Tag: run (page 3 of 12)

Is Titan submarine the most daring space mission yet?

The submersible could extract cores from the seabed to unlock a rich climatic historyExcerpt from bbc.comDropping a robotic lander on to the surface of a comet was arguably one of the most audacious space achievements of recent times. But one...

View Article Here Read More

Have Aliens Left The Universe? Theory Predicts We’ll Follow

























Excerpt from robertlanza.com

In Star Wars, the bars are bustling with all types of alien creatures. And then, of course, there’s Yoda and Chewbacca. Recently, renowned scientist Stephen Hawking stated that he too believes aliens exist: “To my mathematical brain, the numbers alone make thinking about aliens perfectly rational.”

Hawking thinks we should be cautious about interacting with aliens — that they might raid Earth’s resources, take our ores, and then move on like pirates. “I imagine they might exist in massive ships, having used up all the resources from their home planet. Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they can reach.”
But where are they all anyhow?

For years, NASA and others have been searching for extraterrestrial intelligence. The universe is 13.7 billion years old and contains some 10 billion trillion stars. Surely, in this lapse of suns, advanced life would have evolved if it were possible. Yet despite half a century of scanning the sky, astronomers have failed to find any evidence of life or to pick up any of the interstellar radio signals that our great antennas should be able to easily detect.

Some scientists point to the “Fermi Paradox,” noting that extraterrestrials should have had plenty of time to colonize the entire galaxy but that perhaps they’ve blown themselves up. It’s conceivable the problem is more fundamental and that the answer has to do with the evolutionary course of life itself.

Look at the plants in your backyard. What are they but a stem with roots and leaves bringing nutriments to the organism? After billions of years of evolution, it was inevitable life would acquire the ability to locomote, to hunt and see, to protect itself from competitors. 
Observe the ants in the woodpile — they can engage in combat just as resolutely as humans. Our guns and ICBM are merely the mandibles of a cleverer ant. The effort for self-preservation is vague and varied. But when we’ve overcome our struggles, what do we do next? Build taller and more splendid houses?

What happens after life completes its transition to perfection? Perhaps across space, more advanced intelligences have taken the next evolutionary step. Perhaps they’ve evolved beyond the three dimensions we vertebrates know. A new theory — Biocentrism — tells us that space and time aren’t physical matrices, but simply tools our mind uses to put everything together. These algorithms are the key to consciousness, and why space and time — indeed the properties of matter itself — are relative to the observer. More advanced civilizations would surely understand these algorithms well enough to create realities that we can’t even imagine, and to have expanded beyond our corporeal cage.

Like breathing, we take for granted how our mind puts everything together. I can recall a dream I had of a flying saucer landing in Times Square. It was so real it took awhile to convince myself that it was a dream (that I was actually at home in bed). I was standing in a crowd surrounded by skyscrapers when a massive spaceship appeared overhead. Everyone started running. My mind had somehow generated this spatio-temporal experience out of electrochemical information. I could feel the vibrations under my feet as the ship started to land, merging this 3D world with my inner thoughts and sensations.

Although I was in bed with my eyes closed, I was able to run and move my arms and fingers. My mind had created a fully functioning body and placed it in a virtual world (replete with clouds in the sky and the Sun) that was indistinguishable from the one I’m in right now. Life as we know it is defined by this spatial-temporal logic, which traps us in the universe of up and down. But like my dream, quantum theory confirms that the properties of particles in the “real” world are also observer-determined.

Other information systems surely exist that correspond to other physical realities, universes based on logic completely different from ours and not based on space and time as we know it. In fact, the simplest invertebrates may only experience existence in one dimension of space. Evolutionary biology suggests life has progressed from a one dimensional reality, to two dimensions to three dimensions, and there’s no scientific reason to think that the evolution of life stops there.

Advanced civilizations would certainly have changed the algorithms so that instead of being trapped in the linear dimensions we find ourselves in, their consciousness moves through the multiverse and beyond. Why would Aliens build massive ships and spend thousands of years to colonize planetary systems (most of which are probably useless and barren), when they could simply tinker with the algorithms and get whatever they want?

Life on Earth is just beginning to send its shoots upward into the heavens. We’ve even flung a piece of metal outside the solar system. Affixed to the spacecraft is a record with greetings in 60 languages. One can’t but wonder whether some civilization more advanced than ours will come upon it. Or will it just drift across the gulf of space? To me the answer is clear. But in case I’m wrong, I have a pitch fork guarding the ore in my backyard.

View Article Here Read More

Japan comes closer to beaming solar power from SPACE: Mitsubishi makes breakthrough in sending energy wirelessly



Japanese scientists say they have successfully transmitted energy wirelessly in a breakthrough for future solar space power systems. While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth
Japanese scientists say they have successfully transmitted energy wirelessly in a breakthrough for future solar space power systems. While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth


  • Excerpt from dailymail.co.uk
  • By Ellie Zolfagharifard
  • Microwaves delivered 1.8 kw of power - enough to run an electric kettle
  • Power was sent through the air with to a receiver 170ft (55 metres) away
  • Technology may someday help tap vast solar energy available in space
  • Jaxa's plan is to eventually have sunlight-gathering panels and antennae set up about 22,300 miles (36,000km) from the Earth


Japanese scientists have successfully transmitted energy wirelessly in a breakthrough that could pave the way for space-based solar power systems.

