Tag: permanent (page 1 of 6)

Divine Council of Light ~ Remembrance of Your True Self via Nicole Singer

http://www.teachingsofthemasters.org/
By Nicole Singer.
https://lovehaswon.org/divine-council-of-light-the-remembrance-of-your-true-self/

​We are awakened consciousness – here catch!

Understand?

What if you were also awakened?

View Article Here Read More

Journal Verifies That the Vaccinated Are Transmitting Disease

Dave Mihalovic, Prevent DiseaseOfficials at the U.S. Centers for Disease Control and Prevention (CDC) say the best way to prevent pertussis is to get vaccinated. However, more data continues to present itself suggesting that may be completely false. A new study published in BMC Medicine by Santa Fe Institute Omidyar Fellows Ben Althouse and Sam Scarpino points to a different, but related, source of the outbreak — vaccinated people who are infectious but who do not dis [...]

View Article Here Read More

Nuclear Experimentation Year 70 – Playing With Madness

Ethan Indigo Smith, ContributorThe recent “news” on the nuclear situation in Iran brings to light the madhouse of cards on which the postmodern world is built. Or rather, it would bring the madness to light if the major media outlets of the world were not bought up and sold out to the military industrial complex, and therefore completely misinformed on the actions and dangers of the nuclear experimentation industry.The story is not just about [...]

View Article Here Read More

6 Natural Solutions To Decontaminate Soil

Marco Torres, Prevent DiseaseWith a progressively educated population becoming more aware of the inherent dangers of the conventional food supply, urban farming has become hugely popular. However, more people are also becoming aware of contaminated soil and how heavy metals pose potential risks to their food crops. As backyard gardening continues to explode in popularity, we must ask how contaminated is our soil?Many municipalities in many countries are embracing urban agri [...]

View Article Here Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here Read More

Circular thinking: Stonehenge’s origin is subject of new theory




Excerpt from theguardian.com

Whether it was a Druid temple, an astronomical calendar or a centre for healing, the mystery of Stonehenge has long been a source of speculation and debate. Now a dramatic new theory suggests that the prehistoric monument was in fact “an ancient Mecca on stilts”.

The megaliths would not have been used for ceremonies at ground level, but would instead have supported a circular wooden platform on which ceremonies were performed to the rotating heavens, the theory suggests.

Julian Spalding, an art critic and former director of some of the UK’s leading museums, argues that the stones were foundations for a vast platform, long since lost – “a great altar” raised up high towards the heavens and able to support the weight of hundreds of worshippers.

“It’s a totally different theory which has never been put forward before,” Spalding told the Guardian. “All the interpretations to date could be mistaken. We’ve been looking at Stonehenge the wrong way: from the earth, which is very much a 20th-century viewpoint. We haven’t been thinking about what they were thinking about.”

Since Geoffrey of Monmouth wrote in the 12th century that Merlin had flown the stones from Ireland, theories on Stonehenge, from plausible to absurd, have abounded. In the last decade alone, the monument has been interpreted as “the prehistoric Lourdes” where people brought the sick to be healed by the power of the magic bluestones from Wales and as a haunted place of the dead contrasting with seasonal feasts for the living at nearby Durrington Walls. 

The site pored over by archaeologists for centuries still produces surprises, including the outline of stones now missing, which appeared in the parched ground in last summer’s drought and showed that the monument was not left unfinished as some had believed, but was once a perfect circle.

Spalding, who is not an archaeologist, believes that other Stonehenge theorists have fallen into error by looking down instead of up. His evidence, he believes, lies in ancient civilisations worldwide. As far afield as China, Peru and Turkey, such sacred monuments were built high up, whether on manmade or natural sites, and in circular patterns possibly linked to celestial movements.

