Tag: prove (page 2 of 8)

What Everyone Needs To Know About Anxiety

Excerpt from huffingtonpost.comThink you can spot someone with anxiety in a crowd?The disorder, which touches 18 percent of American adults, is one of the most common mental health issues in the world. It can affect your teachers, your loved ones, yo...

View Article Here Read More

Nuclear Experimentation Year 70 – Playing With Madness

Ethan Indigo Smith, ContributorThe recent “news” on the nuclear situation in Iran brings to light the madhouse of cards on which the postmodern world is built. Or rather, it would bring the madness to light if the major media outlets of the world were not bought up and sold out to the military industrial complex, and therefore completely misinformed on the actions and dangers of the nuclear experimentation industry.The story is not just about [...]

View Article Here Read More

Is In-Flight Refueling Coming to Commercial Airlines?




Excerpt from space.com

This article was originally published on The Conversation. The publication contributed this article to Space.com's Expert Voices: Op-Ed & Insights.

There’s real pressure on the aviation industry to introduce faster, cheaper and greener aircraft, while maintaining the high safety standards demanded of airlines worldwide.

Airlines carry more than three billion passengers each year, which presents an enormous challenge not only for aircraft manufacturers but for the civil aviation infrastructure that makes this extraordinary annual mass-migration possible. Many international airports are close to or already at capacity. The International Air Transport Association (IATA) has estimated that, without intervention, many global airports – including major hubs such as London Heathrow, Amsterdam Schiphol, Beijing and Dubai – will have run out of runway or terminal capacity by 2020. 


The obvious approach to tackling this problem is to extend and enlarge airport runways and terminals – such as the long-proposed third runway at London Heathrow. However there may be other less conventional alternatives, such as introducing in-flight refuelling for civil aircraft on key long-haul routes. Our project, Research on a Cruiser-Enabled Air Transport Environment (Recreate), began in 2011 to evaluate whether this was something that could prove a viable, and far cheaper, solution.

If in-flight refuelling seems implausible, it’s worth remembering that it was first trialed in the 1920s, and the military has continued to develop the technology ever since. The appeal is partly to reduce the aircraft’s weight on take-off, allowing it to carry additional payload, and partly to extend its flight range. Notably, during the Falklands War in 1982 RAF Vulcan bombers used in-flight refuelling to stage what was at the time the longest bombing mission ever, flying 8,000 miles non-stop from Ascension Island in the South Atlantic to the Falklands and back.

Reducing take-off weight could offer many benefits for civilian aircraft too. Without the need to carry so much fuel the aircraft can be smaller, which means less noise on take-off and landing and shorter runways. This opens up the network of smaller regional airports as new potential sites for long-haul routes, relieving pressure on the major hubs that are straining at the seams.

There are environmental benefits too, as a smaller, lighter aircraft requires less fuel to reach its destination. Our initial estimates from air traffic simulations demonstrate that it’s possible to reduce fuel burn by up to 11% over today’s technology by simply replacing existing global long-haul flight routes with specifically designed 250-seater aircraft with a range of 6,000nm after one refuelling – roughly the distance from London to Hong Kong. This saving could potentially grow to 23% with further efficiencies, all while carrying the same number of passengers the same distance as is possible with the current aircraft fleet, and despite the additional fuel burn of the tanker aircraft.

Tornado fighter jets in-flight refuel
Imagine if these Tornado fighter jets were 250-seater passenger aircraft and you’ve got the idea.

However, this is not the whole picture – in-flight refuelling will require the aerial equivalent of petrol stations in order to deliver keep passenger aircraft in the sky. With so much traffic it simply wouldn’t be possible to refuel any aircraft any time, anywhere it was needed. The location of these refuelling zones, coupled with the flight distance between the origin and destination airports can greatly affect the potential benefits achievable, possibly pulling flights away from their shortest route, and even making refuelling on some routes impossible – if for example the deviation to the nearest refuelling zone meant burning as much fuel as would have been saved.

Safety and automation

As with all new concepts – particularly those that involve bringing one aircraft packed with people and another full of fuel into close proximity during flight – it’s quite right to ask whether this is safe. To try and answer this question, the Dutch National Aerospace Laboratory and German Aerospace Centre used their flight simulators to test the automated in-flight refuelling flight control system developed as part of the Recreate project.

