Tag: setting (page 2 of 5)

A ‘bionic leaf’ that turns sunlight into fuel


Excerpt from cnbc.com

By Robert Ferris



The invention could pave the way for numerous innovations—by converting solar power into biofuels, it may help solve the vexing difficulty of storing unused solar energy, which is one of the most common criticisms of solar power as a viable energy source.
The process could also help make plastics and other chemicals and substances useful to industry and research.


The current experiment builds on previous research led by Harvard engineer Daniel Nocera, who in 2011 demonstrated an "artificial leaf" device that uses solar power to generate usable energy. 

Nocera's original invention was a wafer-like electrode suspended in water. When a current runs through the electrode from a power source such as a solar panel, for example, it causes the water to break down into its two components: hydrogen and oxygen. 

Nocera's device garnered a lot of attention for opening up the possibility of using sunlight to create hydrogen fuel—once considered a possible alternative to gasoline. 

But hydrogen has not taken off as a fuel source, even as other alternative energy sources survive and grow amid historically low oil prices. Hydrogen is expensive to transport, and the costs of adopting and distributing hydrogen are high. A gas station owner could more easily switch a pump from gasoline to biofuel, for example.


Now, Nocera and a team of Harvard researchers figured out how to use the bionic leaf to make a burnable biofuel, according to a study published Monday in the journal PNAS. The biologists on the team genetically modified a strain of bacteria that consumes hydrogen and produces isopropanol—the active ingredient in rubbing alcohol. In doing so, they successfully mimicked the natural process of photosynthesis—the way plants use energy from the sun to survive and grow.

This makes two things possible that have always been serious challenges for alternative energy space—solar energy can be converted into a storable form of energy, and the hydrogen can generate a more easily used fuel.


To be sure, the bionic leaf developments are highly unlikely to replace fossil fuels such as oil and natural gas any time soon—especially as the prices of both are currently so low. But it could be a good supplemental source. 

"One idea Dan [Nocera] and I share, which might seem a little wacky, is personalized energy" that doesn't rely on the power grid, biochemist Pamela Silver, who participated in the study, told CNBC in a telephone interview. 


Typically, people's energy needs are met by central energy production facilities—they get their electricity from the power grid, which is fed by coal- or gas-burning power plants, or solar farms, for example. Silver said locally produced energy could be feasible in developing countries that lack stable energy infrastructure, or could even appeal to people who choose to live off the grid.

"Instead of having to buy and store fuel, you can have your bucket of bacteria in your backyard," Silver said. 

Besides, the experiment was an attempt at proof-of-concept—the scientists wanted to demonstrate what could be done, Silver said. Now that they have mastered this process, further possibilities can be explored.  

"No insult to chemists, but biology is the best chemist there is, so we don't even know what we can make," said Silver. "We can make drugs, materials—we are just at the tip of the iceberg." 

The team hopes to develop many different kinds of bacteria that can produce all sorts of substances. That would mean, potentially at least, setting up the bionic leaf device and then plugging in whatever kind of bacteria might be needed at the moment.

For now, they want to increase the efficiency of the device, which is already much more efficient at photosynthesizing than plants are. Then they will focus on developing other kinds of bacteria to plug into the device.

"The uber goal, which is probably 20 years out," Silver said, "is converting the commodity industry away from petroleum."

View Article Here Read More

Moonquakes and blazing heat: What would life really be like on the Moon?


Lunar Base Made with 3D Printing


Excerpt from space.com

The idea of building a lunar outpost has long captured people's imaginations. But what would it really be like to live on the moon?
Space exploration has long focused on the moon, with Earth's satellite the setting for a number of significant missions. A 1959 Soviet spacecraft photographed the moon's far side for the first time, and in 1969, NASA landed people on the lunar surface for the first time. Numerous missions followed, including NASA's Lunar Reconnaissance Orbiter that beamed home the highest-resolution topographical lunar map to date, covering 98.2 percent of the moon's surface. 