He said: “In early times, no spiritual ceremonies would have been performed on the ground. The Pharaoh of Egypt and the Emperor of China were always carried – as the Pope used to be. The feet of holy people were not allowed to touch the ground. We’ve been looking at Stonehenge from a modern, earth-bound perspective.”
“All the great raised altars of the past suggest that the people who built Stonehenge would never have performed celestial ceremonies on the lowly earth,” he went on. “That would have been unimaginably insulting to the immortal beings, for it would have brought them down from heaven to bite the dust and tread in the dung.”

Spalding’s theory has not met with universal approval. Prof Vincent Gaffney, principal investigator on the Stonehenge Hidden Landscapes Project at Bradford University, said he held “a fair degree of scepticism” and Sir Barry Cunliffe, a prehistorian and emeritus professor of European archaeology at Oxford University, said: “He could be right, but I know of no evidence to support it”.
The archaeologist Aubrey Burl, an authority on prehistoric stone circles, said: “There could be something in it. There is a possibility, of course. Anything new and worthwhile about Stonehenge is well worth looking into, but with care and consideration.”

On Monday Spalding publishes his theories in a new book, titled Realisation: From Seeing to Understanding – The Origins of Art. It explores our ancestors’ understanding of the world, offering new explanations of iconic works of art and monuments.

Stonehenge, built between 3000 and 2000BC, is England’s most famous prehistoric monument, a UNESCO World Heritage site on Salisbury Plain in Wiltshire that draws more than 1 million annual visitors. It began as a timber circle, later made permanent with massive blocks of stone, many somehow dragged from dolerite rock in the Welsh mountains. Spalding believes that ancient worshippers would have reached the giant altar by climbing curved wooden ramps or staircases.

View Article Here Read More

Japan comes closer to beaming solar power from SPACE: Mitsubishi makes breakthrough in sending energy wirelessly



Japanese scientists say they have successfully transmitted energy wirelessly in a breakthrough for future solar space power systems. While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth
Japanese scientists say they have successfully transmitted energy wirelessly in a breakthrough for future solar space power systems. While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth


  • Excerpt from dailymail.co.uk
  • By Ellie Zolfagharifard
  • Microwaves delivered 1.8 kw of power - enough to run an electric kettle
  • Power was sent through the air with to a receiver 170ft (55 metres) away
  • Technology may someday help tap vast solar energy available in space
  • Jaxa's plan is to eventually have sunlight-gathering panels and antennae set up about 22,300 miles (36,000km) from the Earth


Japanese scientists have successfully transmitted energy wirelessly in a breakthrough that could pave the way for space-based solar power systems.

Mitsubishi researchers used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver 170ft (55 metres) away.

While the distance was relatively small, the technology could someday pave the way for mankind to tap the vast amount of solar energy available in space and use it here on Earth.

'This was the first time anyone has managed to send a high output of nearly two kilowatts of electric power via microwaves to a small target, using a delicate directivity control device,' said a spokesman for the Japan Aerospace Exploration Agency (Jaxa) said.

The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system.

Solar power generation in space has many advantages over its Earth-based cousin, notably the permanent availability of energy, regardless of weather or time of day.

While man-made satellites, such as the International Space Station, have long since been able to use the solar energy that washes over them from the sun, getting that power down to Earth where people can use it has been the thing of science fiction.

The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away
The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away
The test, which took place at Kobe Shipyard & Machinery Works in Nagoya, Japan, will help Jaxa devise its long-awaited space solar power system. Mitsubishi used microwaves to deliver 1.8 kilowatts of power - enough to run an electric kettle - through the air with pinpoint accuracy to a receiver (right) 170ft (55 metres) away


In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth
 In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth


But the Japanese research offers the possibility that humans will one day be able to farm an inexhaustible source of energy in space.
The idea, said the Jaxa spokesman, would be for microwave-transmitting solar satellites - which would have sunlight-gathering panels and antennae - to be set up about 22,300 miles (36,000km) from the Earth.

'But it could take decades before we see practical application of the technology - maybe in the 2040s or later,' he said.

'There are a number of challenges to overcome, such as how to send huge structures into space, how to construct them and how to maintain them.'

