Tag: rosetta (page 2 of 2)

Scientists ‘confident’ comet lander will wake up

ASSOCIATED PRESSA burst of sunshine in the spring could be just the wake-up call for Europe's comet lander.Scientists raised hopes Monday that as the Philae lander nears the sun its solar panel-powered battery will recharge, and the first spacecraft ...

View Article Here Read More

Rosetta Mission: European Space Agency Scientists Worry Philae Probe Is Running Out of Battery Power


Philae lander harpooned into comet

Excerpt from online.wsj.com

By Gautam Naik & Robert Wall

Situation Could Mean Early End for Important Experiments on Comet 


Scientists at the European Space Agency fear that the Philae probe now sitting on a comet’s surface may be on the verge of running out of battery power, a scenario that could bring key scientific experiments to a premature end.

The researchers will only know whether the primary batteries have drained or not late Friday, when they try to re-establish a radio link to the probe via Rosetta, a spacecraft in orbit around the comet. The probe and Rosetta can typically communicate twice a day because at other times the orbiter is below the horizon and can’t establish a direct signal.

Scientists are hoping to get contact around 10 p.m. German time, said Stephan Ulamec, who oversees operation for the lander. But if Philae fails to send a signal, he added, it would mean the battery had run out of juice.

The plan was for Philae to do scientific experiments for an initial 2 ½ days on primary battery power and then switch to solar panels that would keep it ticking for another three months. But because of an awkward landing near the face of cliff, the probe’s solar panels are being exposed to far less sunlight than was expected.

Despite the hitch, Philae has already done a significant amount of science on its new home. Its 10 instruments have so far garnered between 80%-90% of the data they were designed to collect, according to Dr. Ulamec.

It has beamed back detailed photographs of the comet’s rough terrain, analyzed the gases, and taken the comet’s temperature. It is now using radio waves to probe the comet’s nucleus and searching for organic molecules on the hostile surface.

Anticipating a possible loss of battery power, ESA scientists activated a drill during their last contact with the lander. The machine is designed to dig up the comet’s subsurface material and rotate it through an onboard oven to investigate its components. 

There may still be a way to extend Philae’s working life. During every 12-hour rotation of the comet, one of the lander’s solar panels is now exposed to an hour and 20 minutes of sunlight, while two other panels get the sun for less than 30 minutes each. 

Provided the signal to Philae can be re-established, scientists said they could rotate the lander slightly so that one of its larger solar panels can catch more sunlight. Another option is to eject the probe from its current location in the hope it lands in a spot where there is more sun.

View Article Here Read More

Rosetta mission: Philae lander bounces twice, lands on side ~ Cliff face blocking solar power


How Esa scientists believe Philae has landed on the comet – on its side
How Esa scientists believe Philae has landed on the comet – on its side. Photograph: European Space Agency/Reuters


Excerpt from
theguardian.com


Rosetta mission controllers must decide whether to risk making lander hop from shadow of cliff blocking sunlight to its solar panels.


The robotic lander that touched down on a comet on Wednesday came to rest on its side in the shadow of a cliff, according to the first data beamed home from the probe.

Pictures from cameras on board the European Space Agency’s Philae lander show the machine with one foot in the sky and lodged against a high cliff face that is blocking sunlight to its solar panels.
The precarious resting place means mission controllers are faced with some tough decisions over whether to try and nudge the spacecraft into a sunnier spot. If successful, that would allow Philae to fully recharge its batteries and do more science on the comet, but any sudden move could risk toppling the lander over, or worse, knock it off the comet completely.

The washing machine-sized lander was released by its Rosetta mother ship at 0835am GMT on Wednesday morning and touched down at a perfect spot on the comet’s surface. But when anchoring harpoons failed to fire, the probe bounced back off into space. So weak is the gravitational pull of the comet that Philae soared 1km into the sky and did not come down again until two hours later. “We made quite a leap,” said Stephan Ulamec, the Philae lander manager.

In the time it took the probe to land for the second time, the comet had rotated, bringing more treacherous terrain underneath. The spacecraft bounced a second time and finally came to a standstill on its side at what may be the rim of an enormous crater.

“We bounced twice and stopped in a place we’ve not entirely located,” said Jean-Pierre Bibring, Philae’s lead scientist. Teams of scientists are now trying to work out where the probe is. What mission controllers do know is that they are not where they hoped to be. “We are exactly below a cliff, so we are in a shadow permanently,” Bibring added.

