Tag: points (page 3 of 9)

Chances of Exoplanet Life ‘Impossible’? Or ‘100 percent’?


Kepler’s Exoplanets: A map of the locations of exoplanets, of various masses, in the Kepler field of view. 1,235 candidates are plotted (NASA/Wendy Stenzel)


 news.discovery.com 

Just in case you haven’t heard, our galaxy appears to be teeming with small worlds, many of which are Earth-sized candidate exoplanets and dozens appear to be orbiting their parent stars in their “habitable zones.”

Before Wednesday’s Kepler announcement, we knew of just over 500 exoplanets orbiting stars in the Milky Way. Now the space telescope has added another 1,235 candidates to the tally — what a difference 24 hours makes.

Although this is very exciting, the key thing to remember is that we are talking about exoplanet candidates, which means Kepler has detected 1,235 exoplanet signals, but more work needs to be done (i.e. more observing time) to refine their orbits, masses and, critically, to find out whether they actually exist.

But, statistically speaking, a pattern is forming. Kepler has opened our eyes to the fact our galaxy is brimming with small worlds — some candidates approaching Mars-sized dimensions!

Earth-Brand™ Life

Before Kepler, plenty of Jupiter-sized worlds could be seen, but with its precision eye for spotting the tiniest of fluctuations of star brightness (as a small exoplanet passes between Kepler and the star), the space telescope has found that smaller exoplanets outnumber the larger gas giants.

Needless to say, all this talk of “Earth-sized” worlds (and the much-hyped “Earth-like” misnomer) has added fuel to the extraterrestrial life question: If there’s a preponderance of small exoplanets — some of which orbit within the “sweet-spot” of the habitable zones of their parent stars — could life as we know it (or Earth-Brand™ Life as I like to call it) also be thriving there?
Before I answer that question, let’s turn back the clock to Sept. 29, 2010, when, in the wake of the discovery of the exoplanet Gliese 581 g, Steven Vogt, professor of astronomy and astrophysics at University of California Santa Cruz, told Discovery News: “Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that the chances for life on [Gliese 581 g] are 100 percent. I have almost no doubt about it.”

Impossible? Or 100 Percent?

As it turns out, Gliese 581 g may not actually exist — an excellent example of the progress of science scrutinizing a candidate exoplanet in complex data sets as my Discovery News colleague Nicole Gugliucci discusses in “Gliese 581g and the Nature of Science” — but why was Vogt so certain that there was life on Gliese 581 g? Was he “wrong” to air this opinion?

Going to the opposite end of the spectrum, Howard Smith, an astrophysicist at Harvard University, made the headlines earlier this year when he announced, rather pessimistically, that aliens will unlikely exist on the extrasolar planets we are currently detecting.
“We have found that most other planets and solar systems are wildly different from our own. They are very hostile to life as we know it,” Smith told the UK’s Telegraph.

Smith made comparisons between our own solar system with the interesting HD 10180 system, located 127 light-years away. HD 10180 was famous for a short time as being the biggest star system beyond our own, containing five exoplanets (it has since been trumped by Kepler-11, a star system containing six exoplanets as showcased in Wednesday’s Kepler announcement).

One of HD 10180′s worlds is thought to be around 1.4 Earth-masses, making it the smallest detected exoplanet before yesterday. Alas, as Smith notes, that is where the similarities end; the “Earth-sized” world orbiting HD 10180 is too close to its star, meaning it is a roasted exoplanet where any atmosphere is blasted into space by the star’s powerful radiation and stellar winds.
The Harvard scientist even dismissed the future Kepler announcement, pointing out that upcoming reports of habitable exoplanets would be few and far between. “Extrasolar systems are far more diverse than we expected, and that means very few are likely to support life,” he said.

Both Right and Wrong

So what can we learn about the disparity between Vogt and Smith’s opinions about the potential for life on exoplanets, regardless of how “Earth-like” they may seem?

Critically, both points of view concern Earth-Brand™ Life (i.e. us and the life we know and understand). As we have no experience of any other kind of life (although the recent eruption of interest over arsenic-based life is hotly debated), it is only Earth-like life we can realistically discuss.

We could do a Stephen Hawking and say that all kinds of life is possible anywhere in the cosmos, but this is pure speculation. Science only has life on Earth to work with, so (practically speaking) it’s pointless to say a strange kind of alien lifeform could live on an exoplanet where the surface is molten rock and constantly bathed in extreme stellar radiation.

If we take Hawking’s word for it, Vogt was completely justified for being so certain about life existing on Gliese 581 g. What’s more, there’s no way we could prove he’s wrong!

But if you set the very tight limits on where we could find Earth-like life, we are suddenly left with very few exoplanet candidates that fit the bill. Also, just because an Earth-sized planet might be found in the habitable zone of its star, doesn’t mean it’s actually habitable. There are many more factors to consider. So, in this case, Smith’s pessimism is well placed.

Regardless, exoplanet science is in its infancy and the uncertainty with the “is there life?” question is a symptom of being on the “raggedy edge of science,” as Nicole would say. We simply do not know what it takes to make a world habitable for any kind of life (apart from Earth), but it is all too tempting to speculate as to whether a race of extraterrestrials, living on one of Kepler’s worlds, is pondering these same questions.

View Article Here Read More

Hubble’s ‘Einstein Cross’ Marks the Space-Warping Spot


Image: Einstein Cross revealed
Flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo.


Excerpt from nbcnews.com
By Alan Boyle


One hundred years after Albert Einstein published his theory of general relativity, the Hubble Space Telescope has provided a demonstration of the theory at work: a picture of a distant galaxy so massive that its gravitational field is bending the light from an even more distant supernova. 

The image, released Thursday, shows how the flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo. 

"It really threw me for a loop when I spotted the four images surrounding the galaxy," Patrick Kelly, an astronomer from the University of California at Berkeley, said in a news release. "It was a complete surprise." 

Maybe it shouldn't have been. The configuration is known as an Einstein Cross. It's a well-known but rarely seen effect of gravitational lensing, which is in line with Einstein's assertion that a massive object warps the fabric of space-time — and thus warps the path taken by light rays around the object. 

In this case, the light rays are coming from a stellar explosion that's directly behind the galaxy, but 4.3 million light-years more distant. Computer models suggest that the four-pointed cross will eventually fade away, to be followed within the next five years by the reappearance of the supernova's flash as a single image. 

Kelly is part of a research collaboration known as the Grism Lens Amplified Survey from Space, or GLASS. The collaboration is working with the Frontier Field Supernova team, or FrontierSN, to analyze the exploding star. He's also the lead author of a paper on the phenomenon that's being published this week by the journal Science as part of a package marking the 100th anniversary of Einstein's general relativity theory. 