The idea of space-based solar power generation emerged among US researchers in the 1960s and Japan's SSPS programme, chiefly financed by the industry ministry, started in 2009, he said.

COULD A SOLAR FARM IN SPACE POWER OUR FUTURE?

Space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way
Space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way


Solar power has had a difficult start on Earth thanks to inefficient panels and high costs. But in space, scientists believe it could transform the way we generate energy.

Now, the space-based solar power – once the stuff of science-fiction – could be available sooner than expected if Japan has its way.

Within 25 years, the country plans to make space-based solar power a reality, according to a proposal from the Japan Aerospace Exploration Agency (Jaxa).

In a recent IEEE article by Susumu Sasaki, a professor emeritus at Jaxa, outlined the agency's plans create a 1.8 mile long (3 km) man-made island in the harbour of Tokyo Bay.

The island would be studded with 5 billion antennas working together to convert microwave energy into electricity.

The microwaves would be beamed down from a number of giant solar collectors in orbit 22,400 miles (36,000 km) above the Earth. 
Resource-poor Japan has to import huge amounts of fossil fuel.
It has become substantially more dependent on these imports as its nuclear power industry shut down in the aftermath of the disaster at Fukushima in 2011.

In a separate project, a Japanese firm last year revealed plans to cover the moon in a huge swathe of solar panels and use them to power homes here on Earth.

Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt.

Energy captured by these panels would then be sent to Earth using microwaves and laser lights could be beamed directly to countries where it is needed.

According to the plans, the project would produce around 13,000 terrawatts of continuous solar energy. At present, the world's population consumes about 15 terawatts of power each year.

The company claims the plans would not only provide an 'almost inexhaustible' energy supply, it would stop the rise of global warming caused by carbon dioxide from current energy sources. 

Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt
Shimizu Corporation's Luna Ring project would stretch almost 6,790 miles (11,000km) around the moon's equator and a field of solar panels would form a belt

View Article Here Read More

What Would It Be Like to Live on Mercury?


Mercury With Subtle Colors
Mercury's extreme temperatures and lack of an atmosphere would make it very difficult, if not impossible, for people to live on the planet. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


Excerpt from  space.com
By Joseph Castro, Space.com Contributor


Have you ever wondered what it might be like to homestead on Mars or walk on the moons of Saturn? So did we. This is the first in Space.com's 12-part series on what it might be like to live on or near planets in our solar system, and beyond. Check back each week for the next space destination.
With its extreme temperature fluctuations, Mercury is not likely a planet that humans would ever want to colonize. But if we had the technology to survive on the planet closest to the sun, what would it be like to live there?

To date, only two spacecraft have visited Mercury. The first, Mariner 10, conducted a series of Mercury flybys in 1974, but the spacecraft only saw the lit half of the planet. NASA's MESSENGER spacecraft, on the other hand, conducted flybys and then entered Mercury's orbit — in March of 2013, images from the spacecraft allowed scientists to completely map the planet for the first time.



MESSENGER photos of Mercury show that the planet has water ice at its poles, which sit in permanent darkness. Mining this ice would be a good way to live off the land, but setting up bases at the poles might not be a good idea, said David Blewett, a participating scientist with the Messenger program.

"The polar regions would give you some respite from the strength of the sun on Mercury," Blewett told Space.com. "But, of course, it's really cold in those permanently shadowed areas where the ice is, and that presents its own challenge."

A better option, he said, would probably be to set up a home base not far from one of the ice caps, perhaps on a crater rim, and have a water mining operation at the pole.

Still, dealing with extreme temperatures on Mercury would likely be unavoidable: Daytime temperatures on the planet can reach 800 degrees Fahrenheit (430 degrees Celsius), while nighttime temperatures can drop down to minus 290 degrees Fahrenheit (minus 180 degrees Celsius).

Scientists once believed Mercury was tidally locked with the sun, meaning that one side of the planet always faces the sun because it takes the same amount of time to rotate around its axis as it does to revolve around the star. But we now know that Mercury's day lasts almost 59 Earth days and its year stretches for about 88 Earth days.