One simulator replicated the manoeuvre from the point of view of the tanker equipped with an in-flight refuelling boom, the other simulated the aircraft being refuelled mid-flight. Critical test situations such as engine failure, high air turbulence and gusts of wind were simulated with real flight crews to assess the potential danger to the operation. The results were encouraging, demonstrating that the manoeuvre doesn’t place an excessive workload on the pilots, and that the concept is viable from a human as well as a technical perspective.

So far we’ve demonstrated the potential aerial refuelling holds for civilian aviation, but putting it into practice would still pose challenges. Refuelling hubs would need to be established worldwide, shared between airlines. There would need to be fundamental changes to airline pilot training, alongside a wider public acceptance of this departure from traditional flight operations.

However, it does demonstrate that, in addition to all the high-tech work going into designing new aircraft, new materials, new engines and new fuels, the technology we already have offers solutions to the long-term problems of ferrying billions of passengers by air around the world.

View Article Here Read More

Science of frustrated magnets: Hall Effect experiment reveals clues to their discontent

Excerpt from thewestsidestory.netA scientific study carried out in Princeton has brought about the discovery of unlikely properties in materials called frustrated magnets using the Hall Effect.Hall Effect is the property of magnetic fields having inf...

View Article Here Read More

Young Jupiter wiped out solar system’s early inner planets, study says


Ganymede
(Photo : NASA/ESA) In early days of solar system, Jupiter destroyed everything that came in its way, researchers have found.


Excerpt from latimes.com

Before Mercury, Venus, Earth and Mars occupied the inner solar system, there may have been a previous generation of planets that were bigger and more numerous – but were ultimately doomed by Jupiter, according to a new study.

If indeed the early solar system was crowded with so-called super-Earths, it would have looked a lot more like the planetary systems found elsewhere in the galaxy, scientists wrote Monday in the Proceedings of the National Academy of Sciences.


Inner planets
As NASA’s Kepler space telescope has found more than 1,000 planets in orbit around other stars, along with more than 4,000 other objects that are believed to be planets but haven’t yet been confirmed. Kepler finds these planets by watching their host stars and registering tiny drops in their brightness – a sign that they are being ever-so-slightly darkened by a planet crossing in front of them.

In addition, ground-based telescopes have detected hundreds of exoplanets by measuring the wiggles of distant stars. Those stars wiggle thanks to the gravitational pull of orbiting planets, and the Doppler effect makes it possible to estimate the size of these planets.

The more planetary systems astronomers discovered, the more our own solar system looked like an oddball. Exoplanets – at least the ones big enough for us to see – tended to be bigger than Earth, with tight orbits that took them much closer to their host stars. In multi-planet systems, these orbits tended to be much closer together than they are in our solar system. For instance, the star known as Kepler-11 has six planets closer to it than Venus is to the sun.

Why does our solar system look so different? Astrophysicists Konstantin Batygin of Caltech and Greg Laughlin of UC Santa Cruz summed it up in one word: Jupiter.

Here’s what could have happened, according to their models:

In Solar System 1.0, the region closest to the sun was occupied by numerous planets with masses several times bigger than that of Earth. There were also planetesimals, “planetary building blocks” that formed within the first million years after the birth of the sun, Batygin and Laughlin wrote.

This is how things might have stayed if the young Jupiter had stayed put at its initial orbit, between 3 and 10 astronomical units away from the sun. (An astronomical unit, or AU, is the distance between the Earth and the sun. Today, Jupiter’s orbit ranges between 5 and 5.5 AUs from the sun.)

But Jupiter was restless, according to a scenario known as the “Grand Tack.” In this version of events, Jupiter was swept up by the currents of gas that surrounded the young sun and drifted toward the center of the solar system.

Jupiter, however, was too big to travel solo. All manner of smaller objects would have been dragged along too. With so many bodies in motion, there would have been a lot of crashes.

The result was “a collisional cascade that grinds down the planetesimal population to smaller sizes,” the astrophysicists wrote. For the most part, these planetary crumbs were swept toward the sun and ultimately destroyed, like disintegrating satellites falling back to Earth.

The planetesimals wouldn’t have been Jupiter’s only victims. Assuming the early solar system resembled the planetary systems spied by Kepler and other telescopes, there would have been “a similar population of first-generation planets,” the pair wrote. “If such planets formed, however, they were destroyed.”

Jupiter probably got about as close to the sun as Mars is today before reversing course, pulled away by the gravity of the newly formed Saturn. That would have ended the chaos in the inner solar system, allowing Earth and the other rocky planets to form from the debris that remained.

“This scenario provides a natural explanation for why the inner Solar System bears scant resemblance to the ubiquitous multi-planet systems” discovered by Kepler and other survey efforts, Batygin and Laughlin wrote.

