explanations for those bright spots on dwarf planet Ceres

Ceres  Excerpt from cnet.com It's a real-life mystery cliffhanger. We've come up with a list of possible reasons a large crater on the biggest object in the asteroid belt looks lit up like a Christmas tree.  We could be approachin...

View Article Here Read More

Is This a Baby Picture of a Giant Planet?


Hubble optical image (left) and VLT infrared image (right) of the circumstellar disk surrounding HD 100546. (ESO/NASA/ESA/Ardila et al.)


Excerpt from news.discovery.com


Mommy, where do baby planets come from? There’s no storks, birds, bees, or romantic dinners for two involved in the answer to that question — regardless of size, planets are all formed in pretty much the same way: through the aggregation of material within the disk of dust and gas surrounding a young star. While how long it actually takes and just what sort of planets are most likely to form where are still topics of discussion among astronomers, the birth process of a planet is fairly well understood.

And this may be the very first image of it actually happening.

Acquired by the European Southern Observatory’s Very Large Telescope (VLT), the infrared image above (right) shows a portion of the disk of gas and dust around the star HD100546, located 335 light-years away in the constellation Musca. By physically blocking out the light from the star itself by means of an opaque screen — seen along the left side of the image — the light from the protoplanetary disk around HD 100546 can be seen, revealing a large bright clump that’s thought to be a planet in the process of formation.

If it is indeed a baby planet, it’s a big one — as large as, or perhaps even larger than, Jupiter.

A candidate protoplanet found in a disc of gas and dust around young star HD100546 (ESO)


This does raise an interesting question for astronomers because if it is a Jupiter-sized planet, it’s awfully far from its star… at least according to many current models of planetary formation. About 68 times as far from HD100546 as we are from the sun, if this planet were in our solar system it’d be located deep in the Kuiper Belt, twice as far as Pluto. That’s not where one would typically expect to find gas giants, so it’s been hypothesized that this protoplanet might have migrated outwards after initially forming closer to the star… perhaps “kicked out” by gravitational interaction with an even more massive planet.

Alternatively, it may not be a planet at all — the bright blob in the VLT image might be coming from a much more distant source. While extremely unlikely, further research will be needed to rule that possibility out.

If it’s found to be a planet, HD100546 “b” would offer scientists an unprecedented opportunity to observe a planetary formation process in action — and from a relatively close proximity as well.

According to the team’s paper, submitted to Astrophysical Journal Letters, ”What makes HD100546 particularly interesting is that 1. it would be the first imaged protoplanet that is still embedded in the gas and dust disk of its host star; and 2. it would show that planet formation does occur at large orbital separations.”

(Now all we have to do is wait a couple billion years and then show these pictures to HD100546b’s girlfriend. How embarrassing!)

View Article Here Read More

How will life on earth compare to life for the Mars One pioneers?


To infinity and beyond? Maggie Lieu
To infinity and beyond? Maggie Lieu Photo: Peter Quinnell


From telegraph.co.uk
By Nick Curtis

On a different planet - Nick Curtis imagines a message from 'Martianaut' Maggie Lieu to her parents back at home


Mars Mission, British Martianaut Maggie Lieu’s Log
Day One: Stardate 22/02/2025. 

Hello Mission Control.... Just kidding! Hi mum, hi dad, or should I say earthlings! 
Well, me and Bruce the Australian Martianaut finally touched down beside the Herschel II Strait on the red planet today, the last of 12 pairs to arrive - though as you know it was touch and go. Ten years of training and research almost went down the drain when Google got hit by a massive retrospective tax bill and had to withdraw all its branded sponsorship from the starship at the last minute: 

fortunately Amazon stepped in, on the agreement we install its first matter transference delivery portal (“It’s there before you know it”) here. And rename the ship Bezos 1, of course 
The trip was textbook, with both of us uploading videos on how to apply makeup and bake cupcakes in space direct to the Weibo-spex of our crowdsource funders in China - great practice for The Great Martian Bakeoff on BBC 12 next year (subscribers only). The one hairy moment was a near miss with that Virgin Galactic rocket, Beardie IV, that went AWOL five years ago. We were so close we could see Leonardo diCaprio’s little screaming face pressed against his porthole. And Kim Kardashian’s bum pressed against hers - though it’s looking kinda old now and I hoped we’d seen the last of it.


