Tag: signature (page 1 of 4)

Greg Giles ~ Who are the Authentic Channels? ~ Part 2

I wish to make it clear that the complicity of Freemasons in this mind control program which uses synthetic telepathy, or voice to skull (V2K) technology, is not a wild theory I am proposing but a conclusion I have reached through careful analysis o...

View Article Here Read More

Greg Giles ~ Beyond Discernment ~ Who are the Authentic Channels? Part 1

I wish to make it clear that the complicity of Freemasons in this mind control program which uses synthetic telepathy, or voice to skull (V2K) technology, is not a theory I am proposing but point of fact, as the group that had been sending me the '...

View Article Here Read More

The Science of the Dogon

Excerpt from The Science of The Dogon, by Laird ScrantonThe information presented in the preceding chapters demonstrates a direct relationship between the symbols and themes of the Dogon creation story and known scientific facts relating to the formation of the universe, matter, and biological reproduction. This relationship is a broad and specific one that is couched in clear definitions and supported by priestly interpretations and cosmological drawings. The parallels between Dogon myth [...]

View Article Here Read More

Sea Salt Discovered on Jupiter’s Moon Europa

This image shows a view of the trailing hemisphere of Jupiter's ice-covered satellite, Europa, in approximate natural color. Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long.   Image via Galileo spacecraft in 1996.

Europa is thought to have a subsurface ocean. Salt from this hidden sea might be emerging in long fractures visible in the moon’s crust.



Excerpt earthsky.org


Laboratory experiments have lead to new information about the chemical composition of the mysterious dark material in the long, dark fractures on the surface of Europa, a large moon of Jupiter. Researchers at NASA’s Jet Propulsion Laboratory (JPL) mimicked conditions on Europa’s surface. They now say that the dark material is discolored salt, likely sea salt from below the moon’s icy crust. The journal Geological Research Letters published their study on May 15, 2015.

The scientists say this new insight is important in considering whether this icy moon might be hospitable for extraterrestrial life. The life question is a key one for Europa, since this world is believed to have a liquid ocean beneath its crust. The presence of sea salt on Europa’s surface suggests the ocean is interacting with its rocky seafloor.

Scientists have been intensely curious about Europa since Galileo discovered it in 1610. In recent years, they’ve puzzled over the dark material coating the long, linear fractures on Europa’s observable surface. The material was associated with young terrain on this moon of Jupiter, suggesting that it had erupted from within Europa.
However, the chemical composition of the dark material remained elusive, until now.
Planetary scientist Kevin Hand at JPL led the new study. He said in a statement:
If it’s just salt from the ocean below, that would be a simple and elegant solution for what the dark, mysterious material is.
Europa is immersed radiation from Jupiter’s powerful magnetic field, causing high-powered electrons to slam into the moon’s surface. Hand and his team created a laboratory test that mimicked the conditions of Europa’s temperature, pressure, and radiation exposure. They tested a variety of samples including common salt – sodium chloride – and salt water in a vacuum chamber at Europa’s chilly surface temperature of minus 280 degrees Fahrenheit (minus 173 Celsius). They also bombarded the samples with an electron beam to imitate Jupiter’s influence. 

After several hours – a time period corresponding to over a century on Europa, the researchers said – the salt samples were observed to go from white to a yellowish brown, the color similar to the features on the icy moon. Hand said:
This work tells us the chemical signature of radiation-baked sodium chloride is a compelling match to spacecraft data for Europa’s mystery material.
A
A “Europa-in-a-can” laboratory setup at NASA-JPL mimics conditions of temperature, near vacuum and heavy radiation on the surface of Jupiter’s icy moon. Image via NASA/JPL-Caltech


A close-up of salt grains discolored by radiation following exposure in a
Close-up of salt grains discolored by radiation following exposure in a “Europa-in-a-can” test setup at JPL. Image via NASA/JPL-Caltech


Until now, telescopic observations have only shown glimpses of irradiated salts. No telescope on Earth can observe Europa’s surface with enough resolution to identify them with certainty. Researchers suggest additional spacecraft observation to gather more evidence.
A visit to this icy world would help answer the most tantalizing questions about Europa. Long believed to have a liquid ocean of salt water below its icy surface, this moon continues to display promising conditions for extraterrestrial life. 