Altogether, data beamed back from numerous missions suggest that no place on the moon would be a pleasant place to live, at least compared with Earth. Lunar days stretch for about 14 Earth days with average temperatures of 253 degrees Fahrenheit (123 degrees Celsius), while lunar nights also last 14 Earth days (due to the moon's rotation) and maintain a frigid cold of minus 387 degrees Fahrenheit (minus 233 degrees Celsius). 

"About the only place we could build a base that wouldn't have to deal with these extremes is, oddly enough, near the lunar poles," said Rick Elphic, project scientist for NASA's LADEE probe, which studied the moon's atmosphere and dust environment before performing a planned crash into the natural satellitein April 2014. These areas likely store vast amounts of water-ice and enjoy low levels of light from the sun for several months at a time.

"Instead of the blazing heat of lunar noon, it is a kind of perpetual balmy sunset, with temperatures around 0 degrees Celsius [32 degrees Fahrenheit] due to the low angle of the sun," Elphic added.

Vacations away from pole outposts would offer up sights unlike anything on Earth. Decorating the moon's vast lava plains are large impact-borne "mountains," the tallest of which is 3.4 miles (5.5 kilometers) high, about the size of Mount Saint Elias on the border of Alaska and Canada. "Skylight" holes puncture some of the plains where lava likely drained into sub-surface caverns — the perfect adventure for lunar spelunkers.

The moon also sports huge craters, such as the 25-mile-wide (40 km) Aristarchus crater. A view from the rim of Aristarchus would "dwarf the Grand Canyon and make Meteor Crater in Arizona look like a hole in a putting green," Elphic told Space.com via email.


Lunar athletes would not need to check the forecast, however. Because of its very tenuous atmosphere, the moon has no weather. "Every day is sunny with no chance of rain!" Elphic added. You would, however, have to look out for so-called space weather, which includes meteor particles that can be as large as golf balls and highly energetic particles from solar flares.

Another potential danger would be moonquakes. Seismometers left on the lunar surface during Apollo show that the moon is still seismically active, and even has rare, hour-long quakes measuring up to 5.5 on the Richter scale. These quakes would be strong enough to cause structural damage to buildings.

"So don't leave Earth for your home on the moon thinking you've left seismic activity behind," Elphic said. "Make sure your lunar house is up to code."

View Article Here Read More

New internet neutrality: FCC chairman proposes strong new rules

Excerpt from mercurynews.comThe federal government's top communications regulator on Wednesday called for strong new rules to bar Internet and wireless providers from blocking, slowing or discriminating against consumers' access to particular websi...

View Article Here Read More

Jupiter at its biggest, brightest for two weeks

Excerpt from pressofatlanticcity.comBy FRED SCHAAF  ...

View Article Here Read More

New fish species found at a depth of 5 miles in the Mariana Trench ~ Video



Excerpt from natmonitor.com

An international team of researchers, during a survey of the Mariana trench has found a new species of fish and found evidence of other known species living at new depths.

The Mariana trench is the deepest known part of the ocean, far too deep for humans to visit. At the deepest part of the trench the water pressure would be the equivalent of “one person trying to support 50 jumbo jets” according to the National Oceanic and Atmospheric Association (NOAA).

The survey was conducted using the Hadal-Lander, a vehicle built in Aberdeen Scotland for deep sea research. The vehicle is equipped with a variety of high resolution cameras, scientific instruments and an array of small baited funnel traps used to lure and trap small animals.

The researchers deployed the craft an unprecedented 92 times along the trench at depths ranging from 5000 – 10,600 meters.
At a depth of 8145 meters the team observed a kind of snail fish, 500 meters deeper than any fish has been observed previously.
“This really deep fish did not look like anything we had seen before, nor does it look like anything we know of, it is unbelievably fragile, with large wing-like fins and a head resembling a cartoon dog,” said Dr Alan Jamieson from the University of Aberdeen in a statement.

During the expedition the team also captured images of a ‘supergiant’ amphipod. These extremely large crustacean was originally discovered in traps off of New Zealand in 2012 but has never before been observed in its natural habitat. Video footage collected by the team shows the animal swimming, feeding and fighting off predators. A number of other species were also filmed, setting new depth records for three fish families.