The researchers suggest that a high-resolution analysis of the gravitational lensing effect can lead to better measurements of cosmic distances and galactic masses, including the contribution from dark matter. The Hubble team says the faraway supernova has been named "Refsdal" in honor of Norwegian astronomer Sjur Refsdal, who proposed using time-delayed images from a lensed supernova to study the expansion of the universe. 

"Astronomers have been looking to find one ever since," UCLA astronomer Tommaso Treu, the GLASS project's principal investigator, said in Thursday's news release. "The long wait is over!" 

The Einstein Cross is the subject of a Google+ Hangout at 3 p.m. ET Thursday, presented by the Hubble science team. You can watch the event now or later via YouTube. Check out a preprint version of the Science report.

View Article Here Read More

Beautiful Sight Expected In The Skies Tonight



The moon and planet Jupiter will be able to be seen with your naked eyes. And, with some basic binoculars, you’ll be able to see even more. (Photo: UW Space Place)
The moon and planet Jupiter will be able to be seen with your naked eyes. And, with some basic binoculars, you’ll be able to see even more. (Photo: UW Space Place)



Excerpt from wric.com

Just look up! Monday night, you’ll be able to see a beautiful sight. Jupiter and the moon will be the brightest objects in the sky. And, with some basic binoculars, you’ll be able to see even more.

The largest planet in our solar system, Jupiter, will be pairing up with the moon Monday night. The moon makes a pass by Jupiter, and every planet, at some point each month during its orbit. Monday night, the moon will appear fairly large, called a waxing gibbous moon, and that only happens every few years, according to Jim Lattis, Director of UW Space Place at the University of Wisconsin-Madison.

“But the interest need not be in whether it’s unusual.  Rather, it’s a beautiful sight and leads people to look up and think about astronomical things and our place among them,” Lattis said.

After Venus sets, Jupiter and the moon will be the two brightest objects in the sky. Jupiter and the moon will reach the high point in our skies in late evening. With binoculars or a telescope, you’ll even be able to see some of Jupiter’s Galilean moons. They’ll look like little points of light.

View Article Here Read More

Earth’s Moon May Not Be Critical to Life Afterall




Excerpt from space.com

The moon has long been viewed as a crucial component in creating an environment suitable for the evolution of complex life on Earth, but a number of scientific results in recent years have shown that perhaps our planet doesn't need the moon as much as we have thought.

In 1993, French astronomer Jacques Laskar ran a series of calculations indicating that the gravity of the moon is vital to stabilizing the tilt of our planet. Earth's obliquity, as this tilt is technically known as, has huge repercussions for climate. Laskar argued that should Earth's obliquity wander over hundreds of thousands of years, it would cause environmental chaos by creating a climate too variable for complex life to develop in relative peace.
So his argument goes, we should feel remarkably lucky to have such a large moon on our doorstep, as no other terrestrial planet in our solar system has such a moon. Mars' two satellites, Phobos and Deimos, are tiny, captured asteroids that have little known effect on the Red Planet. Consequently, Mars' tilt wobbles chaotically over timescales of millions of years, with evidence for swings in its rotational axis at least as large as 45 degrees. 


The stroke of good fortune that led to Earth possessing an unlikely moon, specifically the collision 4.5 billion years ago between Earth and a Mars-sized proto-planet that produced the debris from which our Moon formed, has become one of the central tenets of the 'Rare Earth' hypothesis. Famously promoted by Peter Ward and Don Brownlee, it argues that planets where everything is just right for complex life are exceedingly rare.

New findings, however, are tearing up the old rule book. In 2011, a trio of scientists — Jack Lissauer of NASA Ames Research Center, Jason Barnes of the University of Idaho and John Chambers of the Carnegie Institution for Science — published results from new simulations describing what Earth's obliquity would be like without the moon. What they found was surprising.

"We were looking into how obliquity might vary for all sorts of planetary systems," says Lissauer. "To test our code we began with integrations following the obliquity of Mars and found similar results to other people. But when we did the obliquity of Earth we found the variations were much smaller than expected — nowhere near as extreme as previous calculations suggested they would be."
Lissauer's team found that without the moon, Earth's rotational axis would only wobble by 10 degrees more than its present day angle of 23.5 degrees. The reason for such vastly different results to those attained by Jacques Laskar is pure computing power. Today's computers are much faster and capable of more accurate modeling with far more data than computers of the 1990s.

Lissauer and his colleagues also found that if Earth were spinning fast, with one day lasting less than 10 hours, or rotating retrograde (i.e. backwards so that the sun rose in the West and set in the East), then Earth stabilized itself thanks to the gravitational resonances with other planets, most notably giant Jupiter. There would be no need for a large moon. 

Earth's rotation has not always been as leisurely as the current 24 hour spin-rate. Following the impact that formed the moon, Earth was spinning once every four or five hours, but it has since gradually slowed by the moon's presence. As for the length of Earth's day prior to the moon-forming impact, nobody really knows, but some models of the impact developed by Robin Canup of the Southwest Research Institute, in Boulder, Colorado, suggest that Earth could have been rotating fast, or even retrograde, prior to the collision.

Tilted Orbits
Planets with inclined orbits could find that their increased obliquity is beneficial to their long-term climate – as long as they do not have a large moon.


"Collisions in the epoch during which Earth was formed determined its initial rotation," says Lissauer. "For rocky planets, some of the models say most of them will be prograde, but others say comparable numbers of planets will be prograde and retrograde. Certainly, retrograde worlds are not expected to be rare."

The upshot of Lissauer's findings is that the presence of a moon is not the be all and end all as once thought, and a terrestrial planet can exist without a large moon and still retain its habitability. Indeed, it is possible to imagine some circumstances where having a large moon would actually be pretty bad for life.

Rory Barnes, of the University of Washington, has also tackled the problem of obliquity, but from a different perspective. Planets on the edge of habitable zones exist in a precarious position, far enough away from their star that, without a thick, insulating atmosphere, they freeze over, just like Mars. Barnes and his colleagues including John Armstrong of Weber State University, realized that torques from other nearby worlds could cause a planet's inclination to the ecliptic plane to vary. This in turn would result in a change of obliquity; the greater the inclination, the greater the obliquity to the Sun. Barnes and Armstrong saw that this could be a good thing for planets on the edges of habitable zones, allowing heat to be distributed evenly over geological timescales and preventing "Snowball Earth" scenarios. They called these worlds "tilt-a-worlds," but the presence of a large moon would counteract this beneficial obliquity change.

"I think one of the most important points from our tilt-a-world paper is that at the outer edge of the habitable zone, having a large moon is bad, there's no other way to look at it," says Barnes. "If you have a large moon that stabilizes the obliquity then you have a tendency to completely freeze over."

Barnes is impressed with the work of Lissauer's team.
"I think it is a well done study," he says. "It suggests that Earth does not need the moon to have a relatively stable climate. I don't think there would be any dire consequences to not having a moon."