As Europa orbits Jupiter, it experiences strong tidal forces similar to Earth and the Moon. These forces from Jupiter and the other Jovian moons cause Europa to flex and stretch, which creates heat, and results in Europa having a warm internal temperature than it would with just the heat from the Sun alone. 

Recent observable geological activity also creates strong evidence that the subsurface ocean interacts directly with Europa’s rocky interior, making geothermal vents, like those in Earth’s oceans, a strong possibility as well. 

These hydrothermal vent ecosystems on Earth thrive with no energy from the sun. Bacteria, shrimp and crustaceans have all been observed in these extreme environments, surviving on what researchers have deemed chemosythesis.

With Europa’s enormous amount of liquid salt water, essential chemical elements and geological activity, this long discovered icy moon appears to be one of the solar systems most promising locations for habitable requirements for life. 

However, until a devoted spacecraft visit’s, nothing beyond hopeful speculation can be proven, the researchers say.

Bottom line: Researchers at NASA’s Jet Propulsion Laboratory created laboratory conditions that mimicked those on Jupiter’s large moon Europa, to learn the chemical compositions of the material in long, dark fractures in the moon’s surface. They now believe this material is sea salt, which has emerged to Europa’s surface from its liquid ocean below.

View Article Here Read More

Here’s How To Avoid One Of The Most Common Life Regrets

Excerpt from huffingtonpost.comKarl Pillemer, a Ph.D. gerontologist at Cornell University, has spent the last several years interviewing hundreds of older Americans to systematically collect their practical wisdom.His first book, 30 Lessons for Livin...

View Article Here Read More

Black Holes, the Large Hadron Collider, & Finding Parallel Universes

Excerpt from huffingtonpost.comI am a huge science enthusiast and an unabashed science fiction fan. There are tons of really cool stories out there that fire the imagination and even inspire young people to go into science. (I know they did me.) ...

View Article Here Read More

Strange find on Titan sparks chatter about life


Titan


Excerpt from nbcnews.com

Studies may suggest methane-based organic processes ... but maybe not  
New findings have roused a great deal of hoopla over the possibility of life on Saturn's moon Titan, which some news reports have further hyped up as hints of extraterrestrials.
However, scientists also caution that aliens might have nothing to do with these findings.

All this excitement is rooted in analyses of chemical data returned by NASA's Cassini spacecraft. One study suggested that hydrogen was flowing down through Titan's atmosphere and disappearing at the surface. Astrobiologist Chris McKay at NASA's Ames Research Center speculated that this could be a tantalizing hint that hydrogen is getting consumed by life.

"It's the obvious gas for life to consume on Titan, similar to the way we consume oxygen on Earth," McKay said.

Another study investigating hydrocarbons on Titan's surface found a lack of acetylene, a compound that could be consumed as food by life that relies on liquid methane instead of liquid water to live.
"If these signs do turn out to be a sign of life, it would be doubly exciting because it would represent a second form of life independent from water-based life on Earth," McKay said.
However, NASA scientists caution that aliens might not be involved at all.

"Scientific conservatism suggests that a biological explanation should be the last choice after all non-biological explanations are addressed," said Mark Allen, principal investigator with the NASA Astrobiology Institute Titan team. "We have a lot of work to do to rule out possible non-biological explanations. It is more likely that a chemical process, without biology, can explain these results."
McKay told Space.com that "both results are still preliminary."

To date, methane-based life forms are only speculative, with McKay proposing a set of conditions necessary for these kinds of organisms on Titan in 2005. Scientists have not yet detected this form of life anywhere, although there are liquid-water-based microbes on Earth that thrive on methane or produce it as a waste product. 

On Titan, where temperatures are around minus-290 degrees Fahrenheit (-179 degrees Celsius), any organisms would have to use a substance that is liquid as its medium for living processes. Water itself cannot do, because it is frozen solid on Titan's surface. The list of liquid candidates is very short — liquid methane and related molecules such as ethane. Previous studies have found Titan to have lakes of liquid methane.

Missing hydrogen? 

