Tag: physicist (page 3 of 5)

How will the world end? From ‘demonic’ AI to nuclear war — seven scenarios that could end human race




news.nationalpost.com 


Humanity may have already created its own nemesis, Professor Stephen Hawking warned last week. The Cambridge University physicist claimed that new developments in the field of artificial intelligence (AI) mean that within a few decades, computers thousands of times more powerful than in existence today may decide to usurp their creators and effectively end humanity’s 100,000-year dominance of Earth.
This Terminator scenario is taken seriously by many scientists and technologists. Before Prof. Hawking made his remarks, Elon Musk, the genius behind the Tesla electric car and PayPal, had stated that “with artificial intelligence, we are summoning the demon,” comparing it unfavourably with nuclear war as the most potent threat to humanity’s existence.
Aside from the rise of the machines, many potential threats have been identified to our species, our civilization, even our planet. To keep you awake at night, here are seven of the most plausible.
Getty Images / ThinkStock
Getty Images / ThinkStockAn artist's depiction of an asteroid approaching Earth.
1. ASTEROID STRIKE
Our solar system is littered with billions of pieces of debris, from the size of large boulders to objects hundreds of kilometres across. We know that, from time to time, these hit the Earth. Sixty-five-million years ago, an object – possibly a comet a few times larger than the one on which the Philae probe landed last month – hit the Mexican coast and triggered a global winter that wiped out the dinosaurs. In 1908, a smaller object hit a remote part of Siberia and devastated hundreds of square kilometres of forest. Last week, 100 scientists, including Lord Rees of Ludlow, the Astronomer Royal, called for the creation of a global warning system to alert us if a killer rock is on the way.
Probability: remote in our lifetime, but one day we will be hit.
Result: there has been no strike big enough to wipe out all life on Earth – an “extinction-level event” – for at least three billion years. But a dino-killer would certainly be the end of our civilization and possibly our species.
Warner Bros.
Warner Bros.When artificial intelligence becomes self-aware, there is a chance it will look something like this scene from Terminator 3.
2. ARTIFICIAL INTELLIGENCE
Prof. Hawking is not worried about armies of autonomous drones taking over the world, but something more subtle – and more sinister. Some technologists believe that an event they call the Singularity is only a few decades away. This is a point at which the combined networked computing power of the world’s AI systems begins a massive, runaway increase in capability – an explosion in machine intelligence. By then, we will probably have handed over control to most of our vital systems, from food distribution networks to power plants, sewage and water treatment works, and the global banking system. The machines could bring us to our knees without a shot being fired. And we cannot simply pull the plug, because they control the power supplies.