View Article Here Read More

Is This What Really Killed the Dinosaurs?


Portrait of a killer: volcanoes were no friend to the dinos

Excerpt from time.com 

It wasn't just an asteroid

At the start of the 1980s, the question of what forced dinosaurs and huge numbers of other creatures to become extinct 65 million years ago was still a mystery. By the decade’s end, that mystery was solved: a comet or asteroid had slammed into Earth, throwing so much sun-blocking dust into the air that the planet plunged into a deep-freeze. The discovery of a massive impact crater off the coast of Mexico, of just the right age, pretty much sealed the deal in most scientists’ minds.

But a second global-scale catastrophe was happening at much the same time: a series of ongoing volcanic eruptions that dwarf anything humans have ever seen. They were so unimaginably powerful that they left nearly 200,000 square miles (518,000 sq. km) of what’s now India buried in volcanic basalt up to a mile and a half thick. And the gases and particulate matter spewed out by those eruptions, argue at least some scientists, could have played a big role in the dinosaurs’ doom as well.
How big a role, however, depends on exactly when the eruptions began and how long they lasted, and a new report in Science goes a long way toward answering that question. “We can now say with confidence,” says Blair Schoene, a Princeton geologist and lead author of the paper, “that the eruptions started 250,000 years before the extinction event, and lasted for a total of 750,000 years.” And that, he says, strengthens the idea that the eruptions could have contributed to the mass extinction of multiple species.

Schoene and his co-authors don’t claim volcanoes alone wiped out the dinosaurs; only that they changed the climate enough to put ecosystems under stress, setting them up for the final blow. “We don’t know the exact mechanism,” he admits. Volcanoes emit carbon dioxide, which could have triggered an intense burst of global warming, but they also emit sulfur dioxide, which could have caused global cooling. “What we do know,” Schoene says, “is that earlier mass extinctions were caused by volcanic eruptions alone.” The new dates, he and his co-authors believe, will help scientists understand what role these volcanoes played in the dinosaurs’ demise.

If there was such a role, that is, and despite this new analysis, plenty of paleontologists still doubt it seriously. The dating of the eruptions, based on widely accepted uranium-lead measurement techniques, is not an issue, says Brian Huber, of the Smithsonian Institution. “That part of the science is great,” he says. “It moves things forward.”

And those data, Huber says, make it clear that the extinction rate for the 250,000 years leading up to the asteroid impact wasn’t especially large. Then, at the time of the impact: whammo. The idea that volcanoes played a significant role in this extinction event keeps coming up every so often, and in Huber’s view, “the argument has gotten very tiresome. I no longer feel the need to put any energy into it. It’s from a minority arguing against overwhelming evidence.”

View Article Here Read More

Mars Capsule Test Heralds New Space Age With Musk Alongside NASA




Excerpt from
bloomberg.com

The U.S. is preparing to launch the first craft developed to fly humans to Mars, presaging a second space age -- this one fueled by billionaires like Elon Musk rather than a Cold War contest with the Soviet Union. 

An unmanned version of the Orion spaceship built by Lockheed Martin Corp. (LMT) is scheduled for liftoff tomorrow to an altitude of 3,600 miles (5,800 kilometers), the farthest from Earth by a vehicle designed for people since the Apollo program was scrapped in 1972. 

Entrepreneurs such as Musk and longtime contractors like Lockheed are helping shape the technology needed to find other homes for humanity in the solar system with an eye to one day commercializing their work. 

“These are really exciting times for space exploration and for our nation as we begin to return to the ability to fly humans to space,” said Jim Crocker, vice president and general manager of civil space at Lockheed Martin Space Systems. “What Orion is about is going further into space than humans have ever gone before.”
Photographer: Brent Lewis/The Denver Post via Getty Images

Launched from Kennedy Space Center in Florida atop a Delta IV rocket, the Orion capsule will test the riskiest systems needed to carry astronauts far beyond the moon, although its first flight will cover only about 2 percent of the 238,900-mile distance to the lunar surface.