So what can I tell you? When we landed the others threw us a party with full fat milk, rare beef and waffles (the only official space superfoods since it was discovered that kale and quinoa cause impotence). The landscape is pretty barren, just acres of rolling sand and no one in sight, sort of like Greece after it left the Eurozone and the entire population moved to Germany. Or like the so-called Caliphate after Islamic State finally perfected its time machine and managed to transport itself and all its followers back to the 12th century. 

The temperature outside is about 20c, so a lot cooler than it is at home since the ice caps melted. There’s water here, but not as much as is now covering Indonesia, Holland and Somerset. The atmosphere is 96% carbon dioxide so Juan, the Spanish Martianaut, had to keep his suit on when he went out to smoke. He tried to get us all to buy duty free for him in Mexico City spaceport before we left, now that a pack of cigarettes costs 450 Euros in the shops, and they’ve been camouflaged so you can’t find them. 

Maggie Lieu (Guardian)


The construction-droids did a pretty good job building Mars Camp out of the recycled parts of all those closed Tesco Metros. They say we have enough air up here to last 20 years, Earth’s stocks of storable oxygen having increased tenfold when the European Parliament collapsed following the expenses scandal. I still can’t believe that Dasha Putin-Mugabe was claiming for SIX driverless cars while she was EU President, and employing her wife as her accountant. And her being the first transgender Russian lesbian to hold the office, too. 

Speaking of politics, how is life in coalition Britain? Who has the upper hand at the moment? UKIP? Scots Nats? The Greens? or those nutters from Cornwall, Mebion Kernow? Or are they underwater now. And how is young Straw doing now Labour is the smallest party in Parliament, after the New New New Conservatives? Hard to believe it’s three years since the last Lib Dem lost her seat. 

I gather that some things have improved internationally now that Brian Cox has developed his own time machine at the Wowcher-Hawking Institute in Cambridge, and worked out that the entire world can now transport all its waste products back to the Caliphate in the 12th century. 

We can see the Earth from here through the Clinton2020 Telescope that the US president endowed us with after her brief period in office. The joke up here is that she did it to keep a proper eye either on her husband (though he doesn’t get around so much any more, obviously) or on what President Palin is up to. I still can’t believe that she sold Alaska to Russia to pay the compensation bill for the Grand Canyon Fracking Collapse. 

Even through the Clinton2020 the Earth looks pretty small, though at times, when the stars are really bright, we can see the Great Wall 2 ring of laser satellites that China has pointed at Russia to discourage any more “accidental” incursions. 

Our team up here is like a microcosm of human life on earth. Well, up to a point. As you know the French and Italian Martianauts were expelled from the team before lift-off, because of some scandal or other. We weren’t told if it was financial or sexual but a space bra and a data stick with three million Bitcoins on it were found in the airlock. 

The African and Brazilian Martianauts swan around the place as if they PERSONALLY solved the world’s food and energy problems.
And the North Korean guy just sits in the corner, muttering into some device up his sleeve and scowling. All the freeze-dried cheese has gone and he’s looking quite fat, if you get my meaning. 

I don’t get much time to myself, what with work, the non-denominational Sorry Meetings where we apologise in case we’ve accidently offended someone’s beliefs, and the communal space-pilates sessions (the North Korean guy skips those so he may be in line for a compulsory gastric band, as mandated by the Intergalactic Health Organisation). 

I always try and upload the latest Birmingham City Games onto my cortex chip when I feel homesick: I know it's not fashionable, but I think football got better when they replaced the players with robots and the wage bill - and the number of court cases - dropped to zero. I know the electricity bill is massive, but the new Brazilian solar technology should fix that. 