Probability: unknown, although computing power is doubling every 18 months. We do not know if machines can be conscious or “want” to do anything, and sceptics point out that the cleverest computers in existence are currently no brighter than cockroaches.
Result: if the web wakes up and wants to sweep us aside, we may have a fight on our hands (perhaps even something similar to the man vs. machines battle in the Terminator films). But it is unlikely that the machines will want to destroy the planet – they “live” here, too.
Handout/AFP/Getty Images
Handout/AFP/Getty ImagesLaboratory technicians and physicians work on samples during research on the evolving Ebola disease in bats, at the Center for Emerging and Zoonotic Diseases research Laboratory of the National Institute for Communicable Diseases in Pretoria on Nov. 21, 2011.
3. A GENETICALLY CREATED PLAGUE
This is possibly the most terrifying short-term threat because it is so plausible. The reason Ebola has not become a worldwide plague – and will not do so – is because it is so hard to transmit, and because it incapacitates and kills its victims so quickly. However, a modified version of the disease that can be transmitted through the air, or which allows its host to travel around for weeks, symptom-free, could kill many millions. It is unknown whether any terror group has the knowledge or facilities to do something like this, but it is chilling to realize that the main reason we understand Ebola so well is that its potential to be weaponized was quickly realized by defence experts.
Probability: someone will probably try it one day.
Result: potentially catastrophic. “Ordinary” infectious diseases such as avian-flu strains have the capability to wipe out hundreds of millions of people.
AP Photo/U.S. Army via Hiroshima Peace Memorial Museum
AP Photo/U.S. Army via Hiroshima Peace Memorial MuseumA mushroom cloud billows about one hour after a nuclear bomb was detonated above Hiroshima, Japan Aug. 6, 1945.
4. NUCLEAR WAR
This is still the most plausible “doomsday” scenario. Despite arms-limitations treaties, there are more than 15,000 nuclear warheads and bombs in existence – many more, in theory, than would be required to kill every human on Earth. Even a small nuclear war has the potential to cause widespread devastation. In 2011, a study by NASA scientists concluded that a limited atomic war between India and Pakistan involving just 100 Hiroshima-sized detonations would throw enough dust into the air to cause temperatures to drop more than 1.2C globally for a decade.
Probability: high. Nine states have nuclear weapons, and more want to join the club. The nuclear wannabes are not paragons of democracy.
Result: it is unlikely that even a global nuclear war between Russia and NATO would wipe us all out, but it would kill billions and wreck the world economy for a century. A regional war, we now know, could have effects far beyond the borders of the conflict.
CERN)/MCT
CERN)/MCTThis is one of the huge particle detectors in the Large Hadron Collider, a 17 mile-long tunnel under the French-Swiss border. Scientists are searching for evidence of what happened right after- and perhaps before- the Big Bang.
5. PARTICLE ACCELERATOR DISASTER
Before the Large Hadron Collider (LHC), the massive machine at CERN in Switzerland that detected the Higgs boson a couple of years ago, was switched on, there was a legal challenge from a German scientist called Otto Rossler, who claimed the atom-smasher could theoretically create a small black hole by mistake – which would then go on to eat the Earth.
The claim was absurd: the collisions in the LHC are far less energetic than those caused naturally by cosmic rays hitting the planet. But it is possible that, one day, a souped-up version of the LHC could create something that destroys the Earth – or even the universe – at the speed of light.
Probability: very low indeed.
Result: potentially devastating, but don’t bother cancelling the house insurance just yet.
AP Photo/Oculus Rift/Fox
AP Photo/Oculus Rift/FoxThis photo shows a scene fromX-Men: Days of Future Past virtual reality experience. Oxford University philosopher Nick Bostrom has speculated that our universe may be one of countless "simulations" running in some alien computer, much like a computer game.
6. ‘GOD’ REACHES FOR THE OFF-SWITCH
Many scientists have pointed out that there is something fishy about our universe. The physical constants – the numbers governing the fundamental forces and masses of nature – seem fine-tuned to allow life of some form to exist. The great physicist Sir Fred Hoyle once wondered if the universe might be a “put-up job”.
More recently, the Oxford University philosopher Nick Bostrom has speculated that our universe may be one of countless “simulations” running in some alien computer, much like a computer game. If so, we have to hope that the beings behind our fake universe are benign – and do not reach for the off-button should we start misbehaving.
Probability: according to Professor Bostrom’s calculations, if certain assumptions are made, there is a greater than 50% chance that our universe is not real. And the increasingly puzzling absence of any evidence of alien life may be indirect evidence that the universe is not what it seems.
Result: catastrophic, if the gamers turn against us. The only consolation is the knowledge that there is absolutely nothing we can do about it.
AP Photo/Charles Rex Arbogast
AP Photo/Charles Rex ArbogastFloodwaters from the Souris River surround homes near Minot State University in Minot, N.D. on June 27, 2011. Global warming is rapidly turning America the beautiful into America the stormy and dangerous, according to the National Climate Assessment report released Tuesday, May 6, 2014.
7. CLIMATE CATASTROPHE
Almost no serious scientists now doubt that human carbon emissions are having an effect on the planet’s climate. The latest report by the Intergovernmental Panel on Climate Change suggested that containing temperature rises to below 2C above the pre-industrial average is now unlikely, and that we face a future three or four degrees warmer than today.
This will not literally be the end of the world – but humanity will need all the resources at its disposal to cope with such a dramatic shift. Unfortunately, the effects of climate change will really start to kick in just at the point when the human population is expected to peak – at about nine billion by the middle of this century. Millions of people, mostly poor, face losing their homes to sea-level rises (by up to a metre or more by 2100) and shifting weather patterns may disrupt agriculture dramatically.
Probability: it is now almost certain that CO2 levels will keep rising to 600 parts per billion and beyond. It is equally certain that the climate will respond accordingly.
Result: catastrophic in some places, less so in others (including northern Europe, where temperature rises will be moderated by the Atlantic). The good news is that, unlike with most of the disasters here, we have a chance to do something about climate change now.