Mitsubishi researchers used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver 170ft (55 metres) away.

While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth.

'This was the first time anyone has managed to send a high output of nearly two kilowatts of electric power via microwaves to a small target, using a delicate directivity control device,' said a spokesman for the Japan Aerospace Exploration Agency (Jaxa) said.

The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system.

Solar power generation in space has many advantages over its Earth-based cousin, notably the permanent availability of energy, regardless of weather or time of day.

While man-made satellites, such as the International Space Station, have long since been able to use the solar energy that washes over them from the sun, getting that power down to Earth where people can use it has been the thing of science fiction.

The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away
The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away
The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away


In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth
 In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth


But the Japanese research offers the possibility that humans will one day be able to farm an inexhaustible source of energy in space.
The idea, said the Jaxa spokesman, would be for microwave-transmitting solar satellites - which would have sunlight-gathering panels and antennae - to be set up about 22,300 miles (36,000km) from the Earth.

'But it could take decades before we see practical application of the technology - maybe in the 2040s or later,' he said.

'There are a number of challenges to overcome, such as how to send huge structures into space, how to construct them and how to maintain them.'

The idea of space-based solar power generation emerged among US researchers in the 1960s and Japan's SSPS programme, chiefly financed by the industry ministry, started in 2009, he said.

COULD A SOLAR FARM IN SPACE POWER OUR FUTURE?

Space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way
Space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way


Solar power has had a difficult start on Earth thanks to inefficient panels and high costs. But in space, scientists believe it could transform the way we generate energy.

Now, the space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way.

Within 25 years, the country plans to make space-based solar power a reality, according to a proposal from the Japan Aerospace Exploration Agency (Jaxa).

In a recent IEEE article by Susumu Sasaki, a professor emeritus at Jaxa, outlined the agency's plans create a 1.8 mile long (3 km) man-made island in the harbour of Tokyo Bay.

The island would be studded with 5 billion antennas working together to convert microwave energy into electricity.

The microwaves would be beamed down from a number of giant solar collectors in orbit 22,400 miles (36,000 km) above the Earth. 
Resource-poor Japan has to import huge amounts of fossil fuel.
It has become substantially more dependent on these imports as its nuclear power industry shut down in the aftermath of the disaster at Fukushima in 2011.

In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth.

Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt.

Energy captured by these panels would then be sent to Earth using microwaves and laser lights could be beamed directly to countries where it is needed.

According to the plans, the project would produce around 13,000 terrawatts of continuous solar energy. At present, the world's population consumes about 15 terawatts of power each year.

The company claims the plans would not only provide an 'almost inexhaustible' energy supply, it would stop the rise of global warming caused by carbon dioxide from current energy sources. 

Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt
Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt

View Article Here Read More

A Complete Guide to the March 20th Total Solar Eclipse


Credit
Totality! The 2012 total solar eclipse as seen from Australia. Credit and copyright: www.hughca.com.



Excerpt from universetoday.com



The first of two eclipse seasons for the year is upon us this month, and kicks off with the only total solar eclipse for 2015 on Friday, March 20th.

And what a bizarre eclipse it is. Not only does this eclipse begin just 15 hours prior to the March equinox marking the beginning of astronomical spring in the northern hemisphere, but the shadow of totality also beats path through the high Arctic and ends over the North Pole.


Credit:
An animation of the March 20th eclipse. Credit: NASA/GSFC/AT Sinclair.


Already, umbraphiles — those who chase eclipses — are converging on the two small tracts of terra firma where the umbra of the Moon makes landfall: the Faroe and Svalbard islands. All of Europe, the northern swath of the African continent, north-central Asia and the Middle East will see a partial solar eclipse, and the eclipse will be deeper percentage-wise the farther north you are .
2015 features four eclipses in all: two total lunars and two solars, with one total solar and one partial solar eclipse. Four is the minimum number of eclipses that can occur in a calendar year, and although North America misses out on the solar eclipse action this time ’round, most of the continent gets a front row seat to the two final total lunar eclipses of the ongoing tetrad on April 4th and September 28th.

How rare is a total solar eclipse on the vernal equinox? Well, the last total solar eclipse on the March equinox occurred back in 1662 on March 20th. There was also a hybrid eclipse — an eclipse which was annular along a portion of the track, and total along another — on March 20th, 1681. But you won’t have to wait that long for the next, as another eclipse falls on the northward equinox on March 20th, 2034.


Credit
The path of the March 20th eclipse across Europe, including start times for the partial phases, and the path of totality, click to enlarge. For more maps showing the percentage of occlusion, elevation, and more, click here. Credit: Michael Zeiler/GreatAmercianEclipse.com.