Although their models show that this is what might have happened, they don’t prove that it actually did. But there may be a way to get closer to the truth.

The scientists’ equations suggest that if a star is orbited by a cluster of close-in planets, there won’t be a larger, farther-out planet in the same system. As astronomers find more exoplanetary systems, they can see whether this prediction holds up.

Also, if far-away solar systems are experiencing a similar series of events, telescopes ought to be able to detect the extra heat thrown off by all of the planetesimal collisions, they added.

Sadly for those hoping to find life on other planets, the pair’s calculations also imply that most Earth-sized planets are lacking in water and other essential compounds that can exist in liquid or solid form. As a result, they would be “uninhabitable,” they wrote.

View Article Here Read More

If the Moon Landings Were Real, Then Why is NASA Stumped by This?

Buck Rogers, Staff WriterWaking TimesDuring the cold war era the Soviet Union and the United States were locked in an arms and technology race, each nation wanting to prove their dominance over the other, each striving to be the next reigning superpower in a world still shattered by the second world war. The Soviet’s took the lead when in April of 1961, cosmonaut Yuri Gagarin successfully orbited the earth and returned home safely. In May, president John F. Kennedy ma [...]

View Article Here Read More

Confirmed: Jupiter’s moon Ganymede has a salt water ocean

GanymedeExcerpt from latimes.comAstronomers have found the most conclusive evidence yet that a large watery ocean lies beneath the surface of Jupiter's moon Ganymede.Scientists have suspected for decades that a subterranean ocean ...

View Article Here Read More

Chances of Exoplanet Life ‘Impossible’? Or ‘100 percent’?


Kepler’s Exoplanets: A map of the locations of exoplanets, of various masses, in the Kepler field of view. 1,235 candidates are plotted (NASA/Wendy Stenzel)


 news.discovery.com 

Just in case you haven’t heard, our galaxy appears to be teeming with small worlds, many of which are Earth-sized candidate exoplanets and dozens appear to be orbiting their parent stars in their “habitable zones.”

Before Wednesday’s Kepler announcement, we knew of just over 500 exoplanets orbiting stars in the Milky Way. Now the space telescope has added another 1,235 candidates to the tally — what a difference 24 hours makes.

Although this is very exciting, the key thing to remember is that we are talking about exoplanet candidates, which means Kepler has detected 1,235 exoplanet signals, but more work needs to be done (i.e. more observing time) to refine their orbits, masses and, critically, to find out whether they actually exist.

But, statistically speaking, a pattern is forming. Kepler has opened our eyes to the fact our galaxy is brimming with small worlds — some candidates approaching Mars-sized dimensions!

Earth-Brand™ Life

Before Kepler, plenty of Jupiter-sized worlds could be seen, but with its precision eye for spotting the tiniest of fluctuations of star brightness (as a small exoplanet passes between Kepler and the star), the space telescope has found that smaller exoplanets outnumber the larger gas giants.

Needless to say, all this talk of “Earth-sized” worlds (and the much-hyped “Earth-like” misnomer) has added fuel to the extraterrestrial life question: If there’s a preponderance of small exoplanets — some of which orbit within the “sweet-spot” of the habitable zones of their parent stars — could life as we know it (or Earth-Brand™ Life as I like to call it) also be thriving there?
Before I answer that question, let’s turn back the clock to Sept. 29, 2010, when, in the wake of the discovery of the exoplanet Gliese 581 g, Steven Vogt, professor of astronomy and astrophysics at University of California Santa Cruz, told Discovery News: “Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that the chances for life on [Gliese 581 g] are 100 percent. I have almost no doubt about it.”

Impossible? Or 100 Percent?

As it turns out, Gliese 581 g may not actually exist — an excellent example of the progress of science scrutinizing a candidate exoplanet in complex data sets as my Discovery News colleague Nicole Gugliucci discusses in “Gliese 581g and the Nature of Science” — but why was Vogt so certain that there was life on Gliese 581 g? Was he “wrong” to air this opinion?

Going to the opposite end of the spectrum, Howard Smith, an astrophysicist at Harvard University, made the headlines earlier this year when he announced, rather pessimistically, that aliens will unlikely exist on the extrasolar planets we are currently detecting.
“We have found that most other planets and solar systems are wildly different from our own. They are very hostile to life as we know it,” Smith told the UK’s Telegraph.