Mars' Changing Tilt
The effects of changing obliquity on Mars’ climate. Mars’ current 25-degree tilt is seen at top left. At top right is a Mars that has a high obliquity, leading to ice gather at its equator while the poles point sunwards. At bottom is Mars with low obliquity, which sees its polar caps grow in size.


Of course, the moon does have a hand in other factors important to life besides planetary obliquity. Tidal pools may have been the point of origin of life on Earth. Although the moon produces the largest tides, the sun also influences tides, so the lack of a large moon is not necessarily a stumbling block. Some animals have also evolved a life cycle based on the cycle of the moon, but that's more happenstance than an essential component for life.

"Those are just minor things," says Lissauer.

Without the absolute need for a moon, astrobiologists seeking life and habitable worlds elsewhere face new opportunities. Maybe Earth, with its giant moon, is actually the oddball amongst habitable planets. Rory Barnes certainly doesn't think we need it.
"It will be a step forward to see the myth that a habitable planet needs a large moon dispelled," he says, to which Lissauer agrees.
Earth without its moon might therefore remain habitable, but we should still cherish its friendly presence. After all, would Beethoven have written the Moonlight Sonata without it?

View Article Here Read More

Yes, that 3D-printed mansion is safe to live in


WinSun claims that their new 3D printed five-story building is the tallest of its kind in the world. Credit: 3ders.org
WinSun claims that their new 3D printed five-story building is the tallest of its kind in the world. 


Excerpt from

Back in April, a team of Chinese construction workers used a 3D printer to construct houses. By day’s end, there were 10 standing. They were compact and fairly bare bones — nothing much to look at besides the “wow!” factor of there being as many as — count them — 10. But this time around, those same builders have taken the wraps off an achievement that’s roundly more impressive.
In Suzhou Industrial Park, adjacent to Shanghai, stands a five-story structure that the WinSun Decoration Design Engineering firm claims is “the world’s tallest 3D-printed building.” Next to it is the equally massive 3D-printed mansion, which measures 11,840 square feet. Like the previous buildings, the walls are comprised of a mix of concrete and recycled waste materials, such as glass and steel, and formed layer by printed layer. The company stated that the total cost for the mansion was roughly $161,000. 
In a broader sense, this latest feat is yet another indication of how rapidly additive manufacturing techniques are advancing. Once used primarily as a means to quickly render miniature model versions of products, the technology has reached a point where large-scale printers are now capable of making life-sized working creations, such as automobiles, in mere days. For instance, it took less than 48 hours for start-up Local Motors to print a two-seater called the Strati into existence and drive it off the showroom.
Many of these designs, however, typically don’t amount to much beyond being passion projects meant to push 3D printing into new frontiers and drum up some publicity along the way. One example of this is the massive 3D Print Canal House that’s being constructed entirely on-site along a canal in Amsterdam, a process that’s slated to take longer and is less feasible than standard construction, Phil Reeves of UK-based 3D printing research firm Econolyst recently told CNN.
More promising, though, is a system developed by Behrokh Khoshnevis, a University of Southern California engineering professor. His concept machine, called Contour Crafting, involves a clever combination of mechanical cranes and 3D layering to print and assemble entire homes simultaneously — complete with insulation and indoor plumbing — in less than a day. 

Assembling 3D printed buildings is quite similar to erecting prefab homes. Credit: 3ders.org
Assembling 3D printed buildings is quite similar to erecting prefab homes. 


The approach employed by WinSun isn’t anywhere near that level of sophistication, but it may well prove to be the most practical – at least thus far. There is some labor and equipment costs that comes from trucking in and piecing together the various sections on-site, though the manner in which it all comes together is comparable to the ease of prefab assembly. It’s also reportedly greener thanks to the addition of recycled materials. 
To pitch the advantages of their technology, the company held a news conference to announce that they had taken on orders for 20,000 smaller units as well as highlight some significant cost-cutting figures. According toindustry news site 3Der:
The sheer size of the printer allows for a 10x increase in production efficiency. WinSun estimates that 3D printing technology can save between 30 and 60 percent of building materials and shortens production times by 50 to even 70 percent, while decreasing labor costs by 50 up to even 80 percent. Future applications include 3D printed bridges or tall office buildings that can be built right on site.
WinSun did not respond to a request to disclose how they arrived at those numbers, but Enrico Dini, an Italian civil engineer and chairman of competing start-up Monolite, says that he suspects the calculations may be a tad bit inflated. Still, he emphasized that his own data does back up the claim that, compared to conventional methods, layering may boost overall efficiency. 
“It would be very difficult to fabricate such large sections with traditional concrete casting,” he says. “With 3D printing, you have a lot less waste because you’re only printing out as much material as you need and you can custom shape whole sections on the spot, which can be a big challenge.”

WinSuns 3D printed villa has several rooms and has been deemed to be up to Chinas national safety standards. Credit: 3ders.org
WinSun’s 3D-printed villa has several rooms and has been deemed to be up to China’s national safety standards.

One major concern is whether these large-scale dwellings can hold up over time against the elements. According to 3Der, Ma Rongquan, chief engineer of China Construction Bureau, inspected the building’s structural integrity and found them to be up to code, but was careful to note that state officials have yet to establish specific criteria for assessing the long-term safety of 3D printed architecture.   
And as Dini, who supports the technology, points out, there is the possibility that the use of additive manufacturing may pose some degree of risk. “The only issue is that as the layers of concrete are bonded together, they’re drying at slightly different rates and that’s not very ideal,” he explains. “So there’s maybe a higher chance of it fracturing at the contact point if there’s a strong enough force at play.” 
Regardless, Dini says he’d feel completely safe going inside any floor of either building since construction materials used today are likely to contain special additives to enhance strength and resistance. One such formulation, fiber-reinforced Ductal, has been shown in some tests to be 10 times stronger and last twice as long as regular concrete. He stressed that walls should also be tested to ensure that other properties, such as acoustics, ventilation and thermal insulations are on par with existing buildings.
“In Italy, building standards are extremely strict,” he noted. “But I can’t say I can say the same about China.”

View Article Here Read More

How Would the World Change If We Found Alien Life?







Excerpt from space.com
By by Elizabeth Howell

In 1938, Orson Welles narrated a radio broadcast of "War of the Worlds" as a series of simulated radio bulletins of what was happening in real time as Martians arrived on our home planet. The broadcast is widely remembered for creating public panic, although to what extent is hotly debated today.

Still, the incident serves as an illustration of what could happen when the first life beyond Earth is discovered. While scientists might be excited by the prospect, introducing the public, politicians and interest groups to the idea could take some time.

How extraterrestrial life would change our world view is a research interest of Steven Dick, who just completed a term as the Baruch S. Blumberg NASA/Library of Congress Chair of Astrobiology. The chair is jointly sponsored by the NASA Astrobiology Program and the John W. Kluge Center, at the Library of Congress. 