View Article Here Read More

Consciousness and the Unified Field

Renowned quantum physicist, John Hagelin (PhD, Harvard), presents the thesis that consciousness is a unified field that contains nature's programming code and transcending through meditation is a pathway to hack / access consciousness.Click to zoom

View Article Here Read More

Future Tech Watch ~ High-tech mirrors to beam heat from buildings into space ~ May replace air conditioning



illustration of reflective panel on building

news.stanford.edu 

By Chris Cesare

A new ultrathin multilayered material can cool buildings without air conditioning by radiating warmth from inside the buildings into space while also reflecting sunlight to reduce incoming heat.

Stanford engineers have invented a material designed to help cool buildings. The material reflects incoming sunlight, and it sends heat from inside the structure directly into space as infrared radiation (represented by reddish rays).

Stanford engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space.

A team led by electrical engineering Professor Shanhui Fan and research associate Aaswath Raman reported this energy-saving breakthrough in the journal Nature.

The heart of the invention is an ultrathin, multilayered material that deals with light, both invisible and visible, in a new way.

Invisible light in the form of infrared radiation is one of the ways that all objects and living things throw off heat. When we stand in front of a closed oven without touching it, the heat we feel is infrared light. This invisible, heat-bearing light is what the Stanford invention shunts away from buildings and sends into space.

Of course, sunshine also warms buildings. The new material, in addition dealing with infrared light, is also a stunningly efficient mirror that reflects virtually all of the incoming sunlight that strikes it.

The result is what the Stanford team calls photonic radiative cooling – a one-two punch that offloads infrared heat from within a building while also reflecting the sunlight that would otherwise warm it up. The result is cooler buildings that require less air conditioning.

"This is very novel and an extraordinarily simple idea," said Eli Yablonovitch, a professor of engineering at the University of California, Berkeley, and a pioneer of photonics who directs the Center for Energy Efficient Electronics Science. "As a result of professor Fan's work, we can now [use radiative cooling], not only at night but counter-intuitively in the daytime as well."

The researchers say they designed the material to be cost-effective for large-scale deployment on building rooftops. Though still a young technology, they believe it could one day reduce demand for electricity. As much as 15 percent of the energy used in buildings in the United States is spent powering air conditioning systems.

In practice the researchers think the coating might be sprayed on a more solid material to make it suitable for withstanding the elements.

"This team has shown how to passively cool structures by simply radiating heat into the cold darkness of space," said Nobel Prize-winning physicist Burton Richter, professor emeritus at Stanford and former director of the research facility now called the SLAC National Accelerator Laboratory.

A warming world needs cooling technologies that don't require power, according to Raman, lead author of the Nature paper. 

"Across the developing world, photonic radiative cooling makes off-grid cooling a possibility in rural regions, in addition to meeting skyrocketing demand for air conditioning in urban areas," he said.

Using a window into space

The real breakthrough is how the Stanford material radiates heat away from buildings.

researchers Linxiao Zhu, Shanhui Fan, Aaswath Raman
Doctoral candidate Linxiao Zhu, Professor Shanhui Fan and research associate 
Aaswath Raman are members of the team that invented the breakthrough energy-saving material.
As science students know, heat can be transferred in three ways: conduction, convection and radiation. Conduction transfers heat by touch. That's why you don't touch an oven pan without wearing a mitt. Convection transfers heat by movement of fluids or air. It's the warm rush of air when the oven is opened. Radiation transfers heat in the form of infrared light that emanates outward from objects, sight unseen.
The first part of the coating's one-two punch radiates heat-bearing infrared light directly into space. The ultrathin coating was carefully constructed to send this infrared light away from buildings at the precise frequency that allows it to pass through the atmosphere without warming the air, a key feature given the dangers of global warming.