The dearth of hydrogen Cassini detected is consistent with conditions that could produce methane-based life, but do not conclusively prove its existence, cautioned researcher Darrell Strobel, a Cassini interdisciplinary scientist based at Johns Hopkins University in Baltimore. Strobel wrote the paper on hydrogen appearing online in the journal Icarus.


Strobel looked at densities of hydrogen in different parts of the atmosphere and at the surface. Previous models from scientists had predicted that hydrogen molecules, a byproduct of ultraviolet sunlight breaking apart acetylene and methane molecules in the upper atmosphere, should be distributed fairly evenly throughout the atmospheric layers.

Strobel's computer simulations suggest a hydrogen flow down to the surface at a rate of about 10,000 trillion trillion molecules per second. 

"It's as if you have a hose and you're squirting hydrogen onto the ground, but it's disappearing," Strobel said. "I didn't expect this result, because molecular hydrogen is extremely chemically inert in the atmosphere, very light and buoyant. It should 'float' to the top of the atmosphere and escape."

Strobel said it is not likely that hydrogen is being stored in a cave or underground space on Titan. An unknown mineral could be acting as a catalyst on Titan's surface to help convert hydrogen molecules and acetylene back to methane.

Although Allen commended Strobel, he noted "a more sophisticated model might be needed to look into what the flow of hydrogen is."

Consumed acetylene? 

Scientists had expected the sun's interactions with chemicals in the atmosphere to produce acetylene that falls down to coat Titan's surface. But when Cassini mapped hydrocarbons on Titan's surface, it detected no acetylene on the surface, according to findings appearing online in the Journal of Geophysical Research.


Instead of alien life on Titan, Allen said one possibility is that sunlight or cosmic rays are transforming the acetylene in icy aerosols in the atmosphere into more complex molecules that would fall to the ground with no acetylene signature.

In addition, Cassini detected an absence of water ice on Titan's surface, but loads of benzene and another as-yet-unidentified material, which appears to be an organic compound. The researchers said that a film of organic compounds is covering the water ice that makes up Titan's bedrock. This layer of hydrocarbons is at least a few millimeters to centimeters thick, but possibly much deeper in some places. 

"Titan's atmospheric chemistry is cranking out organic compounds that rain down on the surface so fast that even as streams of liquid methane and ethane at the surface wash the organics off, the ice gets quickly covered again," said Roger Clark, a Cassini team scientist based at the U.S. Geological Survey in Denver. "All that implies Titan is a dynamic place where organic chemistry is happening now."

All this speculation "is jumping the gun, in my opinion," Allen said.

"Typically in the search for the existence of life, one looks for the presence of evidence -- say, the methane seen in the atmosphere of Mars, which can't be made by normal photochemical processes," Allen added. "Here we're talking about absence of evidence rather than presence of evidence — missing hydrogen and acetylene — and oftentimes there are many non-life processes that can explain why things are missing."

These findings are "still a long way from evidence of life," McKay said. "But it could be interesting."

View Article Here Read More

Dawn’s imagery of Ceres keeps getting better


These two views of Ceres were acquired by NASA's Dawn spacecraft on Feb. 12, 2015, from a distance of about 52,000 miles (83,000 kilometers) as the dwarf planet rotated. The images, which were taken about 10 hours apart, have been magnified from their original size. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
These two views of Ceres were acquired by NASA’s Dawn spacecraft on Feb. 12, 2015, from a distance of about 52,000 miles (83,000 kilometers) as the dwarf planet rotated. The images, which were taken about 10 hours apart, have been magnified from their original size. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA



Excerpt from spaceflightnow.com

Images from NASA’s Dawn spacecraft on approach to the dwarf planet Ceres show a world pockmarked by craters and mysterious bright spots, and scientists are eager for a better look in the weeks ahead.

The latest images were taken Feb. 12 at a distance of 52,000 miles, or 83,000 kilometers, from Ceres. NASA released the fresh views Tuesday.

Every picture taken of Ceres in the coming weeks will show greater detail, as Dawn is set to be captured by the Texas-sized world’s gravity March 6. The dwarf planet will pull Dawn into the first of a series of survey orbits 8,400 miles from Ceres around April 23.

