Tag: particles (page 2 of 8)

Quantum Entanglement Verified: Why Space Is Just The Construct That Gives The Illusion Of Separate Objects

“Space is just the construct that gives the illusion that there are separate objects” – Dr. Quantum (see video below)There is a phenomenon so strange, so fascinating, and so counter to what we believe to be the known scientific laws of the universe, that Einstein himself could not wrap his head around it. It’s called “quantum entanglement,” though Einstein referred to it as “spooky action at a distance.”An [...]

View Article Here Read More

Radiation from long Mars journey could damage astronauts’ brains






Excerpt from naplesnews.com

Many things would be difficult about conducting a manned mission to Mars, from designing a spacecraft that could make the 34-million-mile journey, to stocking and fueling it, to keeping its astronauts from getting flabby and bored.
On Friday, researchers shed light on another potential hurdle: figuring out a way to protect travelers’ brains from the damaging effects of cosmic rays in outer space.
When University of California, Irvine neuroscientist Charles Limoli and colleagues exposed mice to radiation similar to that astronauts would encounter far beyond Earth, the animals experienced changes in their brains that impaired their performance on tests of learning and memory, the team reported in an article — “What happens to your brain on the way to Mars” — in the journal Science Advances.
The researchers’ results suggested that astronauts could suffer cognitive impairment during an extended journey through space.
“Over the course of a two- to three-year mission, the damage would accumulate,” Limoli said. “To mitigate it, we need to understand it.”
To test the effects of space radiation on the brain, the researchers took mice to the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York, which attempts to simulate radiation conditions in space. They exposed the animals to oxygen and titanium ions, atoms with their electrons stripped away that are similar to the charged particles in cosmic rays.
Six weeks later, back in California, they tested the mice’s learning and memory by placing them in pens with toys, letting them get used to their surroundings, and then making changes such as introducing a new toy. Mice that had been exposed to the radiation were less aware of or curious about the changes in their environment than controls that had not been irradiated — a sign that they had cognitive deficits.
“A smart animal will recognize the change,” Limoli said.
When the researchers later studied the animals’ brain tissue, they found that mice that performed poorly on the tests also had less dense branching in their brain cells, due to damage from the radiation. The structural changes would impede the brain’s ability to transmit signals and process information.
Limoli got involved in the NASA-backed research as an outgrowth of his work on the effects of radiation on brain cancer patients. Radiation therapy forestalls brain cancer progression, he said — but it can take a tremendous toll on the central nervous system, causing depression, anxiety and mood disorders, and deficits in learning and executive function. Pediatric patients can lose 20 to 30 I.Q. points after receiving radiation treatments to the brain.
“Doctors have gotten really good at curing cancer, but maintaining a good quality of life has been a problem,” Limoli said. “This is an unmet medical need.”
Astronauts flying to Mars and getting hit by cosmic rays, which are the remnants of supernova explosions, wouldn’t get anything close to the high doses of radiation that cancer patients receive, but they “might be prone to mistakes,” Limoli thought.
To counteract that threat during planning for a possible mission, scientists might come up with more advanced shielding options — perhaps embedded in helmets — or drug treatments that might ameliorate radiation’s impacts on the brain, similar to the ones Limoli is exploring for cancer patients.

View Article Here Read More

6 Natural Solutions To Decontaminate Soil

Marco Torres, Prevent DiseaseWith a progressively educated population becoming more aware of the inherent dangers of the conventional food supply, urban farming has become hugely popular. However, more people are also becoming aware of contaminated soil and how heavy metals pose potential risks to their food crops. As backyard gardening continues to explode in popularity, we must ask how contaminated is our soil?Many municipalities in many countries are embracing urban agri [...]

View Article Here Read More

Study says the universe may be a hologram






Holograms are two-dimensional pictures that appear to the human eye as three-dimensional objects. Some scientists believe that our universe may behave similarly, existing as a sort of all-encompassing hologram.
As explained by Nature World News, “a mathematical description of the Universe actually requires one fewer dimension than it seems” according to the “holographic principle,” which would indicate that what appears to be a 3-D universe may actually “just be the image of 2-D processes on a huge cosmic horizon.”
Prior to this study, scientists looked into this holographic principle by applying their calculations to a universe presenting Anti de Sitter space. Anti de Sitter is the term used to describe space as having a hyperbolic shape, much like a saddle. This hyperbolic space shape behaves, mathematically, as special relativity would predict.
Special relativity is a theory put forth by Albert Einstein to describe the relationship between space and time, and is especially useful when studying very small particles moving at extreme speeds over cosmic distances. The concept of Anti de Sitter space assumes that spacetime itself is hyperbolic in its natural state, in the absence of matter or energy.
A team at the Vienne University of Technology looked at the holographic principle not in the usual Anti de Sitter space framework, but instead applied the principle to flat spacetime, as represents our physical universe.“Our Universe, in contrast, is quite flat – and on astronomic distances, it has positive curvature,” team member Daniel Grumiller said in a statement.
The team created several gravitational theories that apply to flat space to see if calculations regarding quantum gravity would indicate a holographic description as has occurred in former calculations with theories applied to Anti de Sitter space.
“If quantum gravity in a flat space allows for a holographic description by a standard quantum theory, then there must be physical quantities, which can be calculated in both theories – and the results must agree,” Grumiller said.
The team found that the amount of quantum entanglement required for gravitational theory models expressed the same value in flat quantum gravity as in a low dimensional field theory, showing that the theory of a holographic universe can be successfully applied to the reality of the relatively flat field of spacetime evident in our universe.
“This calculation affirms our assumption that the holographic principle can also be realized in flat spaces. It is evidence for the validity of this correspondence in our universe” team member Max Riegler said.
The results were published in the journal Physical Review Letters.


View Article Here Read More

Physicists: Black holes don’t erase information




Excerpt from earthsky.org
Since 1975, when Hawking showed that black holes evaporate from our universe, physicists have tried to explain what happens to a black hole’s information.

What happens to the information that goes into a black hole? Is it irretrievably lost? Does it gradually or suddenly leak out? Is it stored somehow? Physicists have puzzled for decades over what they call the information loss paradox in black holes. A new study by physicists at University at Buffalo – published in March, 2015 in the journal in Physical Review Letters – shows that information going into a black hole is not lost at all.

Instead, these researchers say, it’s possible for an observer standing outside of a black hole to recover information about what lies within.

Dejan Stojkovic, associate professor of physics at the University at Buffalo, did the research with his student Anshul Saini as co-author. Stojkovic said in a statement:
According to our work, information isn’t lost once it enters a black hole. It doesn’t just disappear.
What sort of information are we talking about? In principle, any information drawn into a black hole has an unknown future, according to modern physics. That information could include, for example, the characteristics of the object that formed the black hole to begin with, and characteristics of all matter and energy drawn inside.

Stojkovic says his research “marks a significant step” toward solving the information loss paradox, a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time, disappearing from the universe and taking their information with them. 

Disappearing information is a problem for physicists because it’s a violation of quantum mechanics, which states that information must be conserved.
According to modern physics, any information about an astronaut entering a black hole - for example, height, weight, hair color - may be lost.  Likewise, information about he object that formed the hole, or any matter and energy entering the hole, may be lost.  This notion violates quantum mechanics, which is why it's known as the 'black hole information paradox.


According to modern physics, any information related to an astronaut entering a black hole – for example, height, weight, hair color – may be lost. This notion is known as the ‘information loss paradox’ of black holes because it violates quantum mechanics. Artist’s concept via Nature.

Stojkovic says that physicists – even those who believed information was not lost in black holes – have struggled to show mathematically how the information is preserved. He says his new paper presents explicit calculations demonstrating how it can be preserved. His statement from University at Buffalo explained:
In the 1970s, [Stephen] Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it’s possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini’s new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such “correlations” have long been known to exist, but many scientists discounted them as unimportant in the past.
Stojkovic added:
These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference.
Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome.
Artist's impression of a black hole, via Icarus
Artist’s impression of a black hole, via Icarus

Bottom line: Since 1975, when Stephen Hawking and Jacob Bekenstein showed that black holes should slowly radiate away energy and ultimately disappear from the universe, physicists have tried to explain what happens to information inside a black hole. Dejan Stojkovic and Anshul Saini, both of University at Buffalo, just published a new study that contains specific calculations showing that information within a black hole is not lost.

View Article Here Read More

Frustrated magnets showing features of Hall Effect stun Princeton University researchers


Frustrated-Magnets



Excerpt from worldtechtoday.com

A group of researchers at the Princeton University has found that frustrated magnets, inspite of not possessing any magnetic feature at low temperatures, do exhibit features of Hall Effect. ‘Frustrated’ magnets are so called because of their inability of getting a long range magnetic order inspite of a huge exchange between the spins of their elementary particles.

The Hall Effect suggests that when magnetic field is applied to electric current carried by charged particles present in a conductor, it causes magnet to bend to the other side of semi-conductor. They are of great interest in physics and material science. Appreciating that frustrated magnets are capable of producing Hall Effect could hold the key to future advances in computing and the creation of devices such as quantum computers.

“To talk about the Hall Effect for neutral particles is an oxymoron, a crazy idea,” said N. Phuan Ong, one of the authors of the study and Eugene Higgins Professor of Physics at Princeton.

Inspite of that, he together with his colleague, Princeton’s Russell Wellman Moore Professor of Chemistry as well as their graduate students Max Hirschberger and Jason Krizan witnessed this unusual behavior in frustrated magnets.

“All of us were very surprised because we work and play in the classical, non-quantum world. Quantum behavior can seem very strange, and this is one example where something that shouldn’t happen is in reality there. It really exists,” said Ong in a statement.
The researchers wanted to find out the reason underlying “discontent” nature of Hall Effect.

In this particular case, the team led by Ong and Moore studied pyrochlores, a class of magnets ‘which should have orderly “spins” at very low temperature, but have been found to have spins that point in random directions, thus rendering them with magnetic frustration properties.’ They attached small electrodes to both sides of crystals and later passed heat through them using microheaters at extremely low temperatures.

The outcome of the experiment, states Ong, stunned the entire team.

View Article Here Read More

Science of frustrated magnets: Hall Effect experiment reveals clues to their discontent

Excerpt from thewestsidestory.netA scientific study carried out in Princeton has brought about the discovery of unlikely properties in materials called frustrated magnets using the Hall Effect.Hall Effect is the property of magnetic fields having inf...

View Article Here Read More

NASA’s Plan to Give the Moon a Moon


arm-capture_0




Excerpt from wired.com

It sounds almost like a late ’90s sci-fi flick: NASA sends a spacecraft to an asteroid, plucks a boulder off its surface with a robotic claw, and brings it back in orbit around the moon. Then, brave astronaut heroes go and study the space rock up close—and bring samples back to Earth.
Except it’s not a movie: That’s the real-life idea for the Asteroid Redirect Mission, which NASA announced today. Other than simply being an awesome space version of the claw arcade game (you know you really wanted that stuffed Pikachu), the mission will let NASA test technology and practice techniques needed for going to Mars.
The mission, which will cost up to $1.25 billion, is slated to launch in December 2020. It will take about two years to reach the asteroid (the most likely candidate is a quarter-mile-wide rock called 2008 EV5). The spacecraft will spend up to 400 days there, looking for a good boulder. After picking one—maybe around 13 feet in diameter—it will bring the rock over to the moon. In 2025, astronauts will fly NASA’s still-to-be-built Orion to dock with the asteroid-carrying spacecraft and study the rock up close.
Although the mission would certainly give scientists an up-close opportunity to look at an asteroid, its main purpose is as a testing ground for a Mars mission. The spacecraft will test a solar electronic propulsion system, which uses the power from solar panels to pump out charged particles to provide thrust. It’s slower than conventional rockets, but a lot more efficient. You can’t lug a lot of rocket fuel to Mars.
Overall, the mission gives NASA a chance at practicing precise navigation and maneuvering techniques that they’ll need to master for a Mars mission. Such a trip will also require a lot more cargo, so grabbing and maneuvering a big space rock is good practice. Entering lunar orbit and docking with another spacecraft would also be helpful, as the orbit might be a place for a deep-space habitat, a rendezvous point for astronauts to pick up cargo or stop on their way to Mars.
And—you knew this part was coming, Armageddon fans—the mission might teach NASA something about preventing an asteroid from striking Earth. After grabbing the boulder, the spacecraft will orbit the asteroid. With the added heft from the rock, the spacecraft’s extra gravity would nudge the asteroid, creating a slight change in trajectory that NASA could measure from Earth. “We’re not talking about a large deflection here,” says Robert Lightfoot, an associate administrator at NASA. But the idea is that a similar technique could push a threatening asteroid off a collision course with Earth.
NASA chose this mission concept over one that would’ve bagged an entire asteroid. In that plan, the spacecraft would’ve captured the space rock by enclosing it in a giant, flexible container. The claw concept won out because its rendezvous and soft-landing on the asteroid will allow NASA to test and practice more capabilities in preparation for a Mars mission, Lightfoot says. The claw would’ve also given more chances at grabbing a space rock, whereas it was all or nothing with the bag idea. “It’s a one-shot deal,” he says. “It is what it is when we get there.” But the claw concept offers some choices. “I’ve got three to five opportunities to pull one of the boulders off,” he says. Not bad odds. Better than winning that Pikachu

View Article Here Read More

Ancient supernova had enough dust to make 7,000 earths


The Cassiopeia A nebula is the gaseous remnant of a supernova explosion whose light reached the Earth around the year 1680.


Excerpt from sciencerecorder.com


A recent discovery has revealed that a supernovae is capable enough producing such quantities of cosmic dust that it can yield thousands of Earths.

An international team of researchers analyzed data obtained by SOFIA – a NASA and German Aerospace Center’s Stratospheric Observatory for Infrared Astronomy project – which took images of a cosmic dust cloud.

Supernova remant. Image Credit: NASA/CXO/Herschel/VLA/Lau et al

“This discovery is a special feather in the cap for SOFIA, demonstrating how observations made within our own Milky Way galaxy can bear directly on our understanding of the evolution of galaxies billions of light years away,” said Pamela Marcum, one of the researchers.

The team made measurements of long infrared wavelengths of the Supernova Remnant Sagittarius A East, gaining an estimate for the total mass of dust within the cloud based on what it released.
SOFIA, an enhanced Boeing 747 with high end telescope, flies in altitudes between 39,000 to 45,000 feet to capture its images.

Astronomers already knew that the shock waves of supernovas produce high concentrations of dust when they move outward.
The question was whether the cosmic particles could withstand the intense shock waves.

“The dust survived the later onslaught of shock waves from the supernova explosion, and is now flowing into the interstellar medium where it can become part of the ‘seed material’ for new stars and planets,” said Ryan Lau, of Cornell University, who led the research team.

This new discovery encouraged the idea that the vast quantities of dust seen in remote yet fairly young galaxies may have been produced by the explosions of large stars that were actually much older.

The research was published in Science magazine on Thursday.

View Article Here Read More

Rosetta Coming Closer to Comet 67P ~ Philae Lander Still Snoozing Away


Rosetta photo of Comet 67P/C-G.
March 9 Rosetta was 45 miles from Comet 67P/C-G when it photographed the comet’s head ringed with a halo of gas and dust. These jets extend from active areas of the comet’s surface and will become much more prominent over the next few months as the comet approaches the sun.


Excerpt from dailytimesgazette.com

Astronomers have been on a mission to tail a slow moving comet in the outer space. Their mission started early last 2014, and they are getting better observations than they thought they would.
The comet, Comet 67P, would take 12.4 hours to complete one rotation in the circular path it’s moving in. Controllers of Rosetta are noticing that the icy ball approximately a second every day before it completes a rotation. The flight director of Rosetta – Andrea Accomazzo, said that, “The gas jets coming out of the comet, are acting like thrusters and are slowing down the comet.”
During the Royal Aeronautical Society in London earlier this week, the European Space Agency officially revealed some juicy details on how their team learned to maneuver Rosetta to fly precisely around the massive astral body. Comet 67P is said to weigh 10-billion tons with 4-km size in width.

The controllