Tag: returning (page 2 of 5)

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

Rosetta mission: Philae lander bounces twice, lands on side ~ Cliff face blocking solar power


How Esa scientists believe Philae has landed on the comet – on its side
How Esa scientists believe Philae has landed on the comet – on its side. Photograph: European Space Agency/Reuters


Excerpt from
theguardian.com


Rosetta mission controllers must decide whether to risk making lander hop from shadow of cliff blocking sunlight to its solar panels.


The robotic lander that touched down on a comet on Wednesday came to rest on its side in the shadow of a cliff, according to the first data beamed home from the probe.

Pictures from cameras on board the European Space Agency’s Philae lander show the machine with one foot in the sky and lodged against a high cliff face that is blocking sunlight to its solar panels.
The precarious resting place means mission controllers are faced with some tough decisions over whether to try and nudge the spacecraft into a sunnier spot. If successful, that would allow Philae to fully recharge its batteries and do more science on the comet, but any sudden move could risk toppling the lander over, or worse, knock it off the comet completely.

The washing machine-sized lander was released by its Rosetta mother ship at 0835am GMT on Wednesday morning and touched down at a perfect spot on the comet’s surface. But when anchoring harpoons failed to fire, the probe bounced back off into space. So weak is the gravitational pull of the comet that Philae soared 1km into the sky and did not come down again until two hours later. “We made quite a leap,” said Stephan Ulamec, the Philae lander manager.

In the time it took the probe to land for the second time, the comet had rotated, bringing more treacherous terrain underneath. The spacecraft bounced a second time and finally came to a standstill on its side at what may be the rim of an enormous crater.

“We bounced twice and stopped in a place we’ve not entirely located,” said Jean-Pierre Bibring, Philae’s lead scientist. Teams of scientists are now trying to work out where the probe is. What mission controllers do know is that they are not where they hoped to be. “We are exactly below a cliff, so we are in a shadow permanently,” Bibring added.

With most of Philae in the dark, the lander will receive only a fraction of the solar energy that Esa had hoped for. The spacecraft needs six or seven hours of sunlight a day but is expected to receive just one and a half. Though it can operate for 60 hours on primary batteries, the probe must then switch to its main batteries which need to be recharged through its solar arrays. If Philae’s batteries run out it will go into a hibernation mode until they have more power.

The spacecraft was designed with landing gear that could hop the probe around, but from its awkward position on its side the option is considered too risky.

Though caught in a tight spot, the Philae lander’s systems appear to be working well. The Rosetta spacecraft picked up the lander’s signal on Thursday morning and received the first images and more instrument data from the surface of the comet.

One of Philae’s major scientific goals is to analyse the comet for organic molecules. To do that, the lander must get samples from the comet into several different instruments, named Ptolemy, Cosac and Civa. There are two ways to do this: sniffing and drilling. Sniffing involves opening the instruments to allow molecules from the surface to drift inside. The instruments are already doing this and returning data.

Panoramic view around the point of Philae's final touchdown on the surface of comet 67P, taken when Rosetta was about 18km from centre of comet. Parts of Philae's landing gear can be seen in this picture.
Panoramic view around the point of Philae’s final touchdown on the surface of comet 67P, taken when Rosetta was about 18km from centre of comet. Parts of Philae’s landing gear can be seen in this picture.Photograph: European Space Agency/AFP/Getty Images

Drilling is much riskier because it could make the lander topple over... Pushing down into the surface will push the lander off again. “We don’t want to start drilling and end the mission,” said Bibring.
But the team has decided to operate another moving instrument, named Mupus, on Thursday evening. This could cause Philae to shift, but calculations show that it would be in a direction that could improve the amount of sunlight falling on the probe. A change in angle of only a few degrees could help. A new panoramic image will be taken after the Mupus deployment to see if there has been any movement.

Meanwhile, the Rosetta orbiter team will continue to try to pinpoint Philae’s position.