The imagery so far reveals Ceres as a cratered world, and Dawn will make a global map of the dwarf planet during its time in orbit.
But several bright spots have captured the attention of scientists.
“As we slowly approach the stage, our eyes transfixed on Ceres and her planetary dance, we find she has beguiled us but left us none the wiser,” said Chris Russell, principal investigator of the Dawn mission, based at UCLA. “We expected to be surprised; we did not expect to be this puzzled.”

The suspense is compounded by Dawn’s slow rate of approach. The probe’s ion propulsion system is gradually nudging Dawn on a trajectory closer to Ceres, eventually moving the spacecraft close enough to be grasped by the 590-mile diameter dwarf planet’s gravity.

“I want to know what is causing the bright spots,” Russell wrote in an email to Spaceflight Now. “The increased resolution seems to have moved us no closer to answering this mystery. I am frustrated by the suspense. This is the one problem of ion propulsion: We are closing in on Ceres very slowly.”

The latest photos have a resolution have 4.9 miles, or 7.8 kilometers, per pixel, according to a NASA press release.

Dawn’s framing camera will take its next set of images Feb. 20 at a range of about 30,000 miles. After late February, the resolution of Dawn’s imagery will be reduced as the spacecraft passes Ceres and flies in front of it, before being pulled closer in early April for insertion into orbit.

Soon after arriving in April, the spacecraft’s instruments will look for the signature of water vapor plumes shooting into space from the surface of Ceres, which may be blanketed in a crust of ice.
Dawn will orbit closest to Ceres in December at an altitude of 232 miles.

Dawn’s mission planners say the spacecraft could operate around Ceres until late 2016.

Ceres is the second destination for NASA’s Dawn mission, which launched in September 2007 and visited asteroid Vesta in 2011 and 2012.

View Article Here Read More

Mysterious Galaxy X Found Finally? Dark Matter Hunters Would Like To Believe So

Excerpt from techtimes.comAstronomers have long suspected strange ripples in hydrogen gas in the disk of our Milky Way galaxy are caused by the gravity of an unseen dwarf galaxy dominated by dark matter -- and now they think they've found this "Gal...

View Article Here Read More

Ancient rocks show life could have flourished on Earth 3.2 billion years ago


photo of red rocks and blue sky
The oldest samples are sedimentary rocks that formed 3.2 billion years ago in
northwestern Australia. They contain chemical evidence for nitrogen
fixation by microbes.R. Buick / UW



Excerpt from
washington.edu

A spark from a lightning bolt, interstellar dust, or a subsea volcano could have triggered the very first life on Earth.
But what happened next? Life can exist without oxygen, but without plentiful nitrogen to build genes – essential to viruses, bacteria and all other organisms – life on the early Earth would have been scarce.

The ability to use atmospheric nitrogen to support more widespread life was thought to have appeared roughly 2 billion years ago. Now research from the University of Washington looking at some of the planet’s oldest rocks finds evidence that 3.2 billion years ago, life was already pulling nitrogen out of the air and converting it into a form that could support larger communities.

“People always had the idea that the really ancient biosphere was just tenuously clinging on to this inhospitable planet, and it wasn’t until the emergence of nitrogen fixation that suddenly the biosphere become large and robust and diverse,” said co-author Roger Buick, a UW professor of Earth and space sciences. “Our work shows that there was no nitrogen crisis on the early Earth, and therefore it could have supported a fairly large and diverse biosphere.”
The results were published Feb. 16 in Nature.

The authors analyzed 52 samples ranging in age from 2.75 to 3.2 billion years old, collected in South Africa and northwestern Australia. These are some of the oldest and best-preserved rocks on the planet. The rocks were formed from sediment deposited on continental margins, so are free of chemical irregularities that would occur near a subsea volcano. They also formed before the atmosphere gained oxygen, roughly 2.3 to 2.4 billion years ago, and so preserve chemical clues that have disappeared in modern rocks.

Even the oldest samples, 3.2 billion years old – three-quarters of the way back to the birth of the planet – showed chemical evidence that life was pulling nitrogen out of the air. The ratio of heavier to lighter nitrogen atoms fits the pattern of nitrogen-fixing enzymes contained in single-celled organisms, and does not match any chemical reactions that occur in the absence of life.