Dick is a former astronomer and historian at the United States Naval Observatory, a past chief historian for NASA, and has published several books concerning the discovery of life beyond Earth. To Dick, even the discovery of microbes would be a profound shift for science.

"If we found microbes, it would have an effect on science, especially biology, by universalizing biology," he said. "We only have one case of biology on Earth. It's all related. It's all DNA-based. If we found an independent example on Mars or Europa, we have a chance of forming a universal biology."

Dick points out that even the possibilities of extraterrestrial fossils could change our viewpoints, such as the ongoing discussion of ALH84001, a Martian meteorite found in Antarctica that erupted into public consciousness in 1996 after a Science article said structures inside of it could be linked to biological activity. The conclusion, which is still debated today, led to congressional hearings.

"I've done a book about discovery in astronomy, and it's an extended process," Dick pointed out. "It's not like you point your telescope and say, 'Oh, I made a discovery.' It's always an extended process: You have to detect something, you have to interpret it, and it takes a long time to understand it. As for extraterrestrial life, the Mars rock showed it could take an extended period of years to understand it."


ALH84001 Meteorite
The ALH84001 meteorite, which in a 1996 Science publication was speculated to be host to what could be ancient Martian fossils. That finding is still under dispute today.

Mayan decipherments

In his year at the Library of Congress, Dick spent time searching for historical examples (as well as historical analogies) of how humanity might deal with first contact with an extraterrestrial civilization. History shows that contact with new cultures can go in vastly different directions.

Hernan Cortes' treatment of the Aztecs is often cited as an example of how wrong first contact can go. But there were other efforts that were a little more mutually beneficial, although the outcomes were never perfect. Fur traders in Canada in the 1800s worked closely with Native Americans, for example, and the Chinese treasure fleet of the 15th Century successfully brought its home culture far beyond its borders, perhaps even to East Africa.

Even when both sides were trying hard to make communication work, there were barriers, noted Dick.

"The Jesuits had contact with Native Americans," he pointed out. "Certain concepts were difficult, like when they tried to get across the ideas of the soul and immortality."



A second look by the Mars Global Surveyor at the so-called Viking “Face on Mars” in Cydonia revealed a more ordinary-looking hill, showing that science is an extended process of discovery.


Indirect contact by way of radio communications through the Search for Extraterrestrial Intelligence (SETI), also illustrates the challenges of transmitting information across cultures. There is historical precedence for this, such as when Greek knowledge passed west through Arab translators in the 12th Century. This shows that it is possible for ideas to be revived, even from dead cultures, he said.

It's also quite possible that the language we receive across these indirect communications would be foreign to us. Even though mathematics is often cited as a universal language, Dick said there are actually two schools of thought. One theory is that there is, indeed, one kind of mathematics that is based on a Platonic idea, and the other theory is that mathematics is a construction of the culture that you are in. 

"There will be a decipherment process. It might be more like the Mayan decipherments," Dick said.


The ethics of contact

As Dick came to a greater understanding about the potential c impact of extraterrestrial intelligence, he invited other scholars to present their findings along with him. Dick chaired a two-day NASA/Library of Congress Astrobiology Symposium called "Preparing for Discovery," which was intended to address the impact of finding any kind of life beyond Earth, whether microbial or some kind of intelligent, multicellular life form.

The symposium participants discussed how to move beyond human-centered views of defining life, how to understand the philosophical and theological problems a discovery would bring, and how to help the public understand the implications of a discovery.

"There is also the question of what I call astro-ethics," Dick said. "How do you treat alien life? How do you treat it differently, ranging from microbes to intelligence? So we had a philosopher at our symposium talking about the moral status of non-human organisms, talking in relation to animals on Earth and what their status is in relation to us."

Dick plans to collect the lectures in a book for publication next year, but he also spent his time at the library gathering materials for a second book about how discovering life beyond Earth will revolutionize our thinking.

"It's very farsighted for NASA to fund a position like this," Dick added. "They have all their programs in astrobiology, they fund the scientists, but here they fund somebody to think about what the implications might be. It's a good idea to do this, to foresee what might happen before it occurs."

View Article Here Read More

6 Supermaterials That Could Change Our World


Graphene

Excerpt from gizmodo.com

Graphene isn't the only game-changing material to come out of a lab. From aerogels nearly as light as air to metamaterials that manipulate light, here are six supermaterials that have the potential to transform the world of the future.

Self-healing Materials — Bioinspired Plastics

6 Supermaterials That Could Change Our World 
Self-healing plastic. Image credit: UIUC


The human body is very good at fixing itself. The built environment is not. Scott White at the University of Illinois at Urbana Champlain has been engineering bioinspired plastics that can self-heal. Last year, White's lab created a new polymer that oozes to repair a visible hole. The polymer is embedded with a vascular system of liquids that when broken and combined, clot just like blood. While other materials have been able to heal microscopic cracks, this new one repaired a hole 4 millimeter wide with cracks radiating all around it. Not big deal for a human skin, but a pretty big deal for plastic.

Engineers have also been envisioning concrete, asphalt, and metal that can heal themselves. (Imagine a city with no more potholes!) The rub, of course, lies in making them cheap enough to actually use, which is why the first applications for self-healing materials are most likely to be in space or in remote areas on Earth. 

Thermoelectric Materials — Heat Scavengers

6 Supermaterials That Could Change Our World 
Power blocks with thermoelectric material sued inside Alphabet Energy 's generator. Image credit: Alphabet Energy


If you've ever had a laptop burn up in your lap or touched the hot hood of car, then you've felt evidence of waste. Waste heat is the inevitable effect of running any that device that uses power. One estimate puts the amount of waste heat as two-thirds of all energy used. But what if there was a way to capture all that wasted energy? The answer to that "what if" is thermoelectric materials, which makes electricity from a temperature gradient.

Last year, California-based Alphabet Energy introduced a thermoelectric generator that plugs right into the exhaust pipe of ordinary generator, turning waste heat back into useful electricity. Alphabet Energy's generator uses a relatively cheap and naturally occurring thermoelectric material called tetrahedrite. Alphabet Energy says tetrahedrite can reach 5 to 10 percent efficiency.
Back in the lab, scientists have also been tinkering with another promising and possibly even more efficient thermoelectric material called skutterudite, which is a type of mineral that contains cobalt. Thermoelectric materials have already had niche applications—like on spacecraft—but skutterudite could get cheap and efficient enough to be wrapped around the exhaust pipes of cars or fridges or any other power-hogging machine you can think of. [Nature, MIT Technology Review, New Scientist]

Perovskites — Cheap Solar Cells

6 Supermaterials That Could Change Our World 
Solar cells made of perovskites. Image credit: University of Oxford


The biggest hurdle in moving toward renewable energy is, as these things always are, money. Solar power is getting ever cheaper, but making a plant's worth of solar cells from crystalline silicon is still an expensive, energy-intensive process. There's an alternative material that has the solar world buzzing though, and that's perovskites. 