Note that in the 21st century, the March equinox falls on March 20th, and will start occasionally falling on March 19th in 2044. We’re also in that wacky time of year where North America has shifted back to ye ‘ole Daylight Saving (or Summer) Time, while Europe makes the change after the eclipse on March 29th. It really can wreak havoc with those cross-time zone plans, we know…
The March 20th eclipse also occurs only a day after lunar perigee, which falls on March 19th at 19:39 UT. This is also one of the closer lunar perigees for 2015 at 357,583 kilometres distant, though the maximum duration of totality for this eclipse is only 2 minutes and 47 seconds just northeast of the Faroe Islands.


Credit:
Views from selected locales in Europe and Africa. Credit: Stellarium.



This eclipse is number 61 of 71 in solar saros series 120, which runs from 933 to 2754 AD. It’s also the second to last total in the series, with the final total solar eclipse for the saros cycle occurring one saros later on March 30th, 2033.



What would it look like to sit at the North Pole and watch a total solar eclipse on the first day of Spring? It would be a remarkable sight, as the disk of the Sun skims just above the horizon for the first time since the September 2014 equinox. Does this eclipse occur at sunrise or sunset as seen from the pole? It would be a rare spectacle indeed!


Credit
An equinoctal eclipse as simulated from the North Pole. Credit: Stellarium.






Credit
Practicing eclipse safety in Africa. Credit: Michael Zeiler/GreatAmericanEclipse.com


Safety is paramount when observing the Sun and a solar eclipse. Eye protection is mandatory during all partial phases across Europe, northern Asia, North Africa and the Middle East. A proper solar filter mask constructed of Baader safety film is easy to construct, and should fit snugly over the front aperture of a telescope. No. 14 welder’s goggles are also dense enough to look at the Sun, as are safety glasses specifically designed for eclipse viewing. Observing the Sun via projection or by using a pinhole projector is safe and easy to do.


Credit
A solar filtered scope ready to go in Tucson, Arizona. Credit: photo by author.

Weather is always the big variable in the days leading up to any eclipse. Unfortunately, March in the North Atlantic typically hosts stormy skies, and the low elevation of the eclipse in the sky may hamper observations as well. From the Faroe Islands, the Sun sits 18 degrees above the horizon during totality, while from the Svalbard Islands it’s even lower at 12 degrees in elevation. Much of Svalbard is also mountainous, making for sunless pockets of terrain that will be masked in shadow on eclipse day. Mean cloud amounts for both locales run in the 70% range, and the Eclipser website hosts a great in-depth climatology discussion for this and every eclipse.


Credit
The view of totality and the planets as seen from the Faroe Islands. Credit: Starry Night.


But don’t despair: you only need a clear view of the Sun to witness an eclipse!

Solar activity is also another big variable. Witnesses to the October 23rd, 2014 partial solar eclipse over the U.S. southwest will recall that we had a massive and very photogenic sunspot turned Earthward at the time. The Sun has been remarkably calm as of late, though active sunspot region 2297 is developing nicely. It will have rotated to the solar limb come eclipse day, and we should have a good grasp on what solar activity during the eclipse will look like come early next week.

And speaking of which: could an auroral display be in the cards for those brief few minutes of totality? It’s not out of the question, assuming the Sun cooperates.  Of course, the pearly white corona of the Sun still gives off a considerable amount of light during totality, equal to about half the brightness of a Full Moon. Still, witnessing two of nature’s grandest spectacles — a total solar eclipse and the aurora borealis — simultaneously would be an unforgettable sight, and to our knowledge, has never been documented!

We also put together some simulations of the eclipse as seen from Earth and space:




Note that an area of southern Spain may witness a transit of the International Space Station during the partial phase of the eclipse. This projection is tentative, as the orbit of the ISS evolves over time. Be sure to check CALSky for accurate predictions in the days leading up to the eclipse.


Credit
The ISS transits the Sun during the eclipse around 9:05 UT as seen from southern Spain. Credit: Starry Night.


Can’t make it to the eclipse? Live in the wrong hemisphere? There are already a few planned webcasts for the March 20th eclipse:


View Article Here Read More

Great Fuel Economy For Less: 5 Affordable Used Cars That are Surprisingly Good on Gas

Excerpt from autotrader.com By Josh Sadlier   Seems like the only thing automakers want to talk about these days is how their cars suddenly get great fuel economy. Given this relentless chatter, it's tempting to conclude that mos...

View Article Here Read More

Could Saturn’s moon Titan host an alternate type of life?


Titan


Excerpt from mashable.com

In a world first, chemical engineers have taken a different look at a question astronomers and biologists have been pondering for decades: Does Saturn moon Titan host life?

Of course, Titan is way too hostile for life as we know it to eke out an existence — it is a frigid world awash with liquid methane and ethane and a noxious atmosphere devoid of any liquid water. But say if there is a different kind of biology, a life as we don't know it, thriving on the organic chemistry that is abundant on Titan's surface?

Normally, astrobiologists combine what we know about Earth's biosphere and astronomers zoom in on other stars containing exoplanets in the hope that some of those alien world have some similarities to Earth. By looking for small rocky exoplanets orbiting inside their star's habitable zones, we are basically looking for a "second Earth" where liquid water is at least possible. Where there's liquid water on Earth, there's inevitably life, so scientists seeking out alien life 'follow the water' in the hope of finding life with a similar terrestrial template on other planets.

Titan, however, does not fall into this category, it is about as un-Earth-like as you can get. So, chemical molecular dynamics expert Paulette Clancy and James Stevenson, a graduate student in chemical engineering, from Cornell University, Ithaca, New York, have looked at Titan in a different light and created a theoretical model of a methane-based, oxygen-free life form that could thrive in that environment.

There is no known template for this kind of life on Earth, but the researchers have studied what chemicals are in abundance on Titan and worked out how a very different kind of life could be sparked.

As a collaborator on the NASA/ESA Cassini-Huygens mission, Lunine, professor in the Physical Sciences in the College of Arts and Sciences’ Department of Astronomy, has been fascinated with the possibility of methane-based life existing on Titan for some time, so he joined forces with Clancy and Stevenson to see what this hypothetical life form might look like.

In their research published in the journal Science Advances on Feb. 27, Clancy and Stevenson focused on building a cell membrane "composed of small organic nitrogen compounds and capable of functioning in liquid methane temperatures of 292 degrees below zero (Fahrenheit; or 94 Kelvin)," writes a Cornell press release. On Earth, water-based molecules form phospholipid bilayer membranes that give cells structure, housing organic materials inside while remaining permeable. On Titan, liquid water isn't available to build these cell membranes.

"We're not biologists, and we're not astronomers, but we had the right tools," said Clancy, lead researcher of the study. "Perhaps it helped, because we didn't come in with any preconceptions about what should be in a membrane and what shouldn't. We just worked with the compounds that we knew were there and asked, 'If this was your palette, what can you make out of that?'"

The researchers were able to model the ideal cell that can do all the things that life can do (i.e. support metabolism and reproduction), but constructed it from nitrogen, carbon and hydrogen-based molecules that are known to exist in Titan's liquid methane seas. This chemical configuration gives this theoretical alien cell stability and flexibility in a similar manner to Earth life cells.
"The engineers named their theorized cell membrane an 'azotosome,' 'azote' being the French word for nitrogen. 'Liposome' comes from the Greek 'lipos' and 'soma' to mean 'lipid body;' by analogy, 'azotosome' means 'nitrogen body.'" — Cornell
"Ours is the first concrete blueprint of life not as we know it," said lead author Stevenson, who also said that he was inspired, in part, by Isaac Asimov, who wrote the 1962 essay "Not as We Know It" about non-water-based life.

Having identified a possible type of cell membrane chemistry that functions in the Titan environment as a cell on Earth might, the next step is to model how such a hypothetical type of biology would function on Titan. In the long run, we might also be able to model what kinds of observable indicators we should look for that might reveal that alien biology's presence.

That way, should a mission be eventually sent to Titan's seas, sampling the chemical compounds in the soup of organics may reveal a biology of a very alien nature.
Scientists have been trying to know if life could exist on Titan, the largest moon of Saturn. According to scientists, there are possibilities that life could survive amidst methane-based lakes of Titan. After conducting many studies, they have found signs of life on Titan, but the scientists also said that life will not be like life on earth.
As per some scientific reports, Titan is the only object other than earth which has clear evidence of stable bodies of surface liquid. Like earth, the moon has mountains, islands, lakes and storms, but it doesn’t have oxygen, which is a major element to support life. It means that only oxygen-free and methane-based can exist on Titan.
According to lead researcher Paulette Clancy, “We didn’t come in with any preconceptions about what should be in a membrane and what shouldn’t. We just worked with the compounds that, we knew were there and asked, ‘If this was your palette, what can you make out of that”.
Clancy said although they are not biologists or astronomers, they had the right tools to find life on Saturn’s largest moon. Adding to that, the researchers didn’t know what should be in a membrane and what should be not. They worked with compounds and found that life can exist on Titan, but would be very different from earth’s life, Clancy added.
According to reports, the researchers had used a molecular dynamics method to know about Titan. They screened for suitable candidate compounds from methane for self-assembly into membrane-like structures. As per the researchers, the most promising compound they discovered was an acrylonitrile azotosome, which is present in the atmosphere of Titan.
As per the researchers, acrylonitrile has shown good stability and flexibility similar to that of phospholipid membranes on Earth. It means that the Saturn largest has atmosphere and conditions to support life in a different way than earth.
- See more at: http://perfscience.com/content/2141391-life-titan-would-be-different-earth#sthash.2Kqc3Ewf.dpuf

View Article Here Read More

Should Humanity Try to Contact Alien Civilizations?



Some researchers want to use big radio dishes like the 305-meter Arecibo Observatory in Puerto Rico to announce our presence to intelligent aliens.



Excerpt from space.com
by Mike Wall

Is it time to take the search for intelligent aliens to the next level?
For more than half a century, scientists have been scanning the heavens for signals generated by intelligent alien life. They haven't found anything conclusive yet, so some researchers are advocating adding an element called "active SETI" (search for extraterrestrial intelligence) — not just listening, but also beaming out transmissions of our own designed to catch aliens' eyes.

Active SETI "may just be the approach that lets us make contact with life beyond Earth," Douglas Vakoch, director of interstellar message composition at the SETI Institute in Mountain View, California, said earlier this month during a panel discussion at the annual meeting of the American Association for the Advancement of Science (AAAS) in San Jose.

Seeking contact


Vakoch envisions using big radio dishes such as the Arecibo Observatory in Puerto Rico to blast powerful, information-laden transmissions at nearby stars, in a series of relatively cheap, small-scale projects.

"Whenever any of the planetary radar folks are doing their asteroid studies, and they have an extra half an hour before or after, there's always a target star readily available that they can shift to without a lot of extra slough time," he said.

The content of any potential active SETI message is a subject of considerable debate. If it were up to astronomer Seth Shostak, Vakoch's SETI Institute colleague, we'd beam the entire Internet out into space.

"It's like sending a lot of hieroglyphics to the 19th century — they [aliens] can figure it out based on the redundancy," Shostak said during the AAAS discussion. "So, I think in terms of messages, we should send everything."

While active SETI could help make humanity's presence known to extrasolar civilizations, the strategy could also aid the more traditional "passive" search for alien intelligence, Shostak added.
"If you're going to run SETI experiments, where you're trying to listen for a putative alien broadcast, it may be very instructive to have to construct a transmitting project," he said. "Because now, you walk a mile in the Klingons' shoes, assuming they have them."

Cause for concern?

But active SETI is a controversial topic. Humanity has been a truly technological civilization for only a few generations; we're less than 60 years removed from launching our first satellite to Earth orbit, for example. So the chances are that any extraterrestrials who pick up our signals would be far more advanced than we are. 

This likelihood makes some researchers nervous, including famed theoretical physicist Stephen Hawking.

"Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they could reach," Hawking said in 2010 on an episode of "Into the Universe with Stephen Hawking," a TV show that aired on the Discovery Channel. "If so, it makes sense for them to exploit each new planet for material to build more spaceships so they could move on. Who knows what the limits would be?"

Astrophysicist and science fiction author David Brin voiced similar concerns during the AAAS event, saying there's no reason to assume that intelligent aliens would be altruistic.

"This is an area in which discussion is called for," Brin said. "What are the motivations of species that they might carry with them into their advanced forms, that might color their cultures?"

Brin stressed that active SETI shouldn't be done in a piecemeal, ad hoc fashion by small groups of astronomers.

"This is something that should be discussed worldwide, and it should involve our peers in many other specialties, such as history," he said. "The historians would tell us, 'Well, gee, we have some examples of first-contact scenarios between advanced technological civilizations and not-so-advanced technological civilizations.' Gee, how did all of those turn out? Even when they were handled with goodwill, there was still pain."

Out there already

Vakoch and Shostak agreed that international discussion and cooperation are desirable. But Shostak said that achieving any kind of consensus on the topic of active SETI may be difficult. For example, what if polling reveals that 60 percent of people on Earth are in favor of the strategy, while 40 percent are opposed?

"Do we then have license to go ahead and transmit?" Shostak said. "That's the problem, I think, with this whole 'let's have some international discussion' [idea], because I don't know what the decision metric is."

Vakoch and Shostak also said that active SETI isn't as big a leap as it may seem at first glance: Our civilization has been beaming signals out into the universe unintentionally for a century, since the radio was invented.

"The reality is that any civilization that has the ability to travel between the stars can already pick up our accidental radio and TV leakage," Vakoch said. "A civilization just 200 to 300 years more advanced than we are could pick up our leakage radiation at a distance of several hundred light-years. So there are no increased dangers of an alien invasion through active SETI."

But Brin disputed this assertion, saying the so-called "barn door excuse" is a myth.

"It is very difficult for advanced civilizations to have picked us up at our noisiest in the 1980s, when we had all these military radars and these big television antennas," he said.

Shostak countered that a fear of alien invasion, if taken too far, could hamper humanity's expansion throughout the solar system, an effort that will probably require the use of high-powered transmissions between farflung outposts.

"Do you want to hamstring all that activity — not for the weekend, not just shut down the radars next week, or active SETI this year, but shut down humanity forever?" Shostak said. "That's a price I'm not willing to pay."

So the discussion and debate continues — and may continue for quite some time.

"This is the only really important scientific field without any subject matter," Brin said. "It's an area in which opinion rules, and everybody has a very fierce opinion."

View Article Here Read More

Windwheel concept combines tourist attraction with "silent turbine"


 The Dutch Windwheel concept is designed to be part energy icon, part tourist attraction an...


Excerpt from gizmag.com
By Stu Robarts


The Dutch have long used windmills to harness wind energy. A new concept proposed for city of Rotterdam, however, is surely one of the most elaborate windmills ever conceived. The Dutch Windwheel is a huge circular wind energy converter that houses apartments, a hotel and a giant coaster ride.