Interestingly, the sun has an odd path through the planet's sky over the course of Mercury's long day, because of the interaction between Mercury's spin rate and its highly elliptical orbit around the sun.

"It [the sun] rises in the east and moves across the sky, and then it pauses and moves backwards just a tad. It then resumes its motion towards the west and sunset," said Blewett, adding that the sun appears 2.5 times larger in Mercury's sky than it does in Earth's sky.

And during the day, Mercury's sky would appear black, not blue, because the planet has virtually no atmosphere to scatter the sun's light. "Here on Earth at sea level, the molecules of air are colliding billions of times per second," Blewett said. "But on Mercury, the atmosphere, or 'exosphere,' is so very rarefied that the atoms essentially never collide with other exosphere atoms." This lack of atmosphere also means that the stars wouldn't twinkle at night.



Without an atmosphere, Mercury doesn't have any weather; so while living on the planet, you wouldn't have to worry about devastating storms. And since the planet has no bodies of liquid water or active volcanoes, you'd be safe from tsunamis and eruptions.

But Mercury isn't devoid of natural disasters. "The surface is exposed to impacts of all sizes," Blewett said. It also may suffer from earthquakes due to compressive forces that are shrinking the planet (unlike Earth, Mercury doesn't have tectonic activity).

Mercury is about two-fifths the size of Earth, with a similar gravity to Mars, or about 38 percent of Earth's gravity. This means that you could jump three times as high on Mercury, and heavy objects would be easier to pick up, Blewett said. However, everything would still have the same mass and inertia, so you could be knocked over if someone threw a heavy object at you, he added.

Finally, you can forget about a smooth Skype call home: It takes at least 5 minutes for signals from Mercury to reach Earth, and vice versa.

View Article Here Read More

Let’s go back to the moon. No, Mars. No, the moon. The debate continues.




Excerpt from washingtonpost.com
By Christian Davenport 

To the moon again? Or Mars?
The questions have hung over NASA for years, and emerged again at a Senate committee hearing Tuesday.

Under President George W. Bush, the target was the moon. Under Obama, who said “we’ve been there before,” Mars became the mission.

But now as his term nears its end, there is some increasingly vocal criticism of that decision, saying there isn’t the funding or political will to get to Mars.

Focusing on Mars is a “flawed policy direction,” Scott Pace, the director of the Space Policy Institute at George Washington University testified on Tuesday. The shift in goals “blindsided” the international space community, he said. The moon “is the next logical target for all of our potential international partners.”

Russia has endorsed sending astronauts there, he said. China sent an unmanned rover to the moon, and unveiled designs for a new heavy rocket for deep space exploration. It even has plans to build its own space station. “Growing space powers such as the Republic of Korea and India have their own unmanned lunar ambitions,” Pace said, while adding that the private sector has also made huge advancements.

To regain its prominence in space, the United States should “lead a multinational program to explore the moon," Pace said.

If it doesn’t, he could imagine a “post-American space world, with a full range of manned and unmanned space activities, but without American leadership or even, in many cases, an American presence.”

Testifying before the same committee, Buzz Aldrin, the Apollo 11 pilot who was the second man to walk on the moon, said NASA is right to focus on going beyond the moon. "American leadership is more than simply getting one step ahead of our global competitors," he said. "American leadership is inspiring the world by consistently doing what no other nation is capable of doing."

Aldrin said he's working on a plan to get to Mars, and the next president should press ahead with the mission.

“I believe that early in the next administration, the nation must commit to developing a permanent presence on Mars,” he said.
With much fanfare, NASA has trumpeted its “Journey to Mars” campaign. And it has highlighted the unmanned test flight of the Orion capsule last year as evidence of its progress toward reaching the Red Planet. It is also developing a new heavy rocket, known as the Space Launch System, designed to go to Mars and deep space.