"Think about it like having a window into space," said Fan.

Aiming the mirror

But transmitting heat into space is not enough on its own.
This multilayered coating also acts as a highly efficient mirror, preventing 97 percent of sunlight from striking the building and heating it up.

"We've created something that's a radiator that also happens to be an excellent mirror," said Raman.

Together, the radiation and reflection make the photonic radiative cooler nearly 9 degrees Fahrenheit cooler than the surrounding air during the day.

From prototype to building panel

Making photonic radiative cooling practical requires solving at least two technical problems.

The first is how to conduct the heat inside the building to this exterior coating. Once it gets there, the coating can direct the heat into space, but engineers must first figure out how to efficiently deliver the building heat to the coating.

The second problem is production. Right now the Stanford team's prototype is the size of a personal pizza. Cooling buildings will require large panels. The researchers say there exist large-area fabrication facilities that can make their panels at the scales needed.

The cosmic fridge

More broadly, the team sees this project as a first step toward using the cold of space as a resource. In the same way that sunlight provides a renewable source of solar energy, the cold universe supplies a nearly unlimited expanse to dump heat.

"Every object that produces heat has to dump that heat into a heat sink," Fan said. "What we've done is to create a way that should allow us to use the coldness of the universe as a heat sink during the day."

In addition to Fan, Raman and Zhu, this paper has two additional co-authors: Marc Abou Anoma, a master's student in mechanical engineering who has graduated; and Eden Rephaeli, a doctoral student in applied physics who has graduated.

View Article Here Read More

Time Since Einstein ~ An exploration of the nature of time

Albert Einstein shattered previous ideas about time, but left many pivotal questions unanswered: Does time have a beginning? An end? Why does it move in only one direction? Is it real, or something our minds impose on reality? Journalist John Hocken...

View Article Here Read More

Time travel and teleporting ‘a reality for today’s children’

Excerpt from telegraph.co.uk

By Rhiannon Williams


Travelling through time, invisibility cloaks and teleporting could all happen within today's children's lifetimes, experts have predicted



Children could be travelling between centuries as soon as the year 2100, while teleportation could become a regular occurence by around 2080, professors from Imperial College London and the University of Glasgow have said. 
"The good thing about teleportation is that there is no fundamental law telling us that it cannot be done and with technical advances I would estimate teleportation that we see in the films will be with us by 2080,” said Dr. Mary Jacquiline Romero from the School of Physics and Astronomy, University of Glasgow. 
“Teleporting a person, atom by atom, will be very difficult and is of course a physicist's way, but perhaps developments in chemistry or molecular biology will allow us to do it more quickly. The good thing about teleportation is that there is no fundamental law telling us that it cannot be done and with technical advances I would estimate teleportation that we see in the films will be with us by 2080,” she said. 
“Time travel to the future has already been achieved, but only in tiny amounts. The record is 0.02 seconds set by cosmonaut Sergei Krikalev. Whilst that doesn't sound too impressive, it does show that time travel to the future is possible and that the amount of time travel couldn't be far greater," he argued. 

“If you travelled through space on a big loop at 10 per cent the speed of light for what seemed to you like six months, approximately six months and one day would have passed on Earth. You'd have time travelled a day into the future. Travel at the same speed for 10 years and you'll time travel nearly three weeks into the future. I would say we are looking at 2100 as a very optimistic timescale for travelling weeks into the future.” 

Invisibility cloaks, as featured in Harry Potter, could be "entirely feasible" within the next 10 to 20 years, Professor Chris Phillips, Professor of Experimental Solid State Physics at Imperial College London said. 



