Tag: sink (page 1 of 3)

Our Fatally Fractured Food Chain

Julian Rose, ContributorThe term ‘food chain’ refers to the steps that constitute the movement of food from its starting point in the field to its end point on the fork. This incorporates processing and ultimate consumption.The food chain operates within a dynamic life cycle. One which expresses the inseparable interconnection between soil, plant, animal and man – and ends back in the soil again. So that if any one element of this cycle is poisoned or weakened, the [...]

View Article Here Read More

Göbekli Tepe: The Burying Of An Ancient Megalithic Site

Dr. Rita Louise, GuestWhy Did Our Ancestors Inter This Ancient Massive Architectural Wonder?Located at the highest point of the Germus range in the southeastern Anatolia region of Turkey is the mysterious site of Göbekli Tepe. Excavations at Göbekli Tepe commenced in 1995 after German archaeologist Klaus Schmidt realized what was thought to be a Byzantine cemetery was actually a prehistoric site. Schmidt quickly unearthed a number of T-shaped pillars, which set th [...]

View Article Here Read More

Why Luke Skywalker’s binary sunset may be real after all






Excerpt from csmonitor.com

Researchers have found Jupiter-scale gas giants orbiting binary stars and estimate that Earth-like planets orbiting binary stars could be as numerous as rocky planets orbiting single-star systems.


For all the sci-fi charm of watching a pair of suns sink below a distant horizon on a planet in a galaxy far, far away, conventional wisdom has held that binary-star systems can't host Earth-scale rocky planets.

As the two stars orbit each other like square-dance partners swinging arm in arm, regular variations in their gravitational tug would disrupt planet formation at the relatively close distances where rocky planets tend to appear.

Not so fast, say two astrophysicists. They argue that only are Tatooine-like planets likely to be out there. They could be as numerous as rocky planets orbiting single-star systems – which is to say, there could be large number of them.

Building rocky planets in a binary system not only is possible, it's "not even that hard," says Scott Kenyon, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who along with University of Utah astrophysicist Benjamin Bromley performed the calculations.
Researchers have found Jupiter-scale gas giants orbiting binary stars and have estimated that such gas giants are likely to be as common in binary systems as they are in systems with a single star.
"If that's true, then Earth-like planets around binaries are just as common as Earth-like planets around single stars," Dr. Kenyon says. "If they're not common, that tells you something about how they form or how they interact with the star over billions of years."

The modeling study grew out of work the two researchers were undertaking to figure out how the dwarf planet Pluto and its largest moon Charon manage to share space with four smaller moons that orbit the two larger objects. 

Pluto and Charon form a binary system that early in its history saw the two objects graze each other to generate a ring of dust that would become the additional moons.

The gravity the surrounding dust felt as Pluto and Charon swung about their shared center of mass would vary with clock-like precision.

Conventional wisdom held that this variable tug would trigger collisions at speeds too fast to allow the dust and larger chunks to merge into ever larger objects.

Kenyon and Dr. Bromley found that, in fact, the velocities would be smaller than people thought – no greater than the speeds would be around a single central object, where velocities are slow enough to allow the debris to bump gently and merge to build ever-larger objects.

They recognized that binary stars hosting planets are essentially scaled-up versions of the Pluto-Charon system. So they applied their calculations to a hypothetical binary star system with a circumstellar disk of dust and debris.

"The modest jostling in these orbits is the same modest jostling you'd get around a single star," Kenyon says, allowing rocky inner planets to form.

As for the Jupiter- or Neptune-scale planets found around binary stars, they would have formed farther out and migrated in over time, the researchers say, since there is too little material within the inner reaches of a circumstellar disk to build giant planets.

The duo's calculations imply that as more planets are discovered orbiting binary stars, a rising number of Tatooines will be among them. 

Tatooine "was science fiction," Kenyon says. But "it's not so far from science reality."

View Article Here Read More

Rare doomed planet with extreme seasons discovered


Kepler432b.jpg
Illustration provided by the University of Heidelberg of the orbit of Kepler-432b (inner, red) in comparison to the orbit of Mercury around the Sun (outer, orange). The red dot in the middle indicates the position of the star around which the planet is orbiting. The size of the star is shown to scale, while the size of the planet has been magnified ten times for illustration purposes. (Graphic: Dr. Sabine Reffert)