But critics have maintained that without the funding to support such an endeavor, the attempt is a little more than a public relations stunt. And while Sen. Ted Cruz (R-Texas) and other members the committee on Tuesday said they were committed to the new rocket, others have been less supportive.

“We made a wrong decision when we went down this road,” Rep. Dana Rohrabacher (R-Calif.) said at a hearing late last year.

View Article Here Read More

Mars One mission cuts candidate pool down to 100 aspiring colonists

Excerpt from mashable.comOnly 100 people are still competing for four seats on a one-way trip to Mars advertised by Dutch nonprofit Mars One.In its latest round of cuts, the foundation cut its applicant pool from 660 to 100 finalists on Tuesday. More ...

View Article Here Read More

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me


Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.

Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin


Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

View Article Here Read More

Did viking men bring their wives along? Viking men may have brought their wives with them to colonize new lands, a new DNA study suggests




Excerpt from 
csmonitor.com

Vikings may have been family men who traveled with their wives to new lands, according to a new study of ancient Viking DNA.
Maternal DNA from ancient Norsemen closely matches that of modern-day people in the North Atlantic isles, particularly from the Orkney and Shetland Islands.

The findings suggest that both Viking men and women sailed on the ships to colonize new lands. The new study also challenges the popular conception of Vikings as glorified hoodlums with impressive seafaring skills. 

"It overthrows this 19th century idea that the Vikings were just raiders and pillagers," said study co-author Erika Hagelberg, an evolutionary biologist at the University of Oslo in Norway. "They established settlements and grew crops, and trade was very, very important."

Vikings hold a special place in folklore as manly warriors who terrorized the coasts of France, England and Germany for three centuries. But the Vikings were much more than pirates and pillagers. They established far-flung trade routes, reached the shores of present-day America, settled in new lands and even founded the modern city of Dublin, which was called Dyfflin by the Vikings.

Some earlier genetic studies have suggested that Viking males traveled alone and then brought local women along when they settled in a new location. For instance, a 2001 study published in the American Journal of Human Genetics suggested that Norse men brought Gaelic women over when they colonized Iceland.

Modern roots

To learn more about Norse colonization patterns, Hagelberg and her colleagues extracted teeth and shaved off small wedges of long bones from 45 Norse skeletons that were dated to between A.D. 796 and A.D. 1066. The skeletons were first unearthed in various locations around Norway and are now housed in the Schreiner Collection at the University of Oslo.

The team looked at DNA carried in the mitochondria, the energy powerhouses of the cell. Because mitochondria are housed in the cytoplasm of a woman's egg, they are passed on from a woman to her children and can therefore reveal maternal lineage. The team compared that material with mitochondrial DNA from 5,191 people from across Europe, as well as with previously analyzed samples from 68 ancient Icelanders.

The ancient Norse and Icelandic genetic material closely matched the maternal DNA in modern North Atlantic people, such as Swedes, Scots and the English. But the ancient Norse seemed most closely related to people from Orkney and Shetland Islands, Scottish isles that are quite close to Scandinavia.

Mixed group

"It looks like women were a more significant part of the colonization process compared to what was believed earlier," said Jan Bill, an archaeologist and the curator of the Viking burial ship collection at the Museum of Cultural History, a part of the University of Oslo. 

That lines up with historical documents, which suggest that Norse men, women and children — but also Scottish, British and Irish families — colonized far-flung islands such as Iceland, Bill told Live Science. Bill was not involved with the new study.

"This picture that we have of Viking raiding — a band of long ships plundering — there obviously would not be families on that kind of ship," Bill said. "But when these raiding activities started to become a more permanent thing, then at some point you may actually see families are traveling along and staying in the camps."
As a follow-up, the team would like to compare ancient Norse DNA to ancient DNA from Britain, Scotland and the North Atlantic Isles, to get a better look at exactly how all these people are related, Hagelberg said.

The findings were published today (Dec. 7) in the journal Philosophical Transactions of the Royal Society B.

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