“Imagining that this really complicated process is so old, and has operated in the same way for 3.2 billion years, I think is fascinating,” said lead author Eva Stüeken, who did the work as part of her UW doctoral research. “It suggests that these really complicated enzymes apparently formed really early, so maybe it’s not so difficult for these enzymes to evolve.”

Genetic analysis of nitrogen-fixing enzymes have placed their origin at between 1.5 and 2.2 billion years ago.

“This is hard evidence that pushes it back a further billion years,” Buick said.

Fixing nitrogen means breaking a tenacious triple bond that holds nitrogen atoms in pairs in the atmosphere and joining a single nitrogen to a molecule that is easier for living things to use. The chemical signature of the rocks suggests that nitrogen was being broken by an enzyme based on molybdenum, the most common of the three types of nitrogen-fixing enzymes that exist now. 

Molybdenum is now abundant because oxygen reacts with rocks to wash it into the ocean, but its source on the ancient Earth – before the atmosphere contained oxygen to weather rocks – is more mysterious.

The authors hypothesize that this may be further evidence that some early life may have existed in single-celled layers on land, exhaling small amounts of oxygen that reacted with the rock to release molybdenum to the water.

“We’ll never find any direct evidence of land scum one cell thick, but this might be giving us indirect evidence that the land was inhabited,” Buick said. “Microbes could have crawled out of the ocean and lived in a slime layer on the rocks on land, even before 3.2 billion years ago.”

Future work will look at what else could have limited the growth of life on the early Earth. Stüeken has begun a UW postdoctoral position funded by NASA to look at trace metals such as zinc, copper and cobalt to see if one of them controlled the growth of ancient life.

Other co-authors are Bradley Guy at the University of Johannesburg in South Africa, who provided some samples from gold mines, and UW graduate student Matthew Koehler. The research was funded by NASA, the UW’s Virtual Planetary Laboratory, the Geological Society of America and the Agouron Institute.

View Article Here Read More

The Weirdest, Coolest Stuff We’ve Learned About Rosetta’s Comet So Far


Various features on a smooth part of the comet's surface in the region named Imhotep.


Excerpt from wired.com

The Rosetta spacecraft has been studying comet 67P/Churyumov-Gerasimenko up close since August, collecting data of unprecedented detail and taking pictures of a starkly beautiful comet-scape. While the Philae lander has enjoyed much of the spotlight—partly thanks to its now-famous triple landing—Rosetta has been making plenty of its own discoveries.  

One of the biggest came last month, when scientists found that the chemical signature of the comet’s water is nothing like that on Earth, contradicting the theory that crashing comets supplied our planet with water. Comet 67P belongs to the Jupiter family of comets, and the findings also imply that these kinds of comets were formed at a wider range of distances from the sun than previously thought, says Michael A’Hearn, a planetary scientist at the University of Maryland, College Park, and member of the Rosetta science team.  

Today, scientists have published the first big set of results from Rosetta in a slew of papers in the journal Science. The results include measurements and analyses of the comet’s shape, structure, surface, and the surrounding dust and gas particles. Here are just a few of the amazing things they’ve discovered about Rosetta’s comet so far: 

The surface is fantastically weird  

The comet has quite the textured landscape, covered with steep cliffs, boulders, weird bumps, cracks, pits, and smooth terrain. There are fractures of all sizes, including one that’s several yards wide and stretches for more than half a mile along the comet’s neck. Researchers don’t yet know what caused these cracks.  The pits have steep sides and flat bottoms, ranging in size from a few tens to hundreds of feet wide. Jets of dust shoot out from some of the pits, suggesting that the ejection of material formed these features.  Another strange feature is what scientists are calling goosebumps—weird bumpy patches found particularly on steep slopes.

While other features such as pits and fractures range in sizes, all of the goosebumps are about 10 feet wide. No one knows what kind of process would make the bumps, but whatever it is could have played an important part in the comet’s formation. It may be breezy  Rosetta spotted dune- and ripple-like patterns,wind tails behind rocks, and even moats surrounding rocks, suggesting that a light breeze may blow dust along the surface. Such a gentle wind would have to come from gases leaking from below.