Harry tests his invisibility cloak for the first time


“One way to create an ‘invisibility cloak’ is to use adaptive camouflage, which involves taking a film of the background of an object or person and projecting it onto the front to give the illusion of vanishing, " he added. 

"We’re actually not that far away from this becoming a reality – rudimentary technology versions of this have already been created – but the main problem is that the fibre-like structures in the adaptive camouflage need to be so tightly woven that it’s incredibly labour intensive. With developments such as 3D printing allowing us to create previously impossible materials, it’s entirely feasible that we could see a ‘Harry Potter’-like invisibility cloak within the next 10 to 20 years.” 

The research was conducted by the Big Bang UK Young Scientists and Engineers Fair, which compared the predictions of scientists to that of a panel of 11-16 year-olds. 

While their speculation was largely in line with the experts' expectations, the children thought time travel could be feasible by 2078. They also dramatically overestimated when they might be able to become space tourists - anticipating it might take another 30 years, when commercial space flights are due to launch in 2015.

View Article Here Read More

CERN Discovery Could be a Newly Discovered Particle, not the Elusive God Particle

Section of the Large Hadron Collider at Cern,SwitzerlandExcerpt fromspacedaily.comby Brooks HaysScientists were quite excited  when researchers last year announced they had observed the Higgs particle in the CERN particle accelerator known as the ...

View Article Here Read More

Spaceships to reach supersonic speeds with lasers?

Excerpt from techtimes.com One of the things that makes space travel unfeasible is the huge cost (and added weight) that comes with powering rockets with solid or liquid fuel. The faster a rocket will eventually go, the more fuel it needs, wh...

View Article Here Read More

India’s Mars mission: A Picture that Spoke 1,000 words

When the crowded command control room of India's Mars mission exploded into applause after it successfully put a satellite into orbit around the Red Planet, photographer Manjunath Kiran of the AFP news agency clicked this remarkable image of scienti...

View Article Here Read More

Must -see! My Favorite Reality-warping Double Slit Experiment Presentation ~ By Jim Al-Khalili

Today there can be found many video presentations that demonstrate the head scratching- reality bending experiment known as the Double Slit Experiment, and this lecture delivered by Iraqi-born British theoretical physicist Jim Al-Khalili is my favorite...

View Article Here Read More

Peace Through Synchronized Global Meditation

Lance Schuttler, Personable MediaWe live in a world today where the idea of group power is being rekindled and where it’s momentum is gathering. Humanity as a whole is remembering that it is thoughts and actions of kindness, honesty and equality for all that create positive change.One initiative that is expanding throughout religious and spiritual groups, as well as on blogs and other social media sites is globally synchronized meditation/prayer gatherings.To some, believing that tho [...]