The concept is designed to be part energy icon, part tourist attraction and part residential building. It is a 174-m (571-ft) structure comprising two huge rings that appear to lean against each other. "We wanted to combine a big attraction for Rotterdam with a state-of-the-art sustainable concept," explains Lennart Graaff of the Dutch Windwheel Corporation, to Gizmag.

The larger outer ring houses 40 pods on rails that move around the ring and provide those who visit with views of Rotterdam and its port. The smaller inner ring, meanwhile, houses 72 apartments, a 160-room hotel across seven floors and a panoramic restaurant and viewing gallery. Perhaps most remarkable feature of of all, however, is a huge "bladeless turbine" that spans the center smaller ring.

Although this may look and sound like some of the more out-there architectural concepts that Gizmag has featured, it is actually based on existing (albeit prototypical) technology. The electrostatic wind energy convertor (EWICON) was developed at Delft Technical University and generates electricity by harnessing the movement of charged water droplets in the wind. Its lack of moving parts makes it noiseless and easier to maintain than traditional turbines.

Dhiradj Djairam, of the TU Delft team that developed the EWICON, tells Gizmag that the Dutch Windwheel Corporation has expressed "a serious interest" in the technology. Djairam says he has provided an explanation of the technology to the organization and provided a rough outline for a realistic research and development program. To date, only small-scale research projects have been carried out, with additional funding opportunities being explored.

The Dutch Windwheel concept is 174 m (571 ft) tall and has underwater foundations

The Dutch Windwheel concept has other sustainable aspects, too. Photovoltaic thermal hybrid panels would be used to contribute to the generation of electricity, and rainwater would be collected for use in the building. The Dutch Windwheel Corporation says the building itself is designed to be built with locally-sourced materials, and in such a way as it could ultimately be disassembled and re-used elsewhere.

Among the other features of the design are space for commercial functions in the structure's plinth, and foundations that are underwater, making it it look as though the structure is floating. 

We're told that the amount of power the Dutch Windwheel will require to run – and be able to generate – is not yet clear. Likewise, the final technologies and additional sustainability features that would be present in the building have yet to be finalized...

View Article Here Read More

How will life on earth compare to life for the Mars One pioneers?


To infinity and beyond? Maggie Lieu
To infinity and beyond? Maggie Lieu Photo: Peter Quinnell


From telegraph.co.uk
By Nick Curtis

On a different planet - Nick Curtis imagines a message from 'Martianaut' Maggie Lieu to her parents back at home


Mars Mission, British Martianaut Maggie Lieu’s Log
Day One: Stardate 22/02/2025. 

Hello Mission Control.... Just kidding! Hi mum, hi dad, or should I say earthlings! 
Well, me and Bruce the Australian Martianaut finally touched down beside the Herschel II Strait on the red planet today, the last of 12 pairs to arrive - though as you know it was touch and go. Ten years of training and research almost went down the drain when Google got hit by a massive retrospective tax bill and had to withdraw all its branded sponsorship from the starship at the last minute: 

fortunately Amazon stepped in, on the agreement we install its first matter transference delivery portal (“It’s there before you know it”) here. And rename the ship Bezos 1, of course 
The trip was textbook, with both of us uploading videos on how to apply makeup and bake cupcakes in space direct to the Weibo-spex of our crowdsource funders in China - great practice for The Great Martian Bakeoff on BBC 12 next year (subscribers only). The one hairy moment was a near miss with that Virgin Galactic rocket, Beardie IV, that went AWOL five years ago. We were so close we could see Leonardo diCaprio’s little screaming face pressed against his porthole. And Kim Kardashian’s bum pressed against hers - though it’s looking kinda old now and I hoped we’d seen the last of it.


So what can I tell you? When we landed the others threw us a party with full fat milk, rare beef and waffles (the only official space superfoods since it was discovered that kale and quinoa cause impotence). The landscape is pretty barren, just acres of rolling sand and no one in sight, sort of like Greece after it left the Eurozone and the entire population moved to Germany. Or like the so-called Caliphate after Islamic State finally perfected its time machine and managed to transport itself and all its followers back to the 12th century. 

The temperature outside is about 20c, so a lot cooler than it is at home since the ice caps melted. There’s water here, but not as much as is now covering Indonesia, Holland and Somerset. The atmosphere is 96% carbon dioxide so Juan, the Spanish Martianaut, had to keep his suit on when he went out to smoke. He tried to get us all to buy duty free for him in Mexico City spaceport before we left, now that a pack of cigarettes costs 450 Euros in the shops, and they’ve been camouflaged so you can’t find them. 

Maggie Lieu (Guardian)


The construction-droids did a pretty good job building Mars Camp out of the recycled parts of all those closed Tesco Metros. They say we have enough air up here to last 20 years, Earth’s stocks of storable oxygen having increased tenfold when the European Parliament collapsed following the expenses scandal. I still can’t believe that Dasha Putin-Mugabe was claiming for SIX driverless cars while she was EU President, and employing her wife as her accountant. And her being the first transgender Russian lesbian to hold the office, too. 