Because of the extremely low gravity on the comet, it wouldn’t take a strong gust to blow things around. It may have formed from two separate pieces  Or not. The most distinct feature of comet 67P is its odd, two-lobed shape, which resembles a duck. Although scientists have seen this lobed structure in other comets before, namely Borrelly and Hartley 2, none are as pronounced as comet 67P’s. Borrelly and Hartley 2 look more like elongated potatoes while 67P has a clearly defined head and body. The strange shape suggests the comet was once two separate pieces called cometesimals—what are now the duck’s head and body—that stuck together. 

The other possibility is that erosion ate away the parts around the neck. Preliminary evidence points to the first hypothesis.

“Probably most of us on the OSIRIS team lean toward thinking it was two cometesimals,” A’Hearn said. (OSIRIS is one of Rosetta’s imaging instruments.) But the scientists won’t have conclusive evidence until they study the comet in more detail. For example, they now see layering along the neck—if erosion carved out the comet’s duck shape, they should find the same same layering pattern continuing onto the other side of the neck. 

Black, with a tinge of red  

Even Rosetta’s color pictures show a grayish comet, but if you were to see it in person, you would see a pitch-black chunk of dust and ice, as it reflects only six percent of incoming light. By comparison, the moon reflects 12 percent of incoming light and Earth reflects 31 percent. But comet 67P’s not completely black, as it has a hint of red. Water, water, nowhere?  The comet’s covered in opaque, organic compounds. Although comet 67P is undoubtedly icy, it hardly shows any water ice on its surface at all. 

Which isn’t too surprising, as comets Tempel 1 and Hartley 2 didn’t have much ice on their surfaces either, A’Hearn says. Rosetta has yet to see sunlight reach every side of the comet yet, so there may still be some icy patches hidden from view.  But, researchers do see the comet spraying water vapor into space, which means water ice likely lies just beneath the surface. The ice doesn’t have to be more than a centimeter deep to be invisible from the infrared instruments that detect the ice. Indeed, the data from Philae’s first bounce suggested that there’s a hard layer of ice beneath 4 to 8 inches of dust. 

This duck floats  

If you could find a big enough pond, that is. Like other known comets, the density of comet 67P is about half that of water ice. Initial measurements reveal that it’s also very porous—as much as 80 percent of it may be empty space. Rosetta has found depressions, which may have formed when the surface collapsed over particularly porous material underneath. 

Different from every angle

As the comet nears the sun, it heats up, and ices and other volatile chemicals sublimate, spraying gases into space. So far, the most prominent gases that have been ejected are water vapor, carbon dioxide, and carbon monoxide. They spew out in different amounts from different parts of the comet. In particular, a lot of the water has been observed gushing out from the neck.

The comet will continue to get more active as it reaches its closest approach to the sun in mid-August. It will burst with stronger jets of gas and dust, and maybe even blast off chunks of itself. If the comet is this interesting now, A’Hearn says, just wait until it gets to its nearest point to the sun, when it’s just 1.29 times farther from the sun than Earth is.

View Article Here Read More

Meteorite is ‘hard drive’ from space ~ Researchers decode ancient recordings from asteroid ~ BBC


Pallasite meteorite
The Esquel meteorite consists of gem-quality crystals embedded in metal.



Excert from bbc.com

Researchers have decoded ancient recordings from fragments of an asteroid dating back billions of years to the start of the Solar System. 

They found tiny "space magnets" in meteorites which retain a memory of the birth and death of the asteroid's core.
Like the data recorded on the surface of a computer hard drive, the magnetic signals written in the space rock reveal how Earth's own metallic core and magnetic field may one day die.

The work appears in Nature journal.

Using a giant X-ray microscope, called a synchrotron, the team was able to read the signals that formed more than four-and-a-half billion years ago, soon after the birth of the Solar System.