View Article Here Read More

Now You See Them ~ ‘Magic Islands’ Appear on Saturn’s Moon Titan

This near-infrared, color mosaic from NASA's Cassini spacecraft shows the sun glinting off of Titan's north polar seas.
A false-color mosaic from space shows the northern seas beneath the haze of Titan.
Photograph by NASA/JPL-Caltech/University of Arizona/University of Idaho


Excerpt from
news.nationalgeographic.com


TUCSON, Arizona—Two new "magic islands" have joined one reported last year on Saturn's giant moon Titan, Cassini spacecraft observations showed on Monday. The features add to a puzzling vanishing act playing out on the frozen world's seas.


Since Cassini first arrived at Saturn in 2004, its photos of Titan have revealed numerous seas, lakes, and rivers on the giant moon's frozen surface. This summer, images showed a mysterious feature in one sea—the first "magic island"—that appeared glinting on a lake's surface and then quickly vanished. 


The find raised speculation that scientists had captured views of waves splashing within the otherwise mirror-smooth liquid methane seas on the moon. Or else it was a fluke.


Now, an August 21 flyby has turned up two more strange reflecting features, magic islands that weren't there in earlier flybys. "They just popped up," says Cornell's Alexander Hayes, who presented the latest survey of Titan's seas at a briefing at the American Astronomical Society's Division for Planetary Sciences meeting.


"They could be waves, or they could be something more solid," says MIT's Jason Soderblom, a member of the Cassini team reporting the observations. "We definitely know now they are something reflecting from the surface."


Since Titan is the only body besides Earth that has rain-carved geography to study, the possibility of a lake with waves intrigued scientists enough to keep them looking.


"After ten years there, Titan still can surprise us," Hayes says. "Titan has dunes, lakes, seas, even rivers. All this makes Titan an explorer's utopia."


An August 21 flyby passing some 599 miles (964 kilometers) above Titan allowed Cassini to investigate the depth of Kraken Mare, the largest sea on the frozen moon. Radar observations from the spacecraft covered a 120-mile (200-kilometer) shore-to-shore strip of the methane sea.


That flyby revealed that Kraken Mare reaches more than 656 feet (200 meters) deep.


Cassini image of Titan's sea.
A Cassini flyby of Titan viewed a narrow stretch of the moon's Kraken Mare sea.

Photograph by NASA/JPL-Caltech/ASI/Cornell


Depth Charge

Though Earth and Titan are the only known worlds in the solar system with seas and lakes, the ones on Titan are quite different from Earth's. Surface temperatures on the moon are around -290°F (-179°C), and its lakes are filled with liquid methane, ethane, and other liquefied natural gases.


With spring returning to the northern hemisphere of Titan, where Kraken Mare resides, the scientists suspect they will soon see more mysteries disturbing the once placid surface of the seas of Titan.

"We are likely to see more islands showing up," Hayes says. "These lakes and seas are dynamic places."

View Article Here Read More

After Pluto, What’s Next for New Horizons Spacecraft?



NASA's New Horizons space probe is set to zoom by Pluto next summer. Where should it go after that?

Excerpt from
csmonitor.com

A NASA spacecraft may have another frigid object in its sights after zooming past Pluto next summer.

NASA's Hubble Space Telescope has spotted three faraway bodies that the New Horizons probe could potentially visit after completing its highly anticipated flyby of the Pluto system in July 2015. One of these newly identified objects is definitely reachable, researchers said, while further tracking is required to determine if the other two are indeed accessible.

The $700 million New Horizons mission launched in 2006 with the primary goal of returning the first-ever up-close looks at Pluto and its moons. But Stern and his colleagues have always wanted the probe to fly by another object in the Kuiper Belt — the ring of frigid bodies beyond Neptune — after the Pluto encounter.