Excerpt from foxnews.com/science


A rare planet has been discovered, and it doesn’t seem like a stop anyone would want to make on an intergalactic cruise. Found by two research teams independently of each other, Kepler-432b is extreme in its mass, density, and weather. Roughly the same size of Jupiter, the planet is also doomed- in 200 million years it will be consumed by its sun. “Kepler-432b is definitively a rarity among exoplanets around giant stars: it is a close-in gas-giant planet orbiting a star whose radius is 'quickly' increasing,” Davide Gandolfi, from the Landessternwarte Koenigstuhl (part of the Centre for Astronomy of the University of Heidelberg), told FoxNews.com. “The orbit of the planet has a radius of about 45 million kilometers [28 million miles] (as a reference point, the Earth-Sun distance is about 150 million kilometers [93.2 Million miles]), while most of the planets known to orbit giant stars have wider orbits. The stellar radius is already 3 million kilometers [almost 2 million miles] (i.e., about 4 times the Sun radius) and in less than 200 million years it will be large enough for the star to swallow up its planet.”

Gandolfi, a member of one of the research groups who discovered the rare planet, explains that much like Jupiter, Kepler-432b is a gas-giant celestial body composed mostly of hydrogen and helium, and is most likely to have a dense core that accounts for 6 percent or less of the planet’s mass. “The planet has a mass six times that of Jupiter, but is about the same size!” he says. “This means that it is not one of the largest planets yet discovered: it is one of the most massive!” The planet’s orbit brings it extremely close to its host star on some occasions, and very far away at others, which creates extreme seasonal changes. In its year - which lasts 52 Earth days - winters can get a little chilly and summers a bit balmy, to say the least. According to Gandolfi, “The highly eccentric orbit brings Kepler-432b at ‘only’ 24 million kilometers [15 million miles] from its host star, before taking it to about three times as far away. This creates large temperature excursions over the course of the planet year, which is of only 52 Earth days. During the winter season, the temperature on Kepler-432b drops down to 500 degrees Celsius [932 degrees Fahrenheit], whereas in summer it can goes up to nearly 1000 degrees Celsius [1832 degrees Fahrenheit].”

Then again, if you are crazy enough to visit Kepler-432b, you’d better do it fast. As stated before, its host star is set to swallow the planet whole in 200 million years, making the celestial body a rare find. “The paucity of close-in planets around giant stars is likely to be due to the fact that these planets have been already swallowed up by their host stars,” Gandolfi says. “Kepler-432b has been discovered ‘just in time before dinner!” The host star, which is red and possesses 1.35 times the mass of our sun, has partly exhausted the nuclear fuel in its core, and is slowly expanding, eventually growing large enough to swallow Kepler-432b. According to Gandolfi, this is a natural progression for all stars. “Stars first generate nuclear energy in their core via the fusion of Hydrogen into Helium,” he explained. “At this stage, their radii basically do not change much. This is because the outward thermal pressure produced by the nuclear fusion in the core is balanced by the inward pressure of gravitational collapse from the overlying layers. In other words, the nuclear power is the star pillar! Our Sun is currently ‘burning’ hydrogen in its core (please note that I used quotes: ‘burning’ does not mean a chemical reaction- we are talking about nuclear fusion reaction). However, this equilibrium between the two pressures does not last forever. Helium is heavier than hydrogen and tends to sink. The stellar core of the Kepler-432b's host star is currently depleted of hydrogen and it is mainly made of inert helium. The star generates thermal energy in a shell around the core through the nuclear fusion of hydrogen into helium. As a result of this, the star expands and cools down. This is why we call it ‘red giant’- the reddish color comes from the fact that the external layers of the atmosphere of the star are cooling down because they expand.”

Both research teams (the other was from the Max Planck Institute for Astronomy in Heidelberg) used Calar Alto Observatory’s 7.2- foot telescope in Andalucia, Spain. The planet was also studied by Landessternwarte Koenigstuhl researchers using the 8.5-foot Nordic Optical Telescope on La Palma, which is located in Spain’s Canary Islands.

View Article Here Read More

Archaeologists Uncovering Legendary Lost City of Poseidon

A view of the excavations at Helike. Drekis, Wikimedia CommonsExcerpt from popular-archaeology.com A team of scholars and students will return to explore and investigate the site now thought to be the remains of the lost city of Helike, the lege...

View Article Here Read More

Star Disappears in a Warp In Space-Time


Time warp created by a pulsar



Excerpt from popsci.com

A star has slipped out of view thanks to the space-time warp it creates as it orbits.

The disappearing star is part of a binary star system called J1906. It's a pulsar, which means it's a rotating neutron star, the result of a massive star collapsing in on itself. Researchers have been studying the young pulsar for five years to determine what kind of companion star was orbiting around it. That is, until recently, when the pulsar vanished.