Speaking of politics, how is life in coalition Britain? Who has the upper hand at the moment? UKIP? Scots Nats? The Greens? or those nutters from Cornwall, Mebion Kernow? Or are they underwater now. And how is young Straw doing now Labour is the smallest party in Parliament, after the New New New Conservatives? Hard to believe it’s three years since the last Lib Dem lost her seat. 

I gather that some things have improved internationally now that Brian Cox has developed his own time machine at the Wowcher-Hawking Institute in Cambridge, and worked out that the entire world can now transport all its waste products back to the Caliphate in the 12th century. 

We can see the Earth from here through the Clinton2020 Telescope that the US president endowed us with after her brief period in office. The joke up here is that she did it to keep a proper eye either on her husband (though he doesn’t get around so much any more, obviously) or on what President Palin is up to. I still can’t believe that she sold Alaska to Russia to pay the compensation bill for the Grand Canyon Fracking Collapse. 

Even through the Clinton2020 the Earth looks pretty small, though at times, when the stars are really bright, we can see the Great Wall 2 ring of laser satellites that China has pointed at Russia to discourage any more “accidental” incursions. 

Our team up here is like a microcosm of human life on earth. Well, up to a point. As you know the French and Italian Martianauts were expelled from the team before lift-off, because of some scandal or other. We weren’t told if it was financial or sexual but a space bra and a data stick with three million Bitcoins on it were found in the airlock. 

The African and Brazilian Martianauts swan around the place as if they PERSONALLY solved the world’s food and energy problems.
And the North Korean guy just sits in the corner, muttering into some device up his sleeve and scowling. All the freeze-dried cheese has gone and he’s looking quite fat, if you get my meaning. 

I don’t get much time to myself, what with work, the non-denominational Sorry Meetings where we apologise in case we’ve accidently offended someone’s beliefs, and the communal space-pilates sessions (the North Korean guy skips those so he may be in line for a compulsory gastric band, as mandated by the Intergalactic Health Organisation). 

I always try and upload the latest Birmingham City Games onto my cortex chip when I feel homesick: I know it's not fashionable, but I think football got better when they replaced the players with robots and the wage bill - and the number of court cases - dropped to zero. I know the electricity bill is massive, but the new Brazilian solar technology should fix that. 

Anyway, got to run now. We’re putting together a bid to have the 2036 Olympics up here. 

Bye, or as we say on Mars - see you on the dark side.

View Article Here Read More

Mayday! Mayday! Mars One a ‘suicide mission’, warn leading space scientists




By Victoria Weldon

IT'S been described as science fiction made real - but now, just as the final selection process gets under way for the folk with the right stuff to make a manned mission to Mars, scientists have dashed the dreams of planet Earth by warning the journey will probably never happen and will end in disaster if it does.
Privately run space exploration programme Mars One wants to send four people to the red planet for the rest of their (probably not very long) lives and film it for reality TV in order to help finance the endeavour.

Thousands have set their sights on becoming the first settlers to land on the planet - and have now been whittled down to a short list of 100, including a Scottish PhD student - but with questionable technology, a lack of funding and an unrealistic timeframe, experts claim it is a "suicide mission".

Mars One believes it can achieve a manned mission in 2024 - sooner than NASA, the European Space Agency, the Russians or Chinese, and on a fraction of their budgets.

If the project does go ahead, the crew would have to make it through nine months of interplanetary travel without being killed by mishap, radiation - or each other.

And even then, a recent study suggested they will only last 68 days on Mars before dying - due to lack of food and water.

However, Anu Ojha OBE, director of the UK National Space Academy Programme, has warned the applicants not to get their hopes up as the mission is unlikely to ever leave the ground.

Ojha said: "Obviously this is something that has captured the public's imagination, and Mars One obviously has a great PR team, but space engineering obeys the laws of physics not PR."
Mars One is the brainchild of Dutch entrepreneur Bas Lansdorp who was inspired by the images of Mars sent back by the Sojourner rover in 1997, when he was a student.

Lansdorp, who will not make the journey himself, has an impressive team working on the project including former NASA employees Dr Norbert Kraft, who specialises in the physiological and psychological effects of space travel and space architect Kristian von Bengtson.

Physicist Arno Wielders, who previously worked for Dutch Space, is also on board, as well as a number of other advisers from around the world with backgrounds in space engineering, science and technology, marketing, design and television production.

The ultimate aim is to see a large, self-sustaining colony on Mars, but Ojha, who is also a director at the National Space Centre in Leicester, said there are three major stumbling blocks for the mission: technology, funding and human psychology.

"In terms of technology, it's pushing the absolute boundaries and there seems to be a lot of technological naivety on the part of the people running it", he said.

"There are some elements that seem reasonable, but overall it's concerning, and the timescales are also questionable."

While Mars One is planning the one way mission for 2024, NASA, with its long established expertise and technology, is looking to be able to send humans to Mars and bring them back again by the mid 2030s.