Anyway, got to run now. We’re putting together a bid to have the 2036 Olympics up here. 

Bye, or as we say on Mars - see you on the dark side.

View Article Here Read More

Cluster Filled with Dark Matter May House ‘Failed Galaxies’

The Coma Cluster


Excerpt space.com

A strange set of 48 galaxies appears to be rich in dark matter and lacking in stars, suggesting that they may be so-called "failed" galaxies, a new study reports.

The galaxies in question are part of the Coma Cluster, which lies 300 million light-years from Earth and packs several thousand galaxies into a space just 20 million light-years across. To study them, Pieter van Dokkum of Yale University and his colleagues used the Dragonfly Telephoto Array in New Mexico.

The array's eight connected Canon telephoto lenses allow the researchers to search for extremely faint objects that traditional telescope surveys miss. Often, such as when the researchers used the array to search for the faint glow that dark matter might create, the hunt comes up empty. 


But when van Dokkum and his colleagues looked toward the Coma Cluster, they found a pleasant surprise.

"We noticed all these faint little smudges in the images from the Dragonfly telescope," van Dokkum told Space.com.

The mysterious blobs nagged at van Dokkum, compelling him to look into the objects further. Fortuitously, NASA's Hubble Space Telescope had recently captured one of these objects with its sharp eye. 

"It turned out that they're these fuzzy blobs that look somewhat like dwarf spheroidal galaxies around our own Milky Way," van Dokkum said. "So they looked familiar in some sense … except that if they are at the distance of the Coma Cluster, they must be really huge."

And with very few stars to account for the mass in these galaxies, they must contain huge amounts of dark matter, the researchers said. In fact, to stay intact, the 48 galaxies must contain 98 percent dark matter and just 2 percent "normal" matter that we can see. The fraction of dark matter in the universe as a whole is thought to be around 83 percent. 

But before making this claim, the team had to verify that these blobs really are as distant as the Coma Cluster. (In fact, the team initially thought the galaxies were much closer.). But even in the Hubble image the stars were not resolved. If Hubble — one of the most powerful telescopes in existence — can't resolve the stars, those pinpricks of light must be pretty far away, study team members reasoned. 

Now, van Dokkum and his colleagues have definitive evidence: They've determined the exact distance to one of the galaxies. The team used the Keck Telescope in Hawaii to look at one of the objects for two hours. This gave them a hazy spectrum, from which they were able to tease out the galaxy's recessional velocity — that is, how fast it is moving away from Earth.

That measure traces back to the Hubble Telescope's namesake. In 1929, American astronomer Edwin Hubble discovered one of the simplest and most surprising relationships in astronomy: The more distant a galaxy, the faster it moves away from the Milky Way.

Today, astronomers use the relationship to measure a galaxy's recessional velocity and thus calculate the galaxy's distance. In this case, the small fuzzy blob observed with Keck was moving away from Earth at 15.7 million mph (25.3 million km/h). That places it at 300 million light-years away from Earth, the distance of the Coma Cluster.

So the verdict is officially in: These galaxies must be associated with the Coma Cluster and therefore must be extremely massive.
"It looks like the universe is able to make unexpected galaxies," van Dokkum said, adding that there is an amazing diversity of massive galaxies.

But the clusters still present a mystery: The team doesn't know why they have so much dark matter and so few stars.

Though they look serene and silent from our vantage on Earth, stars are actually roiling balls of violent plasma. Test your stellar smarts with this quiz.
One possibility is that these are "failed" galaxies. A galaxy's first supernova explosions will drive away huge amounts of gas. 

Normally, the galaxy has such a strong gravitational pull that most of the expelled gas falls back onto the galaxy and forms the next generations of stars. But maybe the strong gravitational pull of the other galaxies in the Coma Cluster interfered with this process, pulling the gas away.