As a pulsar rotates, it emits a beam of electromagnetic radiation, sort of like light coming from a lighthouse. Scientists use radio telescopes that pick up on the pulses coming from the star. But as scientists watched J1906, the pulsar began to slip off the radar. It seems that as the pulsar spins around its companion star, the mass of the companion star makes it sink into a dip in space-time, so that its radio waves can no longer reach Earth. The concept is called geodetic precession, which, according to NASA, uses Einstein’s theory of relativity to understand how massive objects like the Earth curve the space around them, influencing the local space-time fabric.  

The video above illustrates the sinkhole in space created by the pulsar as it orbits the second star. As the warp increases, the pulsar's axis shifts (demonstrated by the arrows), so its radio pulses no longer aim toward Earth's radio telescopes.

But the pulsar won’t be out of sight for forever. Lead scientist Joeri van Leewuen from the Netherlands Institute for Radio Astronomy estimates the star will come back into sight in less than 160 years.

The team’s findings were released Thursday in the Astrophysical Journal in conjunction with the American Astronomical Society’s 225th meeting.

View Article Here Read More

Future Tech Watch ~ High-tech mirrors to beam heat from buildings into space ~ May replace air conditioning



illustration of reflective panel on building

news.stanford.edu 

By Chris Cesare

A new ultrathin multilayered material can cool buildings without air conditioning by radiating warmth from inside the buildings into space while also reflecting sunlight to reduce incoming heat.

Stanford engineers have invented a material designed to help cool buildings. The material reflects incoming sunlight, and it sends heat from inside the structure directly into space as infrared radiation (represented by reddish rays).

Stanford engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space.

A team led by electrical engineering Professor Shanhui Fan and research associate Aaswath Raman reported this energy-saving breakthrough in the journal Nature.

The heart of the invention is an ultrathin, multilayered material that deals with light, both invisible and visible, in a new way.

Invisible light in the form of infrared radiation is one of the ways that all objects and living things throw off heat. When we stand in front of a closed oven without touching it, the heat we feel is infrared light. This invisible, heat-bearing light is what the Stanford invention shunts away from buildings and sends into space.

Of course, sunshine also warms buildings. The new material, in addition dealing with infrared light, is also a stunningly efficient mirror that reflects virtually all of the incoming sunlight that strikes it.

The result is what the Stanford team calls photonic radiative cooling – a one-two punch that offloads infrared heat from within a building while also reflecting the sunlight that would otherwise warm it up. The result is cooler buildings that require less air conditioning.

"This is very novel and an extraordinarily simple idea," said Eli Yablonovitch, a professor of engineering at the University of California, Berkeley, and a pioneer of photonics who directs the Center for Energy Efficient Electronics Science. "As a result of professor Fan's work, we can now [use radiative cooling], not only at night but counter-intuitively in the daytime as well."

The researchers say they designed the material to be cost-effective for large-scale deployment on building rooftops. Though still a young technology, they believe it could one day reduce demand for electricity. As much as 15 percent of the energy used in buildings in the United States is spent powering air conditioning systems.

In practice the researchers think the coating might be sprayed on a more solid material to make it suitable for withstanding the elements.

"This team has shown how to passively cool structures by simply radiating heat into the cold darkness of space," said Nobel Prize-winning physicist Burton Richter, professor emeritus at Stanford and former director of the research facility now called the SLAC National Accelerator Laboratory.

A warming world needs cooling technologies that don't require power, according to Raman, lead author of the Nature paper. 

"Across the developing world, photonic radiative cooling makes off-grid cooling a possibility in rural regions, in addition to meeting skyrocketing demand for air conditioning in urban areas," he said.

Using a window into space

The real breakthrough is how the Stanford material radiates heat away from buildings.

researchers Linxiao Zhu, Shanhui Fan, Aaswath Raman
Doctoral candidate Linxiao Zhu, Professor Shanhui Fan and research associate 
Aaswath Raman are members of the team that invented the breakthrough energy-saving material.
As science students know, heat can be transferred in three ways: conduction, convection and radiation. Conduction transfers heat by touch. That's why you don't touch an oven pan without wearing a mitt. Convection transfers heat by movement of fluids or air. It's the warm rush of air when the oven is opened. Radiation transfers heat in the form of infrared light that emanates outward from objects, sight unseen.
The first part of the coating's one-two punch radiates heat-bearing infrared light directly into space. The ultrathin coating was carefully constructed to send this infrared light away from buildings at the precise frequency that allows it to pass through the atmosphere without warming the air, a key feature given the dangers of global warming.