This is estimated to cost up to as much as £100 billion (£64.9bn) for the space agency, while Mars One believes it can do it for an optimistic $6 billion (£3.9bn) - and there are even questions over whether or not they will be able to achieve that much funding.
The private enterprise is hoping to raise money through a TV deal and additional funding from the exposure that will bring the project.

Last year it said it had teamed up with programme makers Endemol, but the Big Brother creators recently pulled out of the deal claiming they were "unable to reach agreement on the details of the contract".

Mars One did not respond to questioning by the Sunday Herald over its funding, but its website showed that as at January this year, it had raised just $759,816 from donations, merchandising, and a crowdfunding campaign.

It is unclear what other funding the project has.

Ojha said: "The business model has so many holes in it, it's shaky to say the least. And when you ask them how much money they have raised, they say it's still ongoing. The time scales and the business model - they're completely unrealistic."

Mars One plans to send several unmanned rockets to Mars ahead of the 2024 mission, with the first of these scheduled to take place in 2018.

These will include missions with robots to find a suitable location for a base and assemble it ahead of the humans' arrival.
The project claims it will use only existing technology for the mission, buying in materials from proven suppliers including Lockheed Martin or SpaceX.

The equipment involved includes several simulation outposts for training, a rocket launcher, a transit vehicle to take the crew to Mars, a Mars landing capsule, two rovers, a Mars suit and a communications system.

However, experts have warned that much of this equipment has not been fully tested. 

Physicist professor Todd Huffman is a big supporter of attempting a manned mission to Mars, but he also has serious concerns about Mars One, claiming it is "scientifically irresponsible".

He said: "The plan stretches the technology in many places.
"The launch vehicle they want to use has not actually ever launched yet, let alone make a trip to Mars.

"The living spaces have not been made nor has it been tested whether they can be robotically assembled and by what kind of robot.

"A suitable site would also need to be found for the living spaces and the details of how water extraction will take place have not been understood.

"If you assign a 90 per cent chance to success to each of those things, all of which are necessary for human survival, you end up with about a 50 per cent chance of failure, ending in the death of the colonists - and that would likely not make good television."
He added: "Unless we [wait for] quite a lot of technology and exploration to happen first, it is basically worse than a one-way ticket for the colonists - it is almost surely a suicide mission if carried out within this next decade."

Although most scientists believe the mission will not go ahead, some have also warned of the psychological impact on the people selected for the mission if it does.

Ojha said: "The thing that's really captured the public's imagination is this idea of it being a one way trip, but this brings another set of problems in terms of human psychology.

"The longest period a human has spent in space is 438 days - they're talking about sending people on a one way trip.
"Lots of the people I've seen interviewed, they're really excited about taking part, but have they really thought about what they're doing and what the implications are?

"I would tell them to go to Antarctica for six months in the middle of winter and that's about 1 per cent of what they'll be experiencing on Mars.

"Human psychology is far more fragile than we think."

However, while many scientists warn of the dangers and do not believe the mission will proceed, they have praised Mars One for sparking the public's interest in planetary science.

Dr John Bridges, of the Space Research Centre in Leicester, said: "It's a very interesting and innovative project, but the time scales are very challenging.

"I believe they're planning for 2024 and it's 2015 now. So for something as major as this, it's a very challenging timescale
"But it's fantastic that people are thinking about this, that industry is getting involved and raising awareness of planetary science."

Ojha added: "Mars One has been great in a way because it's once again drawn people's imagination to the idea of space engineering and exploration. 

"But the reality is that there are serious concerns about the project's space engineering, funding and medical implications."

Lansdorp has previously said that most people are "surprised to hear that the manned missions will be happening in ten years time, with a budget ten times less than Nasa".

He added: "But I think that if you really spend time studying Mars One, you cannot believe there is not a good chance we will make it.
"At the same time, it's a hugely ambitious plan, there's many things that can go wrong with such a big plan.

"But I believe we have a good plan and we can overcome the challenges."

However, he has also conceded that the current plans are an "optimum schedule", adding: "If one rocket doesn't launch, or a lander doesn't work on Mars before a human goes, any major malfunctions will result in a two year delay."

Mars One declined the Sunday Herald's request to interview someone from the project and failed to answer any of our questions.

View Article Here Read More

Mars One mission cuts candidate pool down to 100 aspiring colonists

Excerpt from mashable.comOnly 100 people are still competing for four seats on a one-way trip to Mars advertised by Dutch nonprofit Mars One.In its latest round of cuts, the foundation cut its applicant pool from 660 to 100 finalists on Tuesday. More ...

View Article Here Read More

New internet neutrality: FCC chairman proposes strong new rules

Excerpt from mercurynews.comThe federal government's top communications regulator on Wednesday called for strong new rules to bar Internet and wireless providers from blocking, slowing or discriminating against consumers' access to particular websi...

View Article Here Read More

NASA Fuel Shortage: Will Plutonium Scarcity End Deep-Space Exploration By 2020?

 Excerpt from isciencetimes.com By Philip Ross A plutonium pellet, the fuel that keeps NASA space exploration going. (Photo: Creative Commons)  NAS...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