Smith made comparisons between our own solar system with the interesting HD 10180 system, located 127 light-years away. HD 10180 was famous for a short time as being the biggest star system beyond our own, containing five exoplanets (it has since been trumped by Kepler-11, a star system containing six exoplanets as showcased in Wednesday’s Kepler announcement).

One of HD 10180′s worlds is thought to be around 1.4 Earth-masses, making it the smallest detected exoplanet before yesterday. Alas, as Smith notes, that is where the similarities end; the “Earth-sized” world orbiting HD 10180 is too close to its star, meaning it is a roasted exoplanet where any atmosphere is blasted into space by the star’s powerful radiation and stellar winds.
The Harvard scientist even dismissed the future Kepler announcement, pointing out that upcoming reports of habitable exoplanets would be few and far between. “Extrasolar systems are far more diverse than we expected, and that means very few are likely to support life,” he said.

Both Right and Wrong

So what can we learn about the disparity between Vogt and Smith’s opinions about the potential for life on exoplanets, regardless of how “Earth-like” they may seem?

Critically, both points of view concern Earth-Brand™ Life (i.e. us and the life we know and understand). As we have no experience of any other kind of life (although the recent eruption of interest over arsenic-based life is hotly debated), it is only Earth-like life we can realistically discuss.

We could do a Stephen Hawking and say that all kinds of life is possible anywhere in the cosmos, but this is pure speculation. Science only has life on Earth to work with, so (practically speaking) it’s pointless to say a strange kind of alien lifeform could live on an exoplanet where the surface is molten rock and constantly bathed in extreme stellar radiation.

If we take Hawking’s word for it, Vogt was completely justified for being so certain about life existing on Gliese 581 g. What’s more, there’s no way we could prove he’s wrong!

But if you set the very tight limits on where we could find Earth-like life, we are suddenly left with very few exoplanet candidates that fit the bill. Also, just because an Earth-sized planet might be found in the habitable zone of its star, doesn’t mean it’s actually habitable. There are many more factors to consider. So, in this case, Smith’s pessimism is well placed.

Regardless, exoplanet science is in its infancy and the uncertainty with the “is there life?” question is a symptom of being on the “raggedy edge of science,” as Nicole would say. We simply do not know what it takes to make a world habitable for any kind of life (apart from Earth), but it is all too tempting to speculate as to whether a race of extraterrestrials, living on one of Kepler’s worlds, is pondering these same questions.

View Article Here Read More

Strange find on Titan sparks chatter about life


Titan


Excerpt from nbcnews.com

Studies may suggest methane-based organic processes ... but maybe not  
New findings have roused a great deal of hoopla over the possibility of life on Saturn's moon Titan, which some news reports have further hyped up as hints of extraterrestrials.
However, scientists also caution that aliens might have nothing to do with these findings.

All this excitement is rooted in analyses of chemical data returned by NASA's Cassini spacecraft. One study suggested that hydrogen was flowing down through Titan's atmosphere and disappearing at the surface. Astrobiologist Chris McKay at NASA's Ames Research Center speculated that this could be a tantalizing hint that hydrogen is getting consumed by life.

"It's the obvious gas for life to consume on Titan, similar to the way we consume oxygen on Earth," McKay said.

Another study investigating hydrocarbons on Titan's surface found a lack of acetylene, a compound that could be consumed as food by life that relies on liquid methane instead of liquid water to live.
"If these signs do turn out to be a sign of life, it would be doubly exciting because it would represent a second form of life independent from water-based life on Earth," McKay said.
However, NASA scientists caution that aliens might not be involved at all.

"Scientific conservatism suggests that a biological explanation should be the last choice after all non-biological explanations are addressed," said Mark Allen, principal investigator with the NASA Astrobiology Institute Titan team. "We have a lot of work to do to rule out possible non-biological explanations. It is more likely that a chemical process, without biology, can explain these results."
McKay told Space.com that "both results are still preliminary."

To date, methane-based life forms are only speculative, with McKay proposing a set of conditions necessary for these kinds of organisms on Titan in 2005. Scientists have not yet detected this form of life anywhere, although there are liquid-water-based microbes on Earth that thrive on methane or produce it as a waste product. 

On Titan, where temperatures are around minus-290 degrees Fahrenheit (-179 degrees Celsius), any organisms would have to use a substance that is liquid as its medium for living processes. Water itself cannot do, because it is frozen solid on Titan's surface. The list of liquid candidates is very short — liquid methane and related molecules such as ethane. Previous studies have found Titan to have lakes of liquid methane.

Missing hydrogen? 