"Think about it like having a window into space," said Fan.

Aiming the mirror

But transmitting heat into space is not enough on its own.
This multilayered coating also acts as a highly efficient mirror, preventing 97 percent of sunlight from striking the building and heating it up.

"We've created something that's a radiator that also happens to be an excellent mirror," said Raman.

Together, the radiation and reflection make the photonic radiative cooler nearly 9 degrees Fahrenheit cooler than the surrounding air during the day.

From prototype to building panel

Making photonic radiative cooling practical requires solving at least two technical problems.

The first is how to conduct the heat inside the building to this exterior coating. Once it gets there, the coating can direct the heat into space, but engineers must first figure out how to efficiently deliver the building heat to the coating.

The second problem is production. Right now the Stanford team's prototype is the size of a personal pizza. Cooling buildings will require large panels. The researchers say there exist large-area fabrication facilities that can make their panels at the scales needed.

The cosmic fridge

More broadly, the team sees this project as a first step toward using the cold of space as a resource. In the same way that sunlight provides a renewable source of solar energy, the cold universe supplies a nearly unlimited expanse to dump heat.

"Every object that produces heat has to dump that heat into a heat sink," Fan said. "What we've done is to create a way that should allow us to use the coldness of the universe as a heat sink during the day."

In addition to Fan, Raman and Zhu, this paper has two additional co-authors: Marc Abou Anoma, a master's student in mechanical engineering who has graduated; and Eden Rephaeli, a doctoral student in applied physics who has graduated.

View Article Here Read More

The Mission to land robot on comet to take final step







Excerpt from  theglobeandmail.com
By Ivan Semeniuk

Half a billion kilometres from Earth and 10 years into its remarkable journey, a small robot is about to plunge into space history.

Pending a final green light from mission controllers on Tuesday night, the robot – nicknamed Philae (fee-lay) – will detach from its mother ship and try to hook itself onto one of the most challenging and mysterious objects in the solar system.



It’s a high-risk manoeuvre with plenty of unknowns. But if it works, then the probe will be able to show us what no one has ever experienced: what it’s like to stand on the surface of a comet.

“Comets are new territory,” said Ralf Gellert, a professor of physics at the University of Guelph. “There could be some big surprises.”

Prof. Gellert should know. Fifteen years ago, he helped build one of the instruments on the dishwasher-size lander that will reveal the comet’s composition. No such direct measurement has been made before. Even designing how the instrument should work was fraught with challenges since there was so little known about what kind of surface the lander might find itself on.

“Is it an ice ball with rock and trace metals, or a rock ball with ice on it … or ice below the surface? We didn’t know,” he said.
And scientists still don’t.

When the European Space Agency launched the Rosetta mission in 2004, the mission’s target – Comet Churyumov-Gerasimenko – was little more than a fuzzy blip in astronomers’ telescopes. But Rosetta just arrived in August and it’s been in orbit around the comet since then.

What was assumed to be a single, homogeneous lump of ice and rock has turned out to be a bizarre-looking object in two parts, arranged a bit like the head and body of a rubber duck. By October, scientists had zeroed in on the head portion, which is four kilometres across at its widest point, and settled on a landing site.

Remote sensing data from Rosetta suggest that the comet is quite porous, with a surface that is as black as coal and somewhat warmer than expected. In other words, Philae will probably not be landing on skating-rink-hard ice. Yet, whether the surface will be crusty like a roadside snowbank, fluffy like cigarette ash, or something else entirely is anyone’s guess.

And while scientists and engineers say they’ve done everything they can think of to maximize the lander’s chance of success, they acknowledge it’s entirely possible that Philae will encounter something it can’t handle and smash to bits or sink into oblivion.


Yet the landing is more than a daring jaunt to see what has never been seen before. Comets are also among the most primitive bodies in the solar system. Each one is an amalgam of ice and rock that has been around since Earth and its sister planets formed billions of years ago. In a sense, comets are the leftovers of that process – primordial fossils from the birth of the solar system.

The instrument Prof. Gellert worked on, known as the alpha particle X-ray spectrometer (APXS), will help illuminate this early period by making precise measurements of the comet’s elemental ingredients.

It is carried on a robot arm that will place a radioactive source near the comet’s surface. The particles and X-rays the comet material gives off as a result of this exposure will provide detailed information about what chemical elements the comet contains. This will be augmented by another experiment designed to drill and extract a comet sample for analysis inside the lander.