View Article Here Read More

Space station detector reports more hints of dark matter—or not



New reports of further evidence for dark matter have been greatly exaggerated. Yesterday, researchers working with the Alpha Magnetic Spectrometer (AMS), a $2 billion cosmic ray detector attached to the International Space Station, reported their latest data on a supposed excess of high-energy positrons from space. They contended—at least in a press release—that the new results could offer new hints that they’ve detected particles of dark matter, the mysterious stuff whose gravity binds the galaxies. But several cosmic ray physicists say that the AMS data are still perfectly consistent with much more mundane explanations of the excess. And they doubt AMS alone will resolve the issue.
The leader of the AMS team, Nobel laureate Samuel Ting of the Massachusetts Institute of Technology in Cambridge, takes care to say that the new results do not prove that AMS has detected dark matter. But he also says the data lend more support to that interpretation than to some others. "The key statement is that we have not found a contradiction with the dark matter explanation," he says.
The controversy centers on AMS's measurement of a key ratio, the number of antimatter positrons to the sum of positrons and electrons. In April 2013, AMS confirmed early reports that as the energy of the particles increased above about 8 gigaelectron Volts (GeV), that ratio, or "positron fraction," increased, even as the individual fluxes of electrons and positrons were falling. That increase in the relative abundance of positrons could signal the presence of dark matter particles. According to many theories, if those particles collide, they would annihilate each other to produce electron-positron pairs. That would alter the balance of electrons and positrons among cosmic rays, as the usual source such as the cloudlike remnants of supernova explosions produce far more electrons than positrons.
However, that interpretation was hardly certain. Even before AMS released its measurement of the ratio, astrophysicists had argued that the excess positrons could potentially emanate from an undetected nearby pulsar. In November 2013, Eli Waxman, a theoretical astrophysicist at the Weizmann Institute of Science in Rehovot, Israel, and colleagues went even further. They argued that the excess positrons could come simply from the interactions of "primary" cosmic rays from supernova remnants with the interstellar medium. If so, then the positrons were just "secondary" rays and nothing to write home about.
However, AMS team researchers see two new features that are consistent with the dark matter interpretation, they reported online yesterday in Physical Review Letters. First, the AMS team now sees that after rising with energy, the positron fraction seems to level off and may begin to fall at an energy of 275 GeV, as would be expected if the excess were produced by colliding dark matter particles, as the original particles' mass would put an upper limit on the energy of the positron they spawned. AMS researchers say the leveling off would be consistent with a dark matter particle with a mass of 1 teraelectron volt (TeV). (Thanks to Albert Einstein’s famous equivalence of mass and energy, the two can be measured in the same units.)
Second, the AMS team measured the spectra of electrons and positrons individually. They found that the spectra have different shapes as energy increases. "It's really surprising that the electrons and positrons are so different," Ting says. And, he argues, the difference suggests that the positrons cannot be secondary cosmic rays produced by primary cosmic ray electrons, as such production should lead to similar spectra.
But some cosmic ray physicists aren't convinced. For example, in AMS's graph of the electron fraction, the error bars at the highest energies are large because the high-energy particles are so rare. And those uncertainties make it unclear whether the positron fraction really starts to drop, says Stéphane Coutu, a cosmic ray physicist at Pennsylvania State University, University Park. And even if the positron fraction does fall at energies higher than AMS reported, that wouldn't prove the positrons come from dark matter annihilations, Coutu says. Such a "cutoff" could easily arise in positrons from a pulsar, he says, if the spatial region in which the pulsar accelerates particles is of limited size. All told, the new results are "probably consistent with anything," Coutu says.
Similarly, Waxman questions Ting's claim that the new data suggest the positrons aren't simply secondary cosmic rays. If that were the case, then the electrons and positrons would be coming from different places and there would be no reason to expect their spectra to be similar, Waxman says. Moreover, he notes, AMS's measurement of the positron fraction seems to level out just at the limit that he and colleagues predicted would be the maximum achievable through secondary cosmic rays. So, in fact, the new data support the interpretation that the positrons are simply secondary cosmic rays, he says. "To me this is a very strong indication that we are seeing cosmic ray interactions.”
Will the argument ever end? AMS is scheduled to take data for 10 more years, which should enable scientists to whittle down the uncertainties and extend their reach toward higher energies, Ting says. "I think we should be able to reach 1 TeV with good statistics," he says, and that should be enough to eventually settle the dispute. But Gregory Tarlé, an astrophysicist at the University of Michigan, Ann Arbor, says, "I don't think that's a legitimate claim." Higher energy cosmic rays arrive at such a low rate that even quadrupling the data set would leave large statistical uncertainties, he says. So, Tarlé suspects, years from now the AMS results will likely look about as ambiguous they do now.

View Article Here Read More

Tesla and Marconi Founded Secret City in South America

{mainvote}

Source : http://www.bibliotecapleyades.net/tesla/...sla_18.htm

The relationship between Tesla and Marconi is a fascinating one! While Tesla has become a popular figure to revisionist scientists in the last ten years, Marconi ...

View Article Here Read More

Kryon: The Recalibration of Knowledge

{mainvote}

8 March 2012

Channeler: Lee and Kryon

Saturday, 14 January, 2012  (posted 8 March, 2012) 

Greetings, dear ones, I am Kryon of Magnetic Service.

There's no 3D time here where I am, and it's diffic...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