Speed Limit

After orbiting earth twice, Orion will accelerate to 20,000 miles per hour during descent, mimicking the speeds of a craft returning from a mission to deep space. The capsule is supposed to make a parachute-cushioned splashdown in the Pacific Ocean off Mexico’s Baja peninsula. 

To explore the universe, the National Aeronautics and Space Administration must first redevelop capabilities abandoned more than 40 years ago when the U.S. shifted focus from Apollo’s lunar forays to rocketing crews a few hundred miles to low Earth orbit.
NASA has used Russian craft to reach the International Space Station since the space shuttle program ended in 2011. 

In a strategic shift, the Obama administration canceled plans to return to the moon, turning some flights to commercial companies while setting its sights -- and limited funds -- on pioneering deep space. The Orion capsule was originally commissioned in 2006 for the defunct Constellation program.

Musk, Bezos

Those moves paved the way for technology chieftains including Musk and Amazon.com Inc. (AMZN) founder Jeff Bezos to pursue their own space ambitions. 

Musk founded Hawthorne, California-based SpaceX in 2002 with the goal of enabling people to live on other planets, a massive endeavor that would require innovations such as reusable rocket stages to lower costs. 

Mars is also in focus for NASA as the space agency maps plans to “pioneer the space frontier,” according to a May 29 white paper.

$22 Billion

NASA proposes an initial $22 billion effort that includes two other Orion missions over the next eight years and building a powerful new rocket. The Delta IV being used tomorrow is manufactured by United Launch Alliance, a Lockheed-Boeing Co. (BA) venture.

A new Space Launch System rocket being developed by the partnership is slated to hoist the next Orion craft beyond the moon in fiscal 2018, Lockheed’s Crocker said in a phone interview. The first manned Orion mission is slated for early in the next decade.
NASA’s plans are “sketchy” beyond that, aside from broad goals to capture asteroid samples in the 2020s and reach Mars a decade later, said Marco Caceres, director of space studies with Fairfax, Virginia-based consultant Teal Group. 

Average Distance

While Mars’s distance from Earth varies because of the two planets’ orbits, the average is about 140 million miles, almost 600 times longer than a trip to the moon. It’s so far that radio communications take as long as 20 minutes to travel each way, according to Bill Hill, NASA’s deputy associate administrator for exploration systems development. 


Entrepreneurs such as Musk will have opportunities to get involved as NASA refines capsule and rocket designs. NASA plans to develop two larger rockets beyond the initial launch vehicle, which will be capable of hauling a 70-metric ton payload. 

“We’re not taking any options off the table,” Hill said. “We want to be sufficiently flexible so that if we find a new path, we can introduce it and not change course.” 

Expense, shifting political priorities and the lack of a clear NASA road map could still derail the latest effort as they did the Apollo program in the early 1970s, said Micah Walter-Range, director of research analysis with the Space Foundation, a non-profit organization based in Colorado Springs, Colorado. 

“All of the challenges that exist are surmountable,” Walter-Range said by phone. “It’s just a question of having the money to do it.”

View Article Here Read More

Pilot mystery at heart of Virgin Galactic spaceship crash probe


Sheriffs' deputies look at wreckage from the crash of Virgin Galactic's SpaceShipTwo near Cantil, California November 2, 2014.  REUTERS-David McNew
Sheriffs' deputies look at wreckage from the crash of Virgin Galactic's SpaceShipTwo near Cantil, California November 2, 2014.