"If that happened, they had no more fuel for star formation and they were sort of stillborn galaxies where they started to get going but then failed to really build up a lot of stars," said van Dokkum, adding that this is the most likely scenario. 

Another possibility is that these galaxies are in the process of being ripped apart. But astronomers expect that if this were the case, the galaxies would be distorted and streams of stars would be flowing away from them. Because these effects don't appear, this scenario is very unlikely.

The next step is to try to measure the individual motions of stars within the galaxies. If the team knew those stars' speeds, it could calculate the galaxies' exact mass, and therefore the amount of dark matter they contain. If the stars move faster, the galaxy is more massive. And if they move slower, the galaxy is less massive. 
However, this would require a better spectrum than the one the team has right now.

"But it's not outside the realm of what's possible," van Dokkum assured. "It's just very hard."

The original study has been published in Astrophysical Journal Letters. You can read it for free on the preprint site arXiv.org.

View Article Here Read More

Every Black Hole Contains a New Universe


At the center of spiral galaxy M81 is a supermassive black hole about 70 million times more massive than our sun.



Excerpt from insidescience.org
A physicist presents a solution to present-day cosmic mysteries.



By: 
Nikodem Poplawski, Inside Science Minds Guest Columnist



(ISM) -- Our universe may exist inside a black hole. This may sound strange, but it could actually be the best explanation of how the universe began, and what we observe today. It's a theory that has been explored over the past few decades by a small group of physicists including myself. 
Successful as it is, there are notable unsolved questions with the standard big bang theory, which suggests that the universe began as a seemingly impossible "singularity," an infinitely small point containing an infinitely high concentration of matter, expanding in size to what we observe today. The theory of inflation, a super-fast expansion of space proposed in recent decades, fills in many important details, such as why slight lumps in the concentration of matter in the early universe coalesced into large celestial bodies such as galaxies and clusters of galaxies.
But these theories leave major questions unresolved. For example: What started the big bang? What caused inflation to end? What is the source of the mysterious dark energy that is apparently causing the universe to speed up its expansion?
The idea that our universe is entirely contained within a black hole provides answers to these problems and many more. It eliminates the notion of physically impossible singularities in our universe. And it draws upon two central theories in physics.
Nikodem Poplawski displays a "tornado in a tube." The top bottle symbolizes a black hole, the connected necks represent a wormhole and the lower bottle symbolizes the growing universe on the just-formed other side of the wormhole. Credit: Indiana University
In this picture, spins in particles interact with spacetime and endow it with a property called "torsion." To understand torsion, imagine spacetime not as a two-dimensional canvas, but as a flexible, one-dimensional rod. Bending the rod corresponds to curving spacetime, and twisting the rod corresponds to spacetime torsion. If a rod is thin, you can bend it, but it's hard to see if it's twisted or not.

The first is general relativity, the modern theory of gravity. It describes the universe at the largest scales. Any event in the universe occurs as a point in space and time, or spacetime. A massive object such as the Sun distorts or "curves" spacetime, like a bowling ball sitting on a canvas. The Sun's gravitational dent alters the motion of Earth and the other planets orbiting it. The sun's pull of the planets appears to us as the force of gravity.

The second is quantum mechanics, which describes the universe at the smallest scales, such as the level of the atom. However, quantum mechanics and general relativity are currently separate theories; physicists have been striving to combine the two successfully into a single theory of "quantum gravity" to adequately describe important phenomena, including the behavior of subatomic particles in black holes.
A 1960s adaptation of general relativity, called the Einstein-Cartan-Sciama-Kibble theory of gravity, takes into account effects from quantum mechanics. It not only provides a step towards quantum gravity but also leads to an alternative picture of the universe. This variation of general relativity incorporates an important quantum property known as spin. Particles such as atoms and electrons possess spin, or the internal angular momentum that is analogous to a skater spinning on ice.