With most of Philae in the dark, the lander will receive only a fraction of the solar energy that Esa had hoped for. The spacecraft needs six or seven hours of sunlight a day but is expected to receive just one and a half. Though it can operate for 60 hours on primary batteries, the probe must then switch to its main batteries which need to be recharged through its solar arrays. If Philae’s batteries run out it will go into a hibernation mode until they have more power.

The spacecraft was designed with landing gear that could hop the probe around, but from its awkward position on its side the option is considered too risky.

Though caught in a tight spot, the Philae lander’s systems appear to be working well. The Rosetta spacecraft picked up the lander’s signal on Thursday morning and received the first images and more instrument data from the surface of the comet.

One of Philae’s major scientific goals is to analyse the comet for organic molecules. To do that, the lander must get samples from the comet into several different instruments, named Ptolemy, Cosac and Civa. There are two ways to do this: sniffing and drilling. Sniffing involves opening the instruments to allow molecules from the surface to drift inside. The instruments are already doing this and returning data.

Panoramic view around the point of Philae's final touchdown on the surface of comet 67P, taken when Rosetta was about 18km from centre of comet. Parts of Philae's landing gear can be seen in this picture.
Panoramic view around the point of Philae’s final touchdown on the surface of comet 67P, taken when Rosetta was about 18km from centre of comet. Parts of Philae’s landing gear can be seen in this picture.Photograph: European Space Agency/AFP/Getty Images

Drilling is much riskier because it could make the lander topple over... Pushing down into the surface will push the lander off again. “We don’t want to start drilling and end the mission,” said Bibring.
But the team has decided to operate another moving instrument, named Mupus, on Thursday evening. This could cause Philae to shift, but calculations show that it would be in a direction that could improve the amount of sunlight falling on the probe. A change in angle of only a few degrees could help. A new panoramic image will be taken after the Mupus deployment to see if there has been any movement.

Meanwhile, the Rosetta orbiter team will continue to try to pinpoint Philae’s position.

View Article Here Read More

European Space Agency: Rosetta Successfully Lands on Comet ~ First Images Sent to Earth

This photo from Philae shows the surface during the lander's approach  Excerpt from bbc.comA European robot probe has made the first, historic landing on a comet, but its status remains uncertain after harpoons failed to anchor it to the su...

View Article Here Read More

The Mission to land robot on comet to take final step







Excerpt from  theglobeandmail.com
By Ivan Semeniuk

Half a billion kilometres from Earth and 10 years into its remarkable journey, a small robot is about to plunge into space history.

Pending a final green light from mission controllers on Tuesday night, the robot – nicknamed Philae (fee-lay) – will detach from its mother ship and try to hook itself onto one of the most challenging and mysterious objects in the solar system.



It’s a high-risk manoeuvre with plenty of unknowns. But if it works, then the probe will be able to show us what no one has ever experienced: what it’s like to stand on the surface of a comet.

“Comets are new territory,” said Ralf Gellert, a professor of physics at the University of Guelph. “There could be some big surprises.”

Prof. Gellert should know. Fifteen years ago, he helped build one of the instruments on the dishwasher-size lander that will reveal the comet’s composition. No such direct measurement has been made before. Even designing how the instrument should work was fraught with challenges since there was so little known about what kind of surface the lander might find itself on.

“Is it an ice ball with rock and trace metals, or a rock ball with ice on it … or ice below the surface? We didn’t know,” he said.
And scientists still don’t.

When the European Space Agency launched the Rosetta mission in 2004, the mission’s target – Comet Churyumov-Gerasimenko – was little more than a fuzzy blip in astronomers’ telescopes. But Rosetta just arrived in August and it’s been in orbit around the comet since then.

What was assumed to be a single, homogeneous lump of ice and rock has turned out to be a bizarre-looking object in two parts, arranged a bit like the head and body of a rubber duck. By October, scientists had zeroed in on the head portion, which is four kilometres across at its widest point, and settled on a landing site.

Remote sensing data from Rosetta suggest that the comet is quite porous, with a surface that is as black as coal and somewhat warmer than expected. In other words, Philae will probably not be landing on skating-rink-hard ice. Yet, whether the surface will be crusty like a roadside snowbank, fluffy like cigarette ash, or something else entirely is anyone’s guess.

And while scientists and engineers say they’ve done everything they can think of to maximize the lander’s chance of success, they acknowledge it’s entirely possible that Philae will encounter something it can’t handle and smash to bits or sink into oblivion.


Yet the landing is more than a daring jaunt to see what has never been seen before. Comets are also among the most primitive bodies in the solar system. Each one is an amalgam of ice and rock that has been around since Earth and its sister planets formed billions of years ago. In a sense, comets are the leftovers of that process – primordial fossils from the birth of the solar system.

The instrument Prof. Gellert worked on, known as the alpha particle X-ray spectrometer (APXS), will help illuminate this early period by making precise measurements of the comet’s elemental ingredients.

It is carried on a robot arm that will place a radioactive source near the comet’s surface. The particles and X-rays the comet material gives off as a result of this exposure will provide detailed information about what chemical elements the comet contains. This will be augmented by another experiment designed to drill and extract a comet sample for analysis inside the lander.

Prof. Gellert, who has also been closely involved in NASA’s Mars rover missions, said Rosetta’s long timeline and the many unknowns related to the comet makes this week’s landing a trickier proposition than landing on Mars – but also a tremendously exciting one.

“I think it’s a matter of hope for the best and see what happens.”

View Article Here Read More

Rosetta readies for its close rendezvous with a comet ~ Video






sciencenews.org

Very soon, on November 12, a spacecraft called Rosetta will sidle up to a comet, steady itself and drop a 100-kilogram robotic lander toward the hunk of rock, dust and ice. The lander, named Philae, will drift through space, tugged only slightly by the gravity of the comet, commonly called 67P. Mission scientists will be holding their breath for what could be several anxiety-filled hours to see if Philae lands where and how it’s supposed to.

The exercise — the first attempt to set a lander on a comet — is as nerve-racking as landing on Mars or the moon, with some added challenges. Comets and other small space rocks have much less gravity than planets or moons, which is why it will take Philae close to seven hours to float to comet 67P’s surface. Then there’s the comet’s speed: Rosetta will drop the lander toward 67P as the comet shoots through the solar system at 55,000 kilometers per hour.

Add to that a comet's unpredictable nature: At any moment and without warning, 67P might spew out jets of gas and dust. Such eruptions could blow the spacecraft off course or skew the lander’s trajectory so it hits a boulder or misses its mark.

Early in the mission, scientists estimated that Philae had a 70 to 75 percent chance of successfully touching down on the comet, officially known as 67P/Churyumov-Gerasimenko. They made that prediction when they thought the comet was shaped like a potato. In July, Rosetta began sending pictures of 67P, indicating it looks more like a rubber duck — two masses connected by a thin neck. The new shape adds a bit more uncertainty to Philae sticking its landing.


The potential payoff of this mission is worth the hazards and the nail-biting, says Matt Taylor, Rosetta’s project scientist at the European Space Agency’s Science and Technology Center in Noordwijk, the Netherlands. Comets, along with asteroids, are thought to be the oldest, most pristine relics of the early solar system. We can’t go back billions of years to the birth of the sun, Taylor says, so exploring comets and asteroids may be the best option for learning how the solar system evolved. Studying their geology and chemistry could give clues to how the planets became what they are today and whether comets brought water and other ingredients for life to Earth.

Cometary close-up

Rosetta’s rendezvous with the comet, which is currently traveling between the orbits of Mars and Jupiter, has been a long time coming. The mission was first conceived in the late 1970s. By late 2002, when ESA was preparing to finally launch Rosetta, disaster struck. As part of a separate mission, the same type of rocket that was set to carry Rosetta exploded three minutes after liftoff. That rocket failure delayed Rosetta’s launch, closing the window to the original target of the mission, 46P/Wirtanen. Over the next few months, scientists scrambled to find another comet that would be at the right place in the solar system at the right time. 67P fit the bill.

Rosetta finally launched in 2004. Ten years later, on August 6, the spacecraft began orbiting 67P, and its 11 instruments started scrutinizing myriad characteristics of the comet (SN: 9/6/14, p. 8). Those instruments, plus the cameras and sensors on the Philae lander, are designed to map 67P, determine what it’s made of and observe how its chemistry might change as it swings around the sun.
As 67P approaches the sun, its ice transforms directly to water vapor and other gases, which, along with dust, shoot outward. These jets collide with other particles from the sun to form two tails. Unlike Halley’s comet and its showy run in 1986, 67P’s tails won’t be visible to the naked eye. But Rosetta will have a front-row seat on the action. As the comet’s tails grow, Rosetta will give scientists their most detailed look at a comet and the changes it goes through.