Perovskites were first discovered over a century ago, but scientists are only just realizing its potential. In 2009, solar cells made from perovskites had a solar energy conversion efficiency of a measly 3.8 percent. In 2014, the number had leapt to 19.3 percent. That may not seem like much compared to traditional crystalline silicon cells with efficiencies hovering around 20 percent, but there's two other crucial points to consider: 1) perovskites have made such leaps and bounds in efficiency in just a few years that scientist think it can get even better and 2) perovskites are much, much cheaper. 

Perovskites are a class of materials defined by a particular crystalline structure. They can contain any number of elements, usually lead and tin for perovskites used in solar cells. These raw materials are cheap compared to crystalline silicon, and they can be sprayed onto glass rather than meticulously assembled in clean rooms. Oxford Photovoltaics is one of the leading companies trying to commercialize perovskites, which as wonderful as they have been in the lab, still do need to hold up in the real world. [WSJ, IEEE Spectrum, Chemical & Engineering News, Nature Materials]

Aerogels — Superlight and Strong

6 Supermaterials That Could Change Our World 
Image credit: NASA

Aerogels look like they should not be real. Although ghostly and ethereal, they can easily withstand the heat of a blowtorch and the weight of a car. The material is almost what exactly the name implies: gels where where the liquid has been replaced entirely by air. But you can see why it's also been called "frozen smoke" or "blue smoke." The actual matrix of an aerogel can be made of any number of substances, including silica, metal oxides, and, yes, also graphene. But the fact that aerogel is actually mostly made of air means that it's an excellent insulator (see: blowtorch). Its structure also makes it incredibly strong (see: car).

Aerogels do have one fatal flaw though: brittleness, especially when made from silica. But NASA scientists have been experimenting with flexible aerogels made of polymers to use insulators for spacecraft burning through the atmosphere. Mixing other compounds into even silica-based aerogels could make them more flexible. Add that to aerogel's lightness, strength, and insulating qualities, and that's one incredible material. [New Scientist, Gizmodo]

Metamaterials — Light Manipulators

If you've heard of metamaterials, you likely heard about it in a sentence that also mentioned "Harry Potter" and "invisibility cloak." And indeed, metamaterials, whose nanostructures are design to scatter light in specific ways, could possibly one day be used to render objects invisible—though it still probably wouldn't be as magical as Harry Potter's invisibility cloak. 

What's more interesting about metamaterials is that they don't just redirect visible light. Depending on how and what a particular metamaterial is made of, it can also scatter microwaves, radiowaves, or the little-known T-rays, which are between microwaves and infrared light on the electromagnetic spectrum. Any piece of electromagnetic spectrum could be manipulated by metamaterials. 

That could be, for example, new T-ray scanners in medicine or security or a compact radio antennae made of metamaterials whose properties change on the fly. Metamaterials are at the promising but frustrating cusp where the theoretical possibilities are endless, but commercialization is still a long, hard road. [Nature, Discover Magazine]

Stanene — 100 percent efficient conductor

6 Supermaterials That Could Change Our World 
The molecular structure of stanene. Image credit: SLAC


Like the much better known graphene, stanene is also made of a single layer of atoms. But instead of carbon, stanene is made of tin, and this makes all the difference in allowing stanene to possibly do what even wondermaterial extraordinaire graphene cannot: conduct electricity with 100 percent efficiency.

Stanene was first theorized in 2013 by Stanford professor Shoucheng Zhang, whose lab specializes in, along other things, predicting the electronic properties of materials like stanene. According to their models, stanene is a topological insulator, which means its edges are a conductor and its inside is an insulator. (Think of a chocolate-covered ice cream bar. Chocolate conductor, ice cream insulator.) 

This means stanene could conduct electricity with zero resistance even, crucially, at room temperature. Stanene's properties have yet to been tested experimentally—making a single-atom sheet tin is no easy task—but several of Zhang's predictions about other topological insulators have proven correct.

If the predictions about stanene bear out, it could revolutionize the microchips inside all your devices. Namely, the chips could get a lot more powerful. Silicon chips are limited by the heat created by electrons zipping around—work 'em too fast and they'll simply get too hot. Stanene, which conducts electricity 100 percent efficiency, would have no such problem. [SLAC, Physical Review Letters, Scientific American]

View Article Here Read More

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me


Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.

Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin


Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

View Article Here Read More

The Weirdest, Coolest Stuff We’ve Learned About Rosetta’s Comet So Far


Various features on a smooth part of the comet's surface in the region named Imhotep.


Excerpt from wired.com

The Rosetta spacecraft has been studying comet 67P/Churyumov-Gerasimenko up close since August, collecting data of unprecedented detail and taking pictures of a starkly beautiful comet-scape. While the Philae lander has enjoyed much of the spotlight—partly thanks to its now-famous triple landing—Rosetta has been making plenty of its own discoveries.  

One of the biggest came last month, when scientists found that the chemical signature of the comet’s water is nothing like that on Earth, contradicting the theory that crashing comets supplied our planet with water. Comet 67P belongs to the Jupiter family of comets, and the findings also imply that these kinds of comets were formed at a wider range of distances from the sun than previously thought, says Michael A’Hearn, a planetary scientist at the University of Maryland, College Park, and member of the Rosetta science team.  

Today, scientists have published the first big set of results from Rosetta in a slew of papers in the journal Science. The results include measurements and analyses of the comet’s shape, structure, surface, and the surrounding dust and gas particles. Here are just a few of the amazing things they’ve discovered about Rosetta’s comet so far: 

The surface is fantastically weird  

The comet has quite the textured landscape, covered with steep cliffs, boulders, weird bumps, cracks, pits, and smooth terrain. There are fractures of all sizes, including one that’s several yards wide and stretches for more than half a mile along the comet’s neck. Researchers don’t yet know what caused these cracks.  The pits have steep sides and flat bottoms, ranging in size from a few tens to hundreds of feet wide. Jets of dust shoot out from some of the pits, suggesting that the ejection of material formed these features.  Another strange feature is what scientists are calling goosebumps—weird bumpy patches found particularly on steep slopes.

While other features such as pits and fractures range in sizes, all of the goosebumps are about 10 feet wide. No one knows what kind of process would make the bumps, but whatever it is could have played an important part in the comet’s formation. It may be breezy  Rosetta spotted dune- and ripple-like patterns,wind tails behind rocks, and even moats surrounding rocks, suggesting that a light breeze may blow dust along the surface. Such a gentle wind would have to come from gases leaking from below.

Because of the extremely low gravity on the comet, it wouldn’t take a strong gust to blow things around. It may have formed from two separate pieces  Or not. The most distinct feature of comet 67P is its odd, two-lobed shape, which resembles a duck. Although scientists have seen this lobed structure in other comets before, namely Borrelly and Hartley 2, none are as pronounced as comet 67P’s. Borrelly and Hartley 2 look more like elongated potatoes while 67P has a clearly defined head and body. The strange shape suggests the comet was once two separate pieces called cometesimals—what are now the duck’s head and body—that stuck together. 