An additional flyby would increase researchers' knowledge of the mysterious Kuiper Belt, mission team members say. Kuiper Belt objects (KBOs) have never been "heat-treated" by the sun, so they're viewed as relatively pristine building blocks left over from the solar system's formation 4.6 billion years ago.

Analysis of Hubble's data turned up the three new KBOs, which are each 1 billion miles (1.6 billion kilometers) beyond Pluto and range in size from 15 to 34 miles wide (25 to 55 km). The KBOs are each about 10 times bigger than a typical comet but just 1 to 2 percent as big as Pluto, researchers said.

"We started to get worried that we could not find anything suitable, even with Hubble, but in the end the space telescope came to the rescue," said New Horizons science team member John Spencer, also of SwRI. "There was a huge sigh of relief when we found suitable KBOs; we are over the moon about this detection."

The additional flyby would likely occur in 2019, he added — but there's no guarantee it will happen.

"In 2016, we need to propose to NASA to get permission (and funding) to fly the KBO mission," he said via email.

View Article Here Read More

Spinning the Web of Life

by Julian RoseContributor, ZenGardner.comSpiders do it. Take a look – oh what an amazing creation! Working their way out from the first circle; filling-in every loop of the circuit; spinning on the outward pull; determined, full of intention, guided by Divine. So my friends, why can’t we?Look at that final creation on the garden gate on a misty October morning – wow – what a stunner! Stay looking and what do you see? A little universe spun into being, oh so de [...]

View Article Here Read More

The Enlightenment Test

Enlightenment. The moment we consciously connect to eternal truth. It’s when we see through the veil of this illusionary world, rising above ego, time, materialism, and our own emotions to see the bigger picture—that we are all one. It’s what all gurus, spiritualists, yogis, Buddhists, monks, meditators, shamans, artists, writers, and religious leaders strive for. It’s the state Neo reached at the end of The Matrix, the level Dorothy attained so she could surpa [...]

View Article Here Read More

Update on the Ascension Process

There has been many questions and confusion as of late as to how the Ascension Process is going, what has happened, and what has yet to happen. The process of Ascension (also referred to as raising consciousness or raising vibration) is being activated by a Universal energy known as the Photon Belt.The Photon Belt has been named Dark Matter by the scientific community, and is currently being studied by those in the fields of Astronomy and Astrophysics. The Photon Belt appears as a dark st [...]

View Article Here Read More

Council of Light May-19-2013

Galactic Federation of The Light Landing Party Creates May-08-2013

Galactic/Earth Alliance The Landing Party Creates Suzanne Lie
http://suzanneliephd.blogspot.com/

The Landing Party Creates

MYTRIA SPEAKS:
I am not sure what I did, but I do know that I extended myself

View Article Here Read More

Galactic Federation of Light Saul May-08-13

A vast selection of new and brilliant ideas are being developed very quickly
05/08/2013 by John Smallman
http://johnsmallman.wordpress.com/2013/05/08/a-vast-selection-of-new-and-brilliant-ideas-are-being-developed-very-quickly/

View Article Here Read More

Galactic Federation of Light Saul April-24-2013

You have every reason to be in high spirits
04/24/2013 by John Smallman
http://johnsmallman.wordpress.com/2013/04/24/you-have-every-reason-to-be-in-high-spirits/

Humanity’s awakening from the illusion into Reality is a done deal — it always has been,

View Article Here Read More

Galactic Federation of Light Sheldan Nidle April-23-2013

Sheldan Nidle’s Update for April-23-2013
http://www.paoweb.com/sn042313.htm

7 Akbal, 11 Kank’in, 9 Eb
Dratzo! This moment in your history is a truly precious one! You stand on the edge of

View Article Here Read More

Galactic Federation of Light Sheldan Nidle April-16-2013

Sheldan Nidle’s Update for April-16-2013
http://www.paoweb.com/sn041613.htm

13 Cib, 4 Kank’in, 9 Eb
Selamat Jarin! We return! Let us begin today by reviewing what has transpired so far. As you know,

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