Start Quote

It's like a cosmic archaeological mission”
Dr James Bryson University of Cambridge
The meteorites are pieces of a parent asteroid that originally came from asteroid belt, between Mars and Jupiter.
They represents the left-over fragments of a planet that failed to form. The magnetic recording within it traps a signal of the precise moments when an iron-rich core formed in the asteroid as well as when it froze, killing its magnetic field.
The new picture of metallic core solidification in the asteroid provide clues about the magnetic field and iron-rich core of Earth.
Core values "Ideas about how the Earth's core evolved through [our planet's] history are really changing at the moment," lead researcher Dr Richard Harrison, from the University of Cambridge, told BBC News.
"We believe that Earth's magnetic field is linked to core solidification. Earth's solid inner core may have started to form at very interesting time in terms of the evolution of life on Earth.
"By studying an asteroid we get to see this in fast forward. We can see the start of core solidification in the magnetic records as well as its end, and start to think about how these processes work on Earth."

Magnetic fieldThe Earth's magnetic field will likely die off when the core completely freezes
The meteorites studied by the team originally fell to Earth in Argentina, and are composed of gem-quality crystals enclosed in a metallic matrix of iron and nickel. 

Tiny particles, smaller than one thousandth the width of a human hair, trapped within the metal have retained the magnetic signature of the parent asteroid from its birth in the early Solar System.

"We're taking ancient magnetic field measurements in nano-scale materials to the highest ever resolution in order to piece together the magnetic history of asteroids - it's like a cosmic archaeological mission," said Dr James Bryson, the paper's lead author. 

"Since asteroids are much smaller than Earth, they cooled much more quickly, so these processes occur on a shorter timescales, enabling us to study the whole process of core solidification."

Prof Wyn William, from the University of Edinburgh, who was not involved in the study, commented: "To be able to get a time stamp on these recordings, to get a cooling rate and the time of solidification, is fantastic. It's a very nice piece of work."

The key to the long-lived stability of the recording is the atomic-scale structure of the iron-nickel particles that grew slowly in the asteroid core and survived in the meteorites. 

Making a final comment on the results, Dr Harrison said: "In our meteorites we've been able to capture both the beginning and end of core freezing, which will help us understand how these processes affected the Earth in the past and provide a possible glimpse of what might happen in the future." 

View Article Here Read More

Did European scientists find dark-matter signal buried in X-rays?


Dark matter findings XMM-Newton
This illustration shows the ESA's XMM-Newton space telescope. Using X-ray data collected by the telescope, scientists say they may have identified a dark-matter signal. (D. Ducros / European Space Agency)


Excerpt from latimes.com

Scientists say they may have discovered a possible dark matter signal coded in the X-rays emanating from two bright objects in the sky. 

The findings, set to be published next week in Physical Review Letters, could offer tangible evidence for the existence of dark matter -- and help researchers build new tools to search for and study this mysterious stuff.

When it comes to matter in the universe, dark matter is like a backroom political power broker: You never see it, but behind the scenes, it’s been throwing its weight around. The effects of its gravitational influence can be seen in the large-scale structures of the cosmos. Dark matter makes up about 84.5% of the matter in the universe while all the stuff we actually see -- stars, galaxies, planets, ourselves -- makes up the remaining 15.5%.* The enormous galaxies and clusters of galaxies that populate the universe are bantamweights compared to the massive, unseen dark matter ‘halos’ that anchor them.
Dark matter’s formidable gravitational influence is the only way that the strange stuff can be detected, because it’s invisible -- it does not interact with light. Physicists have no idea what it’s made of, although they’ve looked for it by building detectors in underground former gold mines, sending satellites into space and other methods. 

But now, a team led by researchers at Leiden University in the Netherlands and the École Polytechnique Fédérale de Lausanne in Switzerland say they’ve discovered a signal that could be a sign of dark matter. 

The scientists looked at X-ray emissions coming from the Andromeda galaxy and the Perseus galaxy cluster, collected by the European Space Agency’s XMM-Newton space telescope. After accounting for all the light particles (called photons) emanating from known sources in the Andromeda galaxy, they were left with a strange set of photons that had no known source. The found the same light signature emanating from the Perseus cluster. And when they turned their attention to the Milky Way, they found signs of this signal in our home galaxy, as well.
“It is consistent with the behavior of a line originating from the decay of dark matter particles,” the authors wrote in a pre-print of the study.

This weird light signal, they think, could be coming from the destruction of a hypothetical particle called a sterile neutrino (which, if it exists, might help explain dark matter). But it's going to take a lot of follow-up study to determine whether this signal is a scientific breakthrough or an anomalous blip.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