The dearth of hydrogen Cassini detected is consistent with conditions that could produce methane-based life, but do not conclusively prove its existence, cautioned researcher Darrell Strobel, a Cassini interdisciplinary scientist based at Johns Hopkins University in Baltimore. Strobel wrote the paper on hydrogen appearing online in the journal Icarus.


Strobel looked at densities of hydrogen in different parts of the atmosphere and at the surface. Previous models from scientists had predicted that hydrogen molecules, a byproduct of ultraviolet sunlight breaking apart acetylene and methane molecules in the upper atmosphere, should be distributed fairly evenly throughout the atmospheric layers.

Strobel's computer simulations suggest a hydrogen flow down to the surface at a rate of about 10,000 trillion trillion molecules per second. 

"It's as if you have a hose and you're squirting hydrogen onto the ground, but it's disappearing," Strobel said. "I didn't expect this result, because molecular hydrogen is extremely chemically inert in the atmosphere, very light and buoyant. It should 'float' to the top of the atmosphere and escape."

Strobel said it is not likely that hydrogen is being stored in a cave or underground space on Titan. An unknown mineral could be acting as a catalyst on Titan's surface to help convert hydrogen molecules and acetylene back to methane.

Although Allen commended Strobel, he noted "a more sophisticated model might be needed to look into what the flow of hydrogen is."

Consumed acetylene? 

Scientists had expected the sun's interactions with chemicals in the atmosphere to produce acetylene that falls down to coat Titan's surface. But when Cassini mapped hydrocarbons on Titan's surface, it detected no acetylene on the surface, according to findings appearing online in the Journal of Geophysical Research.


Instead of alien life on Titan, Allen said one possibility is that sunlight or cosmic rays are transforming the acetylene in icy aerosols in the atmosphere into more complex molecules that would fall to the ground with no acetylene signature.

In addition, Cassini detected an absence of water ice on Titan's surface, but loads of benzene and another as-yet-unidentified material, which appears to be an organic compound. The researchers said that a film of organic compounds is covering the water ice that makes up Titan's bedrock. This layer of hydrocarbons is at least a few millimeters to centimeters thick, but possibly much deeper in some places. 

"Titan's atmospheric chemistry is cranking out organic compounds that rain down on the surface so fast that even as streams of liquid methane and ethane at the surface wash the organics off, the ice gets quickly covered again," said Roger Clark, a Cassini team scientist based at the U.S. Geological Survey in Denver. "All that implies Titan is a dynamic place where organic chemistry is happening now."

All this speculation "is jumping the gun, in my opinion," Allen said.

"Typically in the search for the existence of life, one looks for the presence of evidence -- say, the methane seen in the atmosphere of Mars, which can't be made by normal photochemical processes," Allen added. "Here we're talking about absence of evidence rather than presence of evidence — missing hydrogen and acetylene — and oftentimes there are many non-life processes that can explain why things are missing."

These findings are "still a long way from evidence of life," McKay said. "But it could be interesting."

View Article Here Read More

Yes, that 3D-printed mansion is safe to live in


WinSun claims that their new 3D printed five-story building is the tallest of its kind in the world. Credit: 3ders.org
WinSun claims that their new 3D printed five-story building is the tallest of its kind in the world. 


Excerpt from

Back in April, a team of Chinese construction workers used a 3D printer to construct houses. By day’s end, there were 10 standing. They were compact and fairly bare bones — nothing much to look at besides the “wow!” factor of there being as many as — count them — 10. But this time around, those same builders have taken the wraps off an achievement that’s roundly more impressive.
In Suzhou Industrial Park, adjacent to Shanghai, stands a five-story structure that the WinSun Decoration Design Engineering firm claims is “the world’s tallest 3D-printed building.” Next to it is the equally massive 3D-printed mansion, which measures 11,840 square feet. Like the previous buildings, the walls are comprised of a mix of concrete and recycled waste materials, such as glass and steel, and formed layer by printed layer. The company stated that the total cost for the mansion was roughly $161,000. 
In a broader sense, this latest feat is yet another indication of how rapidly additive manufacturing techniques are advancing. Once used primarily as a means to quickly render miniature model versions of products, the technology has reached a point where large-scale printers are now capable of making life-sized working creations, such as automobiles, in mere days. For instance, it took less than 48 hours for start-up Local Motors to print a two-seater called the Strati into existence and drive it off the showroom.
Many of these designs, however, typically don’t amount to much beyond being passion projects meant to push 3D printing into new frontiers and drum up some publicity along the way. One example of this is the massive 3D Print Canal House that’s being constructed entirely on-site along a canal in Amsterdam, a process that’s slated to take longer and is less feasible than standard construction, Phil Reeves of UK-based 3D printing research firm Econolyst recently told CNN.
More promising, though, is a system developed by Behrokh Khoshnevis, a University of Southern California engineering professor. His concept machine, called Contour Crafting, involves a clever combination of mechanical cranes and 3D layering to print and assemble entire homes simultaneously — complete with insulation and indoor plumbing — in less than a day. 