Spacetime torsion would only be significant, let alone noticeable, in the early universe or in black holes. In these extreme environments, spacetime torsion would manifest itself as a repulsive force that counters the attractive gravitational force coming from spacetime curvature. As in the standard version of general relativity, very massive stars end up collapsing into black holes: regions of space from which nothing, not even light, can escape.
Here is how torsion would play out in the beginning moments of our universe. Initially, the gravitational attraction from curved space would overcome torsion's repulsive forces, serving to collapse matter into smaller regions of space. But eventually torsion would become very strong and prevent matter from compressing into a point of infinite density; matter would reach a state of extremely large but finite density. As energy can be converted into mass, the immensely high gravitational energy in this extremely dense state would cause an intense production of particles, greatly increasing the mass inside the black hole.
The increasing numbers of particles with spin would result in higher levels of spacetime torsion. The repulsive torsion would stop the collapse and would create a "big bounce" like a compressed beach ball that snaps outward. The rapid recoil after such a big bounce could be what has led to our expanding universe. The result of this recoil matches observations of the universe's shape, geometry, and distribution of mass.
In turn, the torsion mechanism suggests an astonishing scenario: every black hole would produce a new, baby universe inside. If that is true, then the first matter in our universe came from somewhere else. So our own universe could be the interior of a black hole existing in another universe. Just as we cannot see what is going on inside black holes in the cosmos, any observers in the parent universe could not see what is going on in ours.
The motion of matter through the black hole's boundary, called an "event horizon," would only happen in one direction, providing a direction of time that we perceive as moving forward. The arrow of time in our universe would therefore be inherited, through torsion, from the parent universe.
Torsion could also explain the observed imbalance between matter and antimatter in the universe. Because of torsion, matter would decay into familiar electrons and quarks, and antimatter would decay into "dark matter," a mysterious invisible form of matter that appears to account for a majority of matter in the universe.
Finally, torsion could be the source of "dark energy," a mysterious form of energy that permeates all of space and increases the rate of expansion of the universe. Geometry with torsion naturally produces a "cosmological constant," a sort of added-on outward force which is the simplest way to explain dark energy. Thus, the observed accelerating expansion of the universe may end up being the strongest evidence for torsion.
Torsion therefore provides a theoretical foundation for a scenario in which the interior of every black hole becomes a new universe. It also appears as a remedy to several major problems of current theory of gravity and cosmology. Physicists still need to combine the Einstein-Cartan-Sciama-Kibble theory fully with quantum mechanics into a quantum theory of gravity. While resolving some major questions, it raises new ones of its own. For example, what do we know about the parent universe and the black hole inside which our own universe resides? How many layers of parent universes would we have? How can we test that our universe lives in a black hole?
The last question can potentially be investigated: since all stars and thus black holes rotate, our universe would have inherited the parent black hole’s axis of rotation as a "preferred direction." There is some recently reported evidence from surveys of over 15,000 galaxies that in one hemisphere of the universe more spiral galaxies are "left-handed", or rotating clockwise, while in the other hemisphere more are "right-handed", or rotating counterclockwise. In any case, I believe that including torsion in geometry of spacetime is a right step towards a successful theory of cosmology.

View Article Here Read More

NASA probe snaps amazing image of Ceres



    NASA's Dawn space probe has taken the sharpest-yet image of Ceres, a dwarf planet in our solar system's asteroid belt.

    Excerpt from SPACE.com

    By Mike Wall  

    NASA's Dawn spacecraft has taken the sharpest-ever photos of Ceres, just a month before slipping into orbit around the mysterious dwarf planet.

    Dawn captured the new Ceres images Wednesday (Feb. 4), when the probe was 90,000 miles (145,000 kilometers) from the dwarf planet, the largest object in the main asteroid belt between Mars and Jupiter.

    On the night of March 5, Dawn will become the first spacecraft ever to orbit Ceres — and the first to circle two different solar system bodies beyond Earth. (Dawn orbited the protoplanet Vesta, the asteroid belt's second-largest denizen, from July 2011 through September 2012.) 