Prof. Gellert, who has also been closely involved in NASA’s Mars rover missions, said Rosetta’s long timeline and the many unknowns related to the comet makes this week’s landing a trickier proposition than landing on Mars – but also a tremendously exciting one.

“I think it’s a matter of hope for the best and see what happens.”

View Article Here Read More

Are these angels watching over a family while cruise ship sinks? Greg Giles

The Italian luxury liner Costa Concordia as she lists and sinksWhile viewing this presentation which documents the sinking of the Italian luxury liner Costa Concordia after she struck an underwater obstruction on the 13th of January 2012, a tragedy w...

View Article Here Read More

Atlantis ~ True Story or Cautionary Tale?

Photo: Illustration of Atlantis
An illustration by Sir Gerald Hargreaves shows a utopian scene on a cove of the mythical land of Atlantis. Many scholars think Plato invented the story of Atlantis as a way to present his philosophical theories.
Photograph by Mary Evans Picture Library/Everett Collection


science.nationalgeographic.com
By Willie Drye

If the writing of the ancient Greek philosopher Plato had not contained so much truth about the human condition, his name would have been forgotten centuries ago.

But one of his most famous stories—the cataclysmic destruction of the ancient civilization of Atlantis—is almost certainly false. So why is this story still repeated more than 2,300 years after Plato's death?

"It's a story that captures the imagination," says James Romm, a professor of classics at Bard College in Annandale, New York. "It's a great myth. It has a lot of elements that people love to fantasize about."

Plato told the story of Atlantis around 360 B.C. The founders of Atlantis, he said, were half god and half human. They created a utopian civilization and became a great naval power. Their home was made up of concentric islands separated by wide moats and linked by a canal that penetrated to the center. The lush islands contained gold, silver, and other precious metals and supported an abundance of rare, exotic wildlife. There was a great capital city on the central island.

There are many theories about where Atlantis was—in the Mediterranean, off the coast of Spain, even under what is now Antarctica. "Pick a spot on the map, and someone has said that Atlantis was there," says Charles Orser, curator of history at the New York State Museum in Albany. "Every place you can imagine."

Plato said Atlantis existed about 9,000 years before his own time, and that its story had been passed down by poets, priests, and others. But Plato's writings about Atlantis are the only known records of its existence.

Possibly Based on Real Events?

Few, if any, scientists think Atlantis actually existed. Ocean explorer Robert Ballard, the National Geographic explorer-in-residence who discovered the wreck of the Titanic in 1985, notes that "no Nobel laureates" have said that what Plato wrote about Atlantis is true.

Still, Ballard says, the legend of Atlantis is a "logical" one since cataclysmic floods and volcanic explosions have happened throughout history, including one event that had some similarities to the story of the destruction of Atlantis. About 3,600 years ago, a massive volcanic eruption devastated the island of Santorini in the Aegean Sea near Greece. At the time, a highly advanced society of Minoans lived on Santorini. The Minoan civilization disappeared suddenly at about the same time as the volcanic eruption.

But Ballard doesn't think Santorini was Atlantis, because the time of the eruption on that island doesn't coincide with when Plato said Atlantis was destroyed.

Romm believes Plato created the story of Atlantis to convey some of his philosophical theories. "He was dealing with a number of issues, themes that run throughout his work," he says. "His ideas about divine versus human nature, ideal societies, the gradual corruption of human society—these ideas are all found in many of his works. Atlantis was a different vehicle to get at some of his favorite themes."

The legend of Atlantis is a story about a moral, spiritual people who lived in a highly advanced, utopian civilization. But they became greedy, petty, and "morally bankrupt," and the gods "became angry because the people had lost their way and turned to immoral pursuits," Orser says.

As punishment, he says, the gods sent "one terrible night of fire and earthquakes" that caused Atlantis to sink into the sea.

View Article Here Read More

Heaven Letters June-20-2013

Heavenletter #4591 All That Is, June 20, 2013
Gloria Wendroff
http://www.heavenletters.org/all-that-is.html

God said:
You’re not tired of My telling you how to live in the world, are you? You

View Article Here Read More

~MERGING WITH YOUR DIVINE SELF ~

{mainvote}

the pathway is already in place...

all you need do is choose to walk it

in your shoes of allowance....

~MERGING WITH YOUR DIVINE SELF..~

IT IS NOW.....   with ...

View Article Here Read More

Seeds for Growth by Lady Mary

Channelled through Natalie Glasson- 05/07/10

The warmest and deepest of loving blessings extends from my soul to all of creation on the Earth. My fondness and devotion for the Earth and its humanity is abundant and ...

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