The other possibility is that erosion ate away the parts around the neck. Preliminary evidence points to the first hypothesis.

“Probably most of us on the OSIRIS team lean toward thinking it was two cometesimals,” A’Hearn said. (OSIRIS is one of Rosetta’s imaging instruments.) But the scientists won’t have conclusive evidence until they study the comet in more detail. For example, they now see layering along the neck—if erosion carved out the comet’s duck shape, they should find the same same layering pattern continuing onto the other side of the neck. 

Black, with a tinge of red  

Even Rosetta’s color pictures show a grayish comet, but if you were to see it in person, you would see a pitch-black chunk of dust and ice, as it reflects only six percent of incoming light. By comparison, the moon reflects 12 percent of incoming light and Earth reflects 31 percent. But comet 67P’s not completely black, as it has a hint of red. Water, water, nowhere?  The comet’s covered in opaque, organic compounds. Although comet 67P is undoubtedly icy, it hardly shows any water ice on its surface at all. 

Which isn’t too surprising, as comets Tempel 1 and Hartley 2 didn’t have much ice on their surfaces either, A’Hearn says. Rosetta has yet to see sunlight reach every side of the comet yet, so there may still be some icy patches hidden from view.  But, researchers do see the comet spraying water vapor into space, which means water ice likely lies just beneath the surface. The ice doesn’t have to be more than a centimeter deep to be invisible from the infrared instruments that detect the ice. Indeed, the data from Philae’s first bounce suggested that there’s a hard layer of ice beneath 4 to 8 inches of dust. 

This duck floats  

If you could find a big enough pond, that is. Like other known comets, the density of comet 67P is about half that of water ice. Initial measurements reveal that it’s also very porous—as much as 80 percent of it may be empty space. Rosetta has found depressions, which may have formed when the surface collapsed over particularly porous material underneath. 

Different from every angle

As the comet nears the sun, it heats up, and ices and other volatile chemicals sublimate, spraying gases into space. So far, the most prominent gases that have been ejected are water vapor, carbon dioxide, and carbon monoxide. They spew out in different amounts from different parts of the comet. In particular, a lot of the water has been observed gushing out from the neck.

The comet will continue to get more active as it reaches its closest approach to the sun in mid-August. It will burst with stronger jets of gas and dust, and maybe even blast off chunks of itself. If the comet is this interesting now, A’Hearn says, just wait until it gets to its nearest point to the sun, when it’s just 1.29 times farther from the sun than Earth is.

View Article Here Read More

The Best Star Gazing Binoculars for 2015




Excerpt from space.com

Most people have two eyes. Humans evolved to use them together (not all animals do). People form a continuous, stereoscopic panorama movie of the world within in their minds. With your two eyes tilted upward on a clear night, there's nothing standing between you and the universe. The easiest way to enhance your enjoyment of the night sky is to paint your brain with two channels of stronger starlight with a pair of binoculars. Even if you live in — or near — a large, light-polluted city, you may be surprised at how much astronomical detail you'll see through the right binoculars!
Our editors have looked at the spectrum of current binocular offerings. Thanks to computer-aided design and manufacturing, there have never been more high-quality choices at reasonable prices. Sadly, there's also a bunch of junk out there masquerading as fine stargazing instrumentation. We've selected a few that we think will work for most skywatchers.
There was a lot to consider: magnification versus mass, field of view, prism type, optical quality ("sharpness"), light transmission, age of the user (to match "exit pupil" size, which changes as we grow older), shock resistance, waterproofing and more. 

The best binoculars for you

"Small" astronomy binoculars would probably be considered "medium" for bird watching, sports observation and other terrestrial purposes. This comes about as a consequence of optics (prism type and objective size, mostly). "Large" binoculars are difficult to use for terrestrial applications and have a narrow field of view. They begin to approach telescope quality in magnification, resolution and optical characteristics.

Most of our Editors' Choicesfor stargazing binoculars here are under $300. You can pay more than 10 times that for enormous binocular telescopes used by elite enthusiasts on special mounts! You'll also pay more for ruggedized ("mil spec," or military standard) binoculars, many of which suspend their prisms on shock mounts to keep the optics in precise alignment.

Also, our Editors' Choices use Porro prism optics. Compact binoculars usually employ "roof" prisms, which can be cast more cheaply, but whose quality can vary widely. [There's much more about Porro prisms in our Buyer's Guide.]
We think your needs are best served by reviewing in three categories.
  • Small, highly portable binoculars can be hand-held for viewing ease.
  • Medium binoculars offer higher powers of magnification, but still can be hand-held, if firmly braced.
  • Large binoculars have bigger "objective" lenses but must be mounted on a tripod or counterweighted arm for stability.
Here's a detailed look at our Editor's Choice selections for stargazing binoculars:

Best Small Binoculars 

Editor's Choice: Oberwerk Mariner 8x40 (Cost: $150)

Oberwerk in German means "above work." The brand does indeed perform high-level optical work, perfect for looking at objects above, as well as on the ground or water. Founder Kevin Busarow's Mariner series is not his top of the line, but it benefits greatly from engineering developed for his pricier models. The Oberwerk 8x40’s treat your eyes to an extremely wide field, at very high contrast, with razor-sharp focus; they are superb for observing the broad starscapes of the Milky Way. Just 5.5 inches (14 cm) from front to back and 6.5 inches wide (16.5 cm), the Mariners are compact and rugged enough to be your favorite "grab and go binoculars." But at 37 ounces, they may be more than a small person wants to carry for a long time.


Runner-Up: Celestron Cometron 7x50 (Cost: $30)

Yes, you read that price correctly! These Celestron lightweight, wide-field binoculars bring honest quality at a remarkably low price point. The compromise comes in the optics, particularly the prism's glass type (you might see a little more chromatic aberration around the edges of the moon, and the exit pupil isn't a nice, round circle). Optimized for "almost infinitely distant" celestial objects, these Cometrons won't focus closer than about 30 feet (9.1 meters).  But that's fine for most sports and other outdoor use. If you're gift-buying for multiple young astronomers – or you want an inexpensive second set for yourself – these binoculars could be your answer. Just maybe remind those young folks to be a little careful around water; Celestron claims only that the Cometrons are "water resistant," not waterproof. 


Honorable Mention: Swarovski Habicht 8x30 (Cost: $1,050)

From the legendary Austrian firm of Swarovski Optik, these "bins" are perfect. Really. Very sharp. Very lightweight. Very wide field. Very versatile. And very expensive! Our editors would have picked them if we could have afforded them. 

Honorable Mention: Nikon Aculon 7x50 (Cost: $110) 

Nikon's legendary optical quality and the large, 7mm exit pupil diameter make these appropriate as a gift for younger skywatchers. 

Best Medium Binoculars

Editor's Choice: Celestron SkyMaster 8x56 (Cost: $210)

A solid, chunky-feeling set of quality prisms and lenses makes these binoculars a pleasant, 38oz. handful. A medium wide 5.8 degrees filed of view and large 7mm exit pupil brings you gently into a sweet sky of bright, though perhaps not totally brilliant, stars. Fully dressed in a rubber wetsuit, these SkyMasters are waterproof. Feel free to take them boating or birding on a moist morning. Their optical tubes were blown out with dry nitrogen at the factory, then sealed. So you can expect them not to fog up, at least not from the inside. Celestron's strap-mounting points on the Skymaster 8x56 are recessed, so they don't bother your thumbs, but that location makes them hard to fasten. 


Runner-Up: Oberwerk Ultra 15x70 (Cost: $380)

The most rugged pair we evaluated, these 15x70s are optically outstanding. Seen through the Ultra's exquisitely multi-coated glass, you may find yourself falling in love with the sky all over again. Oberwerk's method of suspending their BAK4 glass Porro prisms offers greater shock-resistance than most competitors’ designs. While more costly than some comparable binoculars, they deliver superior value. Our only complaint is with their mass: At 5.5 lbs., these guys are heavy!  You can hand-hold them for a short while, if you’re lying down. But they are best placed on a tripod, or on a counterweighted arm, unless you like shaky squiggles where your point-source stars are supposed to be. Like most truly big binoculars, the eyepieces focus independently; there’s no center focus wheel. These "binos" are for true astronomers. 


Honorable Mention: Vixen Ascot 10x50 (Cost:$165)

These quirky binoculars present you with an extremely wide field. But they are not crash-worthy – don't drop them in the dark – nor are they waterproof, and the focus knob is not conveniently located. So care is needed if you opt for these Vixen optics. 

Best Large Binoculars

Don't even think about hand-holding this 156-ounce beast! The SkyMaster 25x100 is really a pair of side-by-side 100mm short-tube refractor telescopes. Factor the cost of a sturdy tripod into your purchase decision, if you want to go this big.  The monster Celestron comes with a sturdy support spar for mounting. Its properly multi-coated optics will haul in surprising detail from the sky.  Just make sure your skies are dark; with this much magnification, light pollution can render your images dingy. As with many in the giant and super-giant class of binoculars, the oculars (non-removable eyepieces) focus separately, each rotating through an unusually long 450 degrees.  Getting to critical focus can be challenging, but the view is worth it. You can resolve a bit of detail on face of the new moon (lit by "Earthshine") and pick out cloud bands on Jupiter; tha's pretty astonishing for binoculars. 


Runner-Up: Orion Astronomy 20x80 (Cost: $150)

These big Orions distinguish themselves by price point; they're an excellent value. You could pay 10 times more for the comparably sized Steiners Military Observer 20x80 binoculars! Yes, the Orions are more delicate, a bit less bright and not quite as sharp. But they do offer amazingly high contrast; you'll catch significant detail in galaxies, comets and other "fuzzies." Unusually among such big rigs, the Astronomy 20x80 uses a center focus ring and one "diopter" (rather than independently focusing oculars); if you’re graduating from smaller binoculars, which commonly use that approach, this may be a comfort. These binoculars are almost lightweight enough to hold them by hand. But don't do that, at least not for long periods. And don't drop them. They will go out of alignment if handled roughly. 


Honorable Mention: Barska Cosmos 25x100 (Cost: $230)

They are not pretty, but you're in the dark, right? Built around a tripod-mountable truss tube, these Barskas equilibrate to temperature quickly and give you decent viewing at rational cost. They make for a cheaper version of our Editors' Choice Celestron SkyMasters. 

Honorable Mention: Steiner Observer 20x80 (Cost: $1,500)

Not at all a practical cost choice for a beginning stargazer, but you can dream, can't you? These Steiner binoculars are essentially military optics "plowshared" for peaceful celestial observing. 

Why we chose NOT to review certain types

Image stabilized?

Binoculars with active internal image stabilization are a growing breed. Most use battery-powered gyroscope/accelerometer-driven dynamic optical elements. We have left this type out of our evaluation because they are highly specialized and pricey ($1,250 and up). But if you are considering active stabilization, you can apply the same judgment methods detailed in our Buyer's Guide.

Comes with a camera?

A few binoculars are sold with built-in cameras. That seems like a good idea. But it isn't, at least not for skywatching. Other than Earth's moon, objects in the night sky are stingy with their photons. It takes a lengthy, rock-steady time exposure to collect enough light for a respectable image. By all means, consider these binocular-camera combos for snapping Facebook shots of little Jenny on the soccer field. But stay away from them for astronomy.

Mega monster-sized?

Take your new binoculars out under the night sky on clear nights, and you will fall in love with the universe. You will crave more ancient light from those distant suns. That may translate into a strong desire for bigger stereo-light buckets.

Caution: The next level up is a quantum jump of at least one financial order of magnitude. But if you have the disposable income and frequent access to dark skies, you may want to go REALLY big. Binocular telescopes in this class can feature interchangeable matching eyepieces, individually focusing oculars, more than 30x magnification and sturdy special-purpose tripods. Amateurs using these elite-level stereoscopes have discovered several prominent comets.

Enjoy your universe

If you are new to lens-assisted stargazing, you'll find excellent enhanced views among the binocular choices above. To get in deeper and to understand how we picked the ones we did, jump to our Buyer's Guide: How to Choose Binoculars for Sky Watching.

You have just taken the first step to lighting up your brain with star fire. May the photons be with you. Always. 

Skywatching Events 2015

Once you have your new binoculars, it's time to take them for a spin. This year intrepid stargazers will have plenty of good opportunities to use new gear.

On March 20, for example, the sun will go through a total solar eclipse. You can check out the celestial sight using the right sun-blocking filters for binoculars, but NEVER look at the sun directly, even during a solar eclipse. It's important to find the proper filters in order to observe the rare cosmic show. 

Observers can also take a look at the craggy face of the moon during a lunar eclipse on April 4. Stargazers using binoculars should be able to pick out some details not usually seen by the naked eye when looking at Earth's natural satellite.

Skywatchers should also peek out from behind the binoculars for a chance to see a series of annual meteor showers throughout the year.

View Article Here Read More

Three Earth-like planets sighted around nearby star

This artistic impression shows NASA's planet-hunting Kepler spacecraft operating in a new mission profile called K2. By analyzing data captured by the Kepler spacecraft, a UA-led team of researchers has discovered three new Earth-size planets orbiti...

View Article Here Read More

The Best Bet for Alien Life May Be in Planetary Systems Very Different From Ours




Excerpt from wired.com


In the hunt for extraterrestrial life, scientists started by searching for a world orbiting a star just like the sun. After all, the steady warmth of that glowing yellow ball in the sky makes life on Earth possible.

But as astronomers continue to discover thousands of planets, they’re realizing that if (or when) we find signs of extraterrestrial life, chances are good that those aliens will orbit a star quite different from the sun—one that’s redder, cooler, and at a fraction of the sun’s size and mass. So in the quest for otherworldly life, many astronomers have set their sights on these small stars, known as red dwarfs or M dwarfs.

At first, planet-hunting astronomers didn’t care so much about M dwarfs. After the first planet outside the solar system was discovered in 1995, scientists began hunting for a true Earth twin: a rocky planet like Earth with an orbit like ours around a sun-like star. Indeed, the search for that kind of system drove astronomers through most of the 2000s, says astronomer Phil Muirhead of Boston University.

But then astronomers realized that it might be technically easier to find planets around M dwarfs. Detecting another planet is really hard, and scientists rely on two main methods. In the first, they look for a drop in a star’s brightness when a planet passes in front of it. In the second, astronomers measure the slight wobble of a star, caused by the gentle gravitational tug of an orbiting planet. With both of these techniques, the signal is stronger and easier to detect for a planet orbiting an M dwarf. A planet around an M dwarf also orbits more frequently, increasing the chances that astronomers will spot it.

M dwarfs got a big boost from the Kepler space telescope, which launched in 2008. By staring at small patch of the sky, the telescope searches for suddenly dimming stars when a planet passes in front of them. In doing so, the spacecraft discovered a glut of planets—more than 1,000 at the latest count—it found a lot of planets around M dwarfs. “Kepler changed everything,” Muirhead said. Because M-dwarf systems are easier to find, the bounty of such planets is at least partly due to a selection effect. But, as Muirhead points out, Kepler is also designed to find Earth-sized planets around sun-like stars, and the numbers so far suggest that M-dwarfs may offer the best odds for finding life.

“By sheer luck you would be more likely to find a potentially habitable planet around an M dwarf than a star like the sun,” said astronomer Courtney Dressing of Harvard. She led an analysis to estimate how many Earth-sized planets—which she defined as those with radii ranging from one to one-and-a-half times Earth’s radius—orbit M dwarfs in the habitable zone, the region around the star where liquid water can exist on the planet’s surface. According to her latest calculations, one in four M dwarfs hosts such a planet.

That’s higher than the estimated number of Earth-sized planets around a sun-like star, she says. For example, an analysis by astronomer Erik Petigura of UC Berkeley suggests that fewer than 10 percent of sun-like stars have a planet with a radius between one and two times that of Earth’s.

This illustration shows Kepler-186f, the first rocky planet found in a star's habitable zone. Its star is an M dwarf.
This illustration shows Kepler-186f, the first rocky planet found in a star’s habitable zone. Its star is an M dwarf. NASA Ames/SETI Institute/JPL-Caltech


M dwarfs have another thing going for them. They’re the most common star in the galaxy, comprising an estimated 75 percent of the Milky Way’s hundreds of billions of stars. If Dressing’s estimates are right, then our galaxy could be teeming with 100 billion Earth-sized planets in their stars’ habitable zones.

To be sure, these estimates have lots of limitations. They depend on what you mean by the habitable zone, which isn’t well defined. Generally, the habitable zone is where it’s not too hot or too cold for liquid water to exist. But there are countless considerations, such as how well a planet’s atmosphere can retain water. With a more generous definition that widens the habitable zone, Petigura’s numbers for Earth-sized planets around a sun-like star go up to 22 percent or more. Likewise, Dressing’s numbers could also go up.
Astronomers were initially skeptical of M-dwarf systems because they thought a planet couldn’t be habitable near this kind of star. For one, M dwarfs are more active, especially during within the first billion years of its life. They may bombard a planet with life-killing ultraviolet radiation. They can spew powerful stellar flares that would strip a planet of its atmosphere.

And because a planet will tend to orbit close to an M dwarf, the star’s gravity can alter the planet’s rotation around its axis. When such a planet is tidally locked, as such a scenario is called, part of the planet may see eternal daylight while another part sees eternal night. The bright side would be fried while the dark side would freeze—hardly a hospitable situation for life.

But none of these are settled issues, and some studies suggest they may not be as big of a problem as previously thought, says astronomer Aomawa Shields of UCLA. For example, habitability may depend on specific types and frequency of flares, which aren’t well understood yet. Computer models have also shown that an atmosphere can help distribute heat, preventing the dark side of a planet from freezing over.

View Article Here Read More

Kepler Space Telescope Finds More Earth-like Planets ~ Learn how to join the search


 


Excerpt from
waaytv.com

NASA's Kepler Space Telescope has been hunting the cosmos for exoplanets since March of 2009.  In its nearly five years of searching the stars, it has found thousands of possible candidates.  Scientists recently verified the thousandth planet Kepler had found, and even more exciting, they announced that Kepler had found three more Earth-like planets.
Those three planets bring Kepler's Earth-like planet count to a total of eight.  In order to qualify as "Earth-like," these exoplanets must be less than twice the size of the Earth and orbit their own sun within the habitable zone.  This "Goldilocks zone" is a belt in solar systems where it's neither too hot nor too cold for liquid water to exist.

"Each result from the planet-hunting Kepler mission's treasure trove of data takes us another step closer to answering the question of whether we are alone in the Universe," said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “The Kepler team and its science community continue to produce impressive results with the data from this venerable explorer."

The Kepler team has also found super-Earths and gas giants like Jupiter around other stars.  NASA artists compiled retro-style travel posters from three discovered planets.
Kepler finds planets by watching distant stars for fluctuation in light.  If the light hitting the telescope drops dramatically and then returns to normal levels, chances are a planet came in between the star and Kepler.  Scientists can analyze the data and light filtered by the candidate planet's atmosphere to make guesses at the size, mass and composition.

"With each new discovery of these small, possibly rocky worlds, our confidence strengthens in the determination of the true frequency of planets like Earth," said co-author Doug Caldwell, SETI Institute Kepler scientist at NASA's Ames Research Center at Moffett Field, California. "The day is on the horizon when we’ll know how common temperate, rocky planets like Earth are.”

The space telescope actually has two crippled stabilizing gyros.  But instead of giving up on the mission, engineers are using pressure from photons emitted by the sun to stabilize the telescope.  The first space telescope looking for alien worlds is literally balancing on a sunbeam to continue its mission, and that's not science fiction, that's science fact.

Citizen scientists can also participate in the mission.  The website PlanetHunters.org contains catalogs of data from K1, the original Kepler mission, and K2, the extended mission making use of the sun to balance the telescope.  The K2 data has been sorted through, but Planet Hunters still needs help sifting through the K1 data.
The website's instructions read:

"As the planet passes in front of (or transits) a star, it blocks out a small amount of the star’s light, making the star appear a little bit dimmer. You’re looking for points on the light curve that appear lower than the rest. When you spot a potential transit, mark each one on the light curve."

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