    "It's very exciting," Dawn mission director and chief engineer Marc Rayman, who's based at NASA's Jet Propulsion Laboratory in Pasadena, California, said of Dawn's impending arrival at Ceres. "This is a truly unique world, something that we've never seen before."


    The 590-mile-wide (950 km) Ceres was discovered by Italian astronomer Giuseppe Piazzi in 1801. It's the only dwarf planet in the asteroid belt, and contains about 30 percent of the belt's total mass. (For what it's worth, Vesta harbors about 8 percent of the asteroid belt's mass.)

    Despite Ceres' proximity (relative to other dwarf planets such as Pluto and Eris, anyway), scientists don't know much about the rocky world. But they think it contains a great deal of water, mostly in the form of ice. Indeed, Ceres may be about 30 percent water by mass, Rayman said.

    Ceres could even harbor lakes or oceans of liquid water beneath its frigid surface. Furthermore, in early 2014, researchers analyzing data gathered by Europe's Herschel Space Observatory announced that they had spotted a tiny plume of water vapor emanating from Ceres. The detection raised the possibility that internal heat drives cryovolcanism on the dwarf planet, as it does on Saturn's moon's Enceladus. (It's also possible that the "geyser" was caused by a meteorite impact, which exposed subsurface ice that quickly sublimated into space, researchers said).

    The interior of Ceres may thus possess liquid water and an energy source — two key criteria required for life as we know it to exist.
    Dawn is not equipped to search for signs of life. But the probe — which is carrying a camera, a visible and infrared mapping spectrometer and a gamma ray and neutron spectrometer — will give scientists great up-close looks at Ceres' surface, which in turn could shed light on what's happening down below. 

    For example, Dawn may see chemical signs of interactions between subsurface water, if it exists, and the surface, Rayman said.
    "That's the sort of the thing we would be looking for — surface structures or features that show up in the camera's eye, or something about the composition that's detectable by one of our multiple spectrometers that could show evidence," he told Space.com. "But if the water doesn't make it to the surface, and isn't in large enough reservoirs to show up in the gravity data, then maybe we won't find it."

    Dawn will also attempt to spot Ceres' water-vapor plume, if it still exists, by watching for sunlight scattered off water molecules above the dwarf planet. But that's going to be a very tough observation to make, Rayman said.

    "The density of the water [observed by Herschel] is less than the density of air even above the International Space Station," he said. "For a spacecraft designed to map solid surfaces of airless bodies, that is an extremely difficult measurement." 

    Merging onto the freeway

    Dawn is powered by low-thrust, highly efficient ion engines, so its arrival at Ceres will not be a nail-biting affair featuring a make-or-break engine burn, as most other probes' orbital insertions are.

    Indeed, as of Friday (Feb. 6), Dawn is closing in on Ceres at just 215 mph (346 km/h), Rayman said —and that speed will keep decreasing every day.

    "You take a gentle, curving route, and then you slowly and safely merge onto the freeway, traveling at the same speed as your destination," Rayman said. "Ion propulsion follows that longer, more gentle, more graceful route."

    Dawn won't start studying Ceres as soon as it arrives. The spacecraft will gradually work its way down to its first science orbit, getting there on April 23. Dawn will then begin its intensive observations of Ceres, from a vantage point just 8,400 miles (13,500 km) above the dwarf planet's surface.

    The science work will continue — from a series of increasingly closer-in orbits, including a low-altitude mapping orbit just 230 miles (375 km) from Ceres' surface — through June 30, 2016, when the $466 million Dawn mission is scheduled to end.
    Rayman can't wait to see what Dawn discovers.

    "After looking through telescopes at Ceres for more than 200 years, I just think it's really going to be exciting to see what this exotic, alien world looks like," he said. "We're finally going to learn about this place."

    View Article Here Read More
    Older posts Newer posts

    Creative Commons License
    This work is licensed under a
    Creative Commons Attribution 4.0
    International License
    .
    unless otherwise marked.

    Terms of Use | Privacy Policy



    Up ↑