Already, Rosetta’s high-resolution photos have shown scientists that 67P looks different than other comets explored with spacecraft. It may even be two comets merged together with a surface that’s a mountain climber’s dream.

“The team really hit the jackpot with this comet,” says Donald Brownlee, a planetary scientist at the University of Washington in Seattle. Seeing a duck-shaped comet with house-sized boulders, craggy craters and 150-meter-high cliffs “really knocks your socks off,” he says. The bath-toy shape and rugged surface indicate that the comet has had an interesting life history, one scientists are eager to learn about. But first, they’ve got to get their instruments down to the comet’s surface.

“This very particular shape of the comet doesn’t make it easy to land,” Philae project manager Stephan Ulamec of the German Aerospace Center in Cologne said at a September 15 news conference. But the team has confirmed that it will attempt to set the lander down in November on a sliver of flat land on 67P’s small lobe, or head. The spot is flanked by cliffs, crevices and a few boulders.

It is also covered in carbon-rich dust, according to Rosetta’s measurements, which makes mission scientists extremely happy with the site, says lead lander scientist Jean-Pierre Bibring of the Université Paris-Sud in Orsay, France. The lander, he explains, can immediately start testing the comet’s surface and drill deeper to look for traces of ice and complex carbon-based compounds, which are among the major requirements for life.

Ice and certain complex carbon compounds are also some of the characteristics thought to distinguish comets from asteroids, the other early inhabitants of the solar system.

Rethinking space rocks


Distinctions blur Comets and asteroids seem to be different at first glance. But more detailed descriptions from space missions such as Rosetta suggest that the two types of space rocks may have more in common than scientists initially thought.
Source: NASA

“At first glance, comets are fundamentally different from asteroids, the way ice cream is different from a cookie,” says NASA scientist Claudia Alexander, based at the Jet Propulsion Laboratory in Pasadena, Calif. Most asteroids appear to be made of rocky materials and no water. Comets, however, seem to be icier. These distinctions are thought to explain where comets and asteroids originated as the solar system formed.Scientists think that around 4.6 billion years ago, the solar system started to form as a giant cloud of gas and dust collapsed inward and coalesced. Most of the material got pulled into the center of the cloud to form the sun. The rest condensed into a handful of huge rocks that became planets plus smaller bodies that became comets and asteroids.

In that scenario, asteroids probably formed between Mars and Jupiter, where it was too hot for water and other ices to survive. Comets, on the other hand, probably condensed farther out in this embryonic cloud where it was considerably cooler and ice could persist and start to attach to clumps of gas and dust.

If comets formed far out in the Kuiper belt or Oort cloud, where there was a lot more ice, they could have ferried a lot more water to Earth than did asteroids from the inner solar system.

“That’s the conventional wisdom,” says Alexander, a leader of the U.S. arm of Rosetta. NASA contributed electronics and three instruments to the mission; at least one of these instruments will look at 67P’s water.

Rosetta and Philae will give scientists a chance to virtually “get their hands on” the comet’s ice, says Alexander. That could help them figure out pretty quickly whether comets like 67P brought water to Earth billions of years ago.

The first question: What type of water is on 67P? If it is the same H2O that makes up Earth’s oceans, then perhaps 67P and similar comets brought that water to Earth. But if 67P, like most comets studied so far, contains a larger amount of the heavy hydrogen isotope called deuterium than does water found on Earth, then the idea that comets brought most of the water here is less likely.

That opens the door for the paradoxical idea that asteroids were the main source of our planet’s water. Scientists have recently found at least one asteroid with water. For example, the asteroid Ceres (actually large enough to be considered a dwarf planet) orbits the sun on a path between Mars and Jupiter, but it spouts off water vapor, sort of like a comet.

To confuse matters further, Rosetta’s observations indicate that 67P has characteristics of an asteroid. The comet, for example, isn’t covered in surface ice. Instead, its water appears to be stored deeper within its core.

These observations hint that comets and asteroids aren’t as radically different as scientists had thought. Instead, they may fall on a continuum with rocky, dry asteroids on one end, really icy comets on the other and everything else in between, Alexander says.

Getting warmer

When a comet gets close to the sun, a lot of its ice turns to vapor, and dust comes shooting out of its core. The comets with shorter orbits around the sun — 67P takes a brief 6.5 years — could eventually lose all of their ice and vapor leaving only rock and dust. Of course, scientists can’t really understand the long-term fate of 67P and other comets until they figure out the chemistry of what happens as a comet swings close to the sun on its elliptical orbit.
“We have theories about what happens to a comet as it gets closer and then moves away from the sun, but we do not understand how a comet really works,” says retired ESA scientist Gerhard Schwehm, one of the original leaders of the Rosetta mission.

That’s because scientists have never been able to stay with one for very long. All the previous comet missions have been flybys, lasting a few hours. If Philae sticks its November landing, it could work on the surface of 67P until March 2015, when the sun’s heat will become too hot for the lander to function. Rosetta will stay with 67P through August, when the comet reaches its closest point to the sun at a distance of 185 million kilometers. But Rosetta won’t give up there. It will continue orbiting the comet until at least December 2015.

A MOUNTAIN OF A COMET 67P is average in size when it comes to icy space rocks. Compared with human-made structures, however, it’s a behemoth, miniaturizing several iconic world wonders and rivaling the height of many of Earth’s famous mountains.
Source: ESA Credit: NAVCAM/Rosetta/ESA, adapted by M. Atarod

Spending a year or more with 67P will give scientists a chance to track how the sun’s heat changes the comet’s composition over time. To do this, Philae will first identify the elements and compounds that make up the comet’s surface. These materials may have survived unchanged for billions of years and could give scientists clues to what materials were available when the solar system started to form.Scientists are most interested in molecules containing carbon and hydrogen (SN: 11/1/14, p. 7), which could have existed even before the birth of the solar system. Investigators are also looking for amino acids and other building blocks of life that may have been brought to Earth by comets. Past missions have found both kinds of materials on comets before (see sidebar above, “Comets visited by spacecraft”). If they exist on 67P, they could add more evidence for scientists’ ideas that comets delivered the ingredients for life to Earth.

However, because scientists have never studied a comet while it faces the sun’s intense heat, they cannot be sure if these molecules are primordial or if they formed later, after being cooked by the sun. There are hints to support both origin stories. Rosetta’s observations could tell scientists if some of the molecules they see on the comet predate the solar system, or if they are created in reactions from the sun’s heat.

The comet’s chemistry could also have implications for places far beyond Earth, says Edward Young, a geochemist at the University of California, Los Angeles. “Establishing the link between these primitive building blocks of planets and our own planet will go a long way toward helping us understand whether rocky planets with at least as much water as Earth are the norm, or not,” he says.
That’s a lofty goal, one that hinges on a spectacular landing and the final 14 months of Rosetta’s 10-year voyage.




View Article Here Read More

The Mystery of the Egyptian Rosetta Stone ~ A BBC Documentary Film

The Rosetta Stone Click to zoom

View Article Here Read More

Have Hieroglyphs Never Been Deciphered?

The Rosetta Stone Video

View Article Here Read More

NASA prepares its science fleet for Mars comet encounter ~ Video


NASA assets to observe Comet Siding Spring


Excerpt from
astronomy.com

Comet Siding Spring will pass within about 87,000 miles (139,500 kilometers) of the Red Planet on October 19.


NASA’s extensive fleet of science assets, particularly those orbiting and roving Mars, have front-row seats to image and study a once-in-a-lifetime comet flyby Sunday, October 19.

Comet C/2013 A1, also known as Comet Siding Spring, will pass within about 87,000 miles (139,500 kilometers) of the Red Planet — less than half the distance between Earth and our Moon and less than one-tenth the distance of any known comet flyby of Earth.

Siding Spring’s nucleus will come closest to Mars around 2:27 p.m. EDT, hurtling at about 126,000 mph (56 kilometers per second). This proximity will provide an unprecedented opportunity for researchers to gather data on both the comet and its effect on the martian atmosphere.

Siding Spring came from the Oort Cloud, a spherical region of space surrounding our Sun and occupying space at a distance between 5,000 and 100,000 astronomical units (1 AU is the average Earth-Sun distance). It is a giant swarm of icy objects believed to be material left over from the formation of the solar system.