Assembling 3D printed buildings is quite similar to erecting prefab homes. Credit: 3ders.org
Assembling 3D printed buildings is quite similar to erecting prefab homes. 


The approach employed by WinSun isn’t anywhere near that level of sophistication, but it may well prove to be the most practical – at least thus far. There is some labor and equipment costs that comes from trucking in and piecing together the various sections on-site, though the manner in which it all comes together is comparable to the ease of prefab assembly. It’s also reportedly greener thanks to the addition of recycled materials. 
To pitch the advantages of their technology, the company held a news conference to announce that they had taken on orders for 20,000 smaller units as well as highlight some significant cost-cutting figures. According toindustry news site 3Der:
The sheer size of the printer allows for a 10x increase in production efficiency. WinSun estimates that 3D printing technology can save between 30 and 60 percent of building materials and shortens production times by 50 to even 70 percent, while decreasing labor costs by 50 up to even 80 percent. Future applications include 3D printed bridges or tall office buildings that can be built right on site.
WinSun did not respond to a request to disclose how they arrived at those numbers, but Enrico Dini, an Italian civil engineer and chairman of competing start-up Monolite, says that he suspects the calculations may be a tad bit inflated. Still, he emphasized that his own data does back up the claim that, compared to conventional methods, layering may boost overall efficiency. 
“It would be very difficult to fabricate such large sections with traditional concrete casting,” he says. “With 3D printing, you have a lot less waste because you’re only printing out as much material as you need and you can custom shape whole sections on the spot, which can be a big challenge.”

WinSuns 3D printed villa has several rooms and has been deemed to be up to Chinas national safety standards. Credit: 3ders.org
WinSun’s 3D-printed villa has several rooms and has been deemed to be up to China’s national safety standards.

One major concern is whether these large-scale dwellings can hold up over time against the elements. According to 3Der, Ma Rongquan, chief engineer of China Construction Bureau, inspected the building’s structural integrity and found them to be up to code, but was careful to note that state officials have yet to establish specific criteria for assessing the long-term safety of 3D printed architecture.   
And as Dini, who supports the technology, points out, there is the possibility that the use of additive manufacturing may pose some degree of risk. “The only issue is that as the layers of concrete are bonded together, they’re drying at slightly different rates and that’s not very ideal,” he explains. “So there’s maybe a higher chance of it fracturing at the contact point if there’s a strong enough force at play.” 
Regardless, Dini says he’d feel completely safe going inside any floor of either building since construction materials used today are likely to contain special additives to enhance strength and resistance. One such formulation, fiber-reinforced Ductal, has been shown in some tests to be 10 times stronger and last twice as long as regular concrete. He stressed that walls should also be tested to ensure that other properties, such as acoustics, ventilation and thermal insulations are on par with existing buildings.
“In Italy, building standards are extremely strict,” he noted. “But I can’t say I can say the same about China.”

View Article Here Read More

NASA To Speed Up Search For Alien Life On Europa

Excerpt from yibada.comWith a US$18.5 billion budget allocation in 2016 proposed by President Barack Obama in hand, NASA can finally launch the dream project it's been working on for the last 15 years. The allocation provides US$30 million to la...

View Article Here Read More

Banned TED Talk: The Science Delusion ~ Is science way off about the nature of our reality?



The following statement has been posted by Tedstaff at blog.ted.com: "After due diligence, including a survey of published scientific research and recommendations from our Science Board and our community, we have decided that Graham Hancock’s and Rupert Sheldrake’s talks from TEDxWhitechapel should be removed from distribution on the TEDx YouTube channel... All talks on the TEDxTalks channel represent the opinion of the speaker, not of TED or TEDx, but we feel a responsibility not to provide a platform for talks which appear to have crossed the line into pseudoscience.

Response to the TED Scientific Board’s Statement
Rupert Sheldrake
March 18, 2013

I would like to respond to TED’s claims that my TEDx talk “crossed the line into pseudoscience”, contains ”serious factual errors” and makes “many misleading statements.”
This discussion is taking place because the militant atheist bloggers Jerry Coyne and P.Z. Myers denounced me, and attacked TED for giving my talk a platform. I was invited to give my talk as part of a TEDx event in Whitechapel, London, called “Challenging Existing Paradigms.” That’s where the problem lies: my talk explicitly challenges the materialist belief system. It summarized some of the main themes of my recent book Science Set Free (in the UK called The Science Delusion). Unfortunately, the TED administrators have publically aligned themselves with the old paradigm of materialism, which has dominated science since the late nineteenth century.
TED say they removed my talk from their website on the advice of their Scientific Board, who also condemned Graham Hancock’s talk. Hancock and I are now facing anonymous accusations made by a body on whose authority TED relies, on whose advice they act, and behind whom they shelter, but whose names they have not revealed.
TED’s anonymous Scientific Board made three specific accusations:
Accusation 1:“he suggests that scientists reject the notion that animals have consciousness, despite the fact that it’s generally accepted that animals have some form of consciousness, and there’s much research and literature exploring the idea.”
I characterized the materialist dogma as follows: “Matter is unconscious: the whole universe is made up of unconscious matter. There’s no consciousness in stars in galaxies, in planets, in animals, in plants and there ought not to be any in us either, if this theory’s true. So a lot of the philosophy of mind over the last 100 years has been trying to prove that we are not really conscious at all.” Certainly some biologists, including myself, accept that animals are conscious. In August, 2012, a group of scientists came out with an endorsement of animal consciousness in “The Cambridge Declaration on Consciousness”. As Discovery News reported, “While it might not sound like much for scientists to declare that many nonhuman animals possess conscious states, it’s the open acknowledgement that’s the big news here.” (http://news.discovery.com/human/genetics/animals-consciousness-mammals-birds-octopus-120824.htm)
But materialist philosophers and scientists are still in the majority, and they argue that consciousness does nothing – it is either an illusion or an ”epiphenomenon” of brain activity. It might as well not exist in animals – or even in humans. That is why in the philosophy of mind, the very existence of consciousness is often called “the hard problem”.http://en.wikipedia.org/wiki/Hard_problem_of_consciousness
Accusation 2:“He also argues that scientists have ignored variations in the measurements of natural constants, using as his primary example the dogmatic assumption that a constant must be constant and uses the speed of light as example.… Physicist Sean Carroll wrote a careful rebuttal of this point.”
TED’s Scientific Board refers to a Scientific American article that makes my point very clearly: “Physicists routinely assume that quantities such as the speed of light are constant.”
In my talk I said that the published values of the speed of light dropped by about 20 km/sec between 1928 and 1945. Carroll’s “careful rebuttal” consisted of a table copied from Wikipedia showing the speed of light at different dates, with a gap between 1926 and 1950, omitting the very period I referred to. His other reference (http://micro.magnet.fsu.edu/primer/lightandcolor/speedoflight.html) does indeed give two values for the speed of light in this period, in 1928 and 1932-35, and sure enough, they were 20 and 24km/sec lower than the previous value, and 14 and 18 km/sec lower than the value from 1947 onwards.
1926: 299,798
1928: 299,778
1932-5: 299,774
1947: 299,792

In my talk I suggest how a re-examination of existing data could resolve whether large continuing variations in the Universal Gravitational Constant, G, are merely errors, as usually assumed, or whether they show correlations between different labs that might have important scientific implications hitherto ignored. Jerry Coyne and TED’s Scientific Board regard this as an exercise in pseudoscience. I think their attitude reveals a remarkable lack of curiosity.
Accusation 3:“Sheldrake claims to have “evidence” of morphic resonance in crystal formation and rat behavior. The research has never appeared in a peer-reviewed journal, despite attempts by other scientists eager to replicate the work.”
I said, “There is in fact good evidence that new compounds get easier to crystallize all around the world.” For example, turanose, a kind of sugar, was considered to be a liquid for decades, until it first crystallized in the 1920s. Thereafter it formed crystals everyehere. (Woodard and McCrone Journal of Applied Crystallography (1975). 8, 342). The American chemist C. P. Saylor, remarked it was as though “the seeds of crystallization, as dust, were carried upon the winds from end to end of the earth” (quoted by Woodard and McCrone).
The research on rat behavior I referred to was carried out at Harvard and the Universities of Melbourne and Edinburgh and was published in peer-reviewed journals, including the British Journal of Psychology and the Journal of Experimental Biology. For a fuller account and detailed references see Chapter 11 of my book Morphic Resonance (in the US) / A New Science of Life (in the UK). The relevant passage is online here: http://sciencesetfree.tumblr.com/
The TED Scientific Board refers to ”attempts by other scientists eager to replicate the work” on morphic resonance. I would be happy to work with these eager scientists if the Scientific Board can reveal who they are.
This is a good opportunity to correct an oversimplification in my talk. In relation to the dogma that mechanistic medicine is the only kind that really works, I said, “that’s why governments only fund mechanistic medicine and ignore complementary and alternative therapies.” This is true of most governments, but the US is a notable exception. The US National Center for Complementary and Alternative Medicine receives about $130 million a year, about 0.4% of the National Institutes of Health (NIH) total annual budget of $31 billion.
Obviously I could not spell out all the details of my arguments in an 18-minute talk, but TED’s claims that it contains “serious factual errors,” “many misleading statements” and that it crosses the line into “pseudoscience” are defamatory and false.

Click to zoom

View Article Here Read More

A Physicist’s Explanation of Why the Soul May Exist







By Tara Maclsaac
Excerpt from
theepochtimes.com
 Henry Stapp is a theoretical physicist at the University of California's Lawrence Berkeley Laboratory, specializing in the mathematical and logical foundations of quantum mechanics. - See more at: http://www.nourfoundation.com/speakers/henry-p-stapp-phd.html#sthash.ZJS7Zrm3.dpuf
Dr. Henry Stapp is a theoretical physicist at the University of California's Lawrence Berkeley Laboratory, specializing in the mathematical and logical foundations of quantum mechanics. - See more at: http://www.nourfoundation.com/speakers/henry-p-stapp-phd.html#sthash.ZJS7Zrm3.dpuf



Henry P. Stapp is a theoretical physicist at the University of California–Berkeley who worked with some of the founding fathers of quantum mechanics. He does not seek to prove that the soul exists, but he does say that the existence of the soul fits within the laws of physics.

He does not seek to prove that the soul exists, but he does say that the existence of the soul fits within the laws of physics.

It is not true to say belief in the soul is unscientific, according to Stapp. Here the word “soul” refers to a personality independent of the brain or the rest of the human body that can survive beyond death.  In his paper, “Compatibility of Contemporary Physical Theory With Personality Survival,” he wrote: “Strong doubts about personality survival based solely on the belief that postmortem survival is incompatible with the laws of physics are unfounded.”
He works with the Copenhagen interpretation of quantum mechanics—more or less the interpretation used by some of the founders of quantum mechanics, Niels Bohr and Werner Heisenberg. Even Bohr and Heisenberg had some disagreements on how quantum mechanics works, and understandings of the theory since that time have also been diverse. Stapp’s paper on the Copenhagen interpretation has been influential. It was written in the 1970s and Heisenberg wrote an appendix for it. 

Stapp noted of his own concepts: “There has been no hint in my previous descriptions (or conception) of this orthodox quantum mechanics of any notion of personality survival.”

Why Quantum Theory Could Hint at Life After Death

Stapp explains that the founders of quantum theory required scientists to essentially cut the world into two parts. Above the cut, classical mathematics could describe the physical processes empirically experienced. Below the cut, quantum mathematics describes a realm “which does not entail complete physical determinism.”

Of this realm below the cut, Stapp wrote: “One generally finds that the evolved state of the system below the cut cannot be matched to any conceivable classical description of the properties visible to observers.”

So how do scientists observe the invisible? They choose particular properties of the quantum system and set up apparatus to view their effects on the physical processes “above the cut.”

The key is the experimenter’s choice. When working with the quantum system, the observer’s choice has been shown to physically impact what manifests and can be observed above the cut. 

Stapp cited Bohr’s analogy for this interaction between a scientist and his experiment results: “[It's like] a blind man with a cane: when the cane is held loosely, the boundary between the person and the external world is the divide between hand and cane; but when held tightly the cane becomes part of the probing self: the person feels that he himself extends to the tip of the cane.”

The physical and mental are connected in a dynamic way. In terms of the relationship between mind and brain, it seems the observer can hold in place a chosen brain activity that would otherwise be fleeting. This is a choice similar to the choice a scientist makes when deciding which properties of the quantum system to study. 

The quantum explanation of how the mind and brain can be separate or different, yet connected by the laws of physics “is a welcome revelation,” wrote Stapp. “It solves a problem that has plagued both science and philosophy for centuries—the imagined science-mandated need either to equate mind with brain, or to make the brain dynamically independent of the mind.”

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