(Reuters) - The probe of Virgin Galactic’s space plane crash in California hinges on a central mystery: Why a seasoned test pilot would prematurely unlock the craft's moveable tail section, setting off a chain of events that led to destruction of the ship and his death.
The National Transportation Safety Board was expected this week to complete its initial field investigation into Friday's ill-fated test flight of SpaceShipTwo, a rocket-powered vehicle built to take paying passengers for rides into space.
The ship broke apart at an altitude of about 50,000 feet (15,000 meters) and crashed in the Mojave Desert, 95 miles (150 km) north of Los Angeles, moments after its separation from the special jet aircraft that carries the spacecraft aloft for its high-altitude launches.
The pilot, Pete Siebold, 43, survived the crash, parachuting to the ground with a shoulder injury. The co-pilot, Mike Alsbury, 39, was killed.
NTSB officials have said it was Alsbury, flying for the ninth time aboard SpaceShipTwo, who unlocked the tail section, designed to pivot upward during atmospheric re-entry to ease descent of the craft.
Alsbury was supposed to have waited until the ship was traveling at 1.4 times the speed of sound, fast enough for aerodynamic forces to hold the tail in place until time to actually move it into descent position, sources familiar with the spacecraft's operation told Reuters.
Instead, for reasons unknown, he released the locking mechanism roughly 9 seconds into a planned 20-second firing of the space plane's rocket engine, while the ship was moving at about Mach 1, the speed of sound, the sources said.
The result was disastrous. About 4 seconds after the tail was unlocked, it began to swivel out, and the vehicle was ripped apart, scattering debris over a 5-mile (8-km) swath of desert northeast of the Mojave Air and Space Port.
A second command to deliberately move the tail upward after unlocking it was never given.
The tail's so-called “feathering” system, developed and patented by aircraft designer Burt Rutan, is designed to increase the vehicle’s surface area and slow down the ship so it can fly like a badminton shuttlecock as it safely re-enters Earth’s atmosphere from space.
SpaceShipTwo’s feather mechanism had been operated extensively in previous atmospheric test flights, including two rocket-powered runs, officials said.
The NTSB expects it will take up to a year to piece together exactly what triggered the accident and recommend changes to equipment, procedures, operations and other factors that may have caused or contributed to the crash, safety board Chairman Christopher Hart said.
Initial interviews, collection of debris from the crash site and preliminary examination of evidence were expected to be wrapped up by the end of the week.
A human-factors expert joined the investigation team on Monday to look at cockpit displays, checklist design, training and other pilot operational issues. Siebold, the surviving pilot, had not yet been interviewed due to medical concerns, Hart said on Monday.
NTSB’s preliminary accident investigation report was expected in about 10 days.
(Reporting and writing by Irene Klotz; Editing by Steve Gorman and Mohammad Zargham)

View Article Here Read More

Fish play for fun just like other animals, study says

Excerpt from techtimes.comYou may not be able to play a proper game of fetch with fish, but that doesn't mean they don't know how to have fun. It turns out that some species of fish play to have fun just like other animals, according to a new stud...

View Article Here Read More

Bizarre Time Anomaly Is Sweeping The Planet!

by Gregg Prescott, M.S. Editor, In5D.comHave you noticed a strange anomaly in how time is perceived recently?  According to numerous testimonies, a bizarre time phenomena is sweeping the planet!Lately, my perception of time has been wayyyyy off.  The other evening, around 9PM, it felt like it was much later, as though it was after midnight.  That night, I went to bed around 10:30 PM and woke up around midnight, feeling like I had slept all night.One thing I've noticed l [...]

View Article Here Read More

Fall Begins Monday: Equinox Myth Debunked


The start of fall in the Northern Hemisphere begins Sept. 22, 2014.
Excert from space.com
By Joe Rao, Space.com Skywatching Columnist 


Sick of long, hot summer days? Well, you're in luck. Astronomically speaking, autumn is about to begin in the north.
On Monday (Sept. 22), at 10:29 p.m. EDT (0229 Sept. 23 GMT) autumn begins astronomically in the Northern Hemisphere. This also marks the start of spring in the southern half of the globe.
This date is called an equinox, from the Latin for "equal night," alluding to the fact that day and night are then of equal length worldwide. But that is not necessarily correct. [Earth's Equinoxes & Solstices Explained (Infographic)] 

Not so equal

Referring to the equinox as being a time of equal day and night is a convenient oversimplification. For one thing, it treats night as simply the time the sun is beneath the horizon, and completely ignores twilight. If the sun were nothing more than a point of light in the sky, and if the Earth lacked an atmosphere, then at the time of an equinox, the sun would indeed spend one half of its path above the horizon and one half below.
But in reality, atmospheric refraction raises the sun's disc by more than its own apparent diameter while it is rising or setting. Thus, when the sun looks like a reddish-orange ball just sitting on the horizon, it's really an optical illusion. It is actually completely below the horizon.
In addition to refraction hastening sunrise and delaying sunset, there is another factor that makes daylight longer than night at an equinox: Sunrise and sunset are defined as the times when the first or last speck of the sun's upper or lower limbs — not the center of the disc — are visible above the horizon.
And this is why if you check your newspaper's almanac or weather page on Monday and look up the times of local sunrise and sunset, you'll notice that the duration of daylight, or the amount of time from sunrise to sunset, still lasts a bit more than 12 hours. 
In New York City, for instance, sunrise is at 6:43 a.m., and sunset comes at 6:54 p.m. So the amount of daylight is not 12 hours, but rather 12 hours and 11 minutes. Not until Sept. 26 are the days and nights truly equal. (On Sept. 26, sunrise is at 6:47 a.m., and sunset is 12 hours later).
At the North Pole, the sun currently is tracing out a 360-degree circle around the entire sky, appearing to skim just above the edge of the horizon. At the moment of this year's autumnal equinox, it should theoretically disappear completely from view, and yet its disc will still be hovering just above the horizon.  Not until 52 hours and 10 minutes later will the last speck of the sun's upper limb finally drop completely out of sight.      
This strong refraction effect also causes the sun's disc to appear oval when it is near the horizon. The amount of refraction increases so rapidly as the sun approaches the horizon that its lower limb is lifted more than the upper one, distorting the sun's disc noticeably.

Not as dark as it seems

Certain astronomical myths die hard. One of these is that the entire Arctic region experiences six months of daylight and six months of darkness. Often, "night" is simply defined by the moment when the sun is beneath the horizon, as if twilight didn't exist. This fallacy is repeated in innumerable geography textbooks, as well as travel articles and guides. 
But twilight illuminates the sky to some extent whenever the sun's upper rim is less than 18 degrees below the horizon. This marks the limit of astronomical twilight, when the sky is indeed totally dark from horizon to horizon.
There are two other types of twilight. Civil (bright) twilight exists when the sun is less than 6 degrees beneath the horizon. It is loosely defined as when most outdoor daytime activities can be continued. Some daily newspapers provide a time when you should turn on your car's headlights. That time usually corresponds to the end of civil twilight.
So, even at the North Pole, while the sun disappears from view for six months beginning Sept. 25, to state that "total darkness" immediately sets in is hardly the case. In fact, civil twilight does not end there until Oct. 8. 
When the sun drops down to 12 degrees below the horizon, it marks the end of nautical twilight, when a sea horizon becomes difficult to discern. In fact, at the end of nautical twilight, most people will regard night as having begun. At the North Pole, nautical twilight does not end until Oct. 25. Finally, astronomical twilight — when the sky indeed becomes completely dark — ends Nov. 13. It then remains perpetually dark until Jan. 29, when the twilight cycles begin anew. So, at the North Pole, the duration of 24-hour darkness lasts almost 11 weeks, not six months.

View Article Here Read More

How Underground Therapists and Scientists Keep Psychedelic Medicine Alive Despite the Gov’t Ban

Tom Shroder, AlterNetIn the past decade, after thirty years in the deep freeze, research into the medicinal use of psychedelic drugs, ranging from psilocybin to Ketamine, and from MDMA to LSD, has begun to accelerate. FDA-approved pilot studies and clinical trials using the drugs under controlled conditions and in combination with talk therapy have shown they could be used safely, delivering promising results in a wide range of tough-to-treat maladies, including opiate and tobacco addictio [...]

View Article Here Read More

What Most People Do Not Know About Manifestation

As the planet continues to raise her vibration toward a fifth dimensional frequency, the ability to manifest is becoming easier and faster. Ultimately those who are awakened to the possibility of a New Earth are working toward manifesting this into reality and need to know the missing piece of manifestation in order to be successful co-creators. The trinity of manifestation Manifestation involves using heartfelt intention, the Law of Attraction, and the Universal Law of Detachment. T [...]

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