Siding Spring will be the first comet from the Oort Cloud to be studied up close by spacecraft, giving scientists an invaluable opportunity to learn more about the materials, including water and carbon compounds, that existed during the formation of the solar system 4.6 billion years ago.

Some of the best and most revealing images and science data will come from assets orbiting and roving the surface of Mars. In preparation for the comet flyby, NASA maneuvered its Mars Odyssey orbiter, Mars Reconnaissance Orbiter, and the newest member of the Mars fleet, Mars Atmosphere and Volatile EvolutioN (MAVEN), in order to reduce the risk of impact with high-velocity dust particles coming off the comet.

In addition, Earth-based and space telescopes, including NASA’s iconic Hubble Space Telescope, will be in position to observe the unique celestial object. The agency’s astrophysics space observatories — Kepler, Swift, Spitzer, Chandra — and the ground-based Infrared Telescope Facility on Mauna Kea, Hawaii —will be tracking the event.

NASA’s asteroid hunter, the Near-Earth Object Wide-field Infrared Survey Explorer, has been imaging and will continue to image the comet as part of its operations. And the agency’s two Heliophysics spacecraft, Solar Terrestrial Relations Observatory and Solar and Heliophysics Observatory, will image the comet. The agency’s Balloon Observation Platform for Planetary Science, a suborbital balloon-carried telescope, already has provided observations of the comet in the lead-up to the close encounter with Mars.



View Article Here Read More

European Spacecraft to Make Historic Comet Landing on November 12th, 2014


Europe Unveils Comet Landing Site for Historic Rosetta Mission

 One of the boldest and most dramatic maneuvers in the history of spaceflight is just six weeks away.


On Nov. 12, the European Space Agency's Rosetta probe will try to drop a robotic lander onto the surface of Comet 67P/Churyumov-Gerasimenko, which Rosetta has been orbiting since early August. No spacecraft has ever attempted a soft landing on a comet before.

The current plan calls for the lander, named Philae, to come down at a location on Comet 67P that the mission team has dubbed Site J.

"Site J was chosen unanimously over four other candidate sites as the primary landing site because the majority of terrain within a square kilometer [0.4 square miles] area has slopes of less than 30 degrees relative to the local vertical and because there are relatively few large boulders," European Space Agency (ESA) officials said in a statement.

"The area also receives sufficient daily illumination to recharge Philae and continue surface science operations beyond the initial 64-hour battery-powered phase," they added.

If all goes according to plan, Rosetta will deploy Philae at 4:35 a.m. EDT (0835 GMT) on Nov. 12, at a distance of 14 miles (22.5 km) from the comet. Philae will spiral down slowly toward 67P, eventually securing itself to the surface with harpoons at Site J around 11:30 a.m. EDT (1530 GMT) that same day.

European Spacecraft to Make Historic Comet Landing on Nov. 12
This image from Europe's Rosetta spacecraft shows the mission's planned landing site on Comet 67P/Churyum

Confirmation of the historic maneuver's success or failure will come 28 minutes and 20 seconds later — the amount of time it takes for signals to travel from Rosetta to its controllers here on the ground.It's also possible that Philae could touch down at a backup location called Site C, ESA officials said. Final confirmation of the landing plan will come on Oct. 14, after a formal review of data gathered by the Rosetta mothership. ESA will also launch a public competition to name Philae's landing site on that date.

The $1.7 billion (1.3 billion euros) Rosetta mission blasted off in March 2004 and finally arrived in orbit around Comet 67P on Aug. 6 of this year. The Rosetta orbiter is studying the 2.5-mile-wide (4 km) comet with 11 different science instruments, and Philae will contribute by photographing 67P's surface and collecting and analyzing samples.

Comet 67P, which takes 6.5 years to complete one lap around the sun, is now getting closer and closer to our star. Rosetta and Philae will continue to observe the comet and study how it changes as it warms up on its trek through the inner solar system.

The goal is to better understand the composition and behavior of comets, which are remnants from the solar system's formation 4.6 billion years ago, ESA officials have said. Rosetta is expected to continue gathering data through December 2015.

View Article Here Read More

Rosetta’s Comet Releasing Jets of Water

This artist's impression shows the Rosetta orbiter at comet 67P/Churyumov-Gerasimenko. The image is not to scale. Image Credit: ESA/ATG Medialabjpl.nasa.govComet 67P/Churyumov-Gerasimenko is releasing the Earthly equivalent of two glasses of water i...

View Article Here Read More
Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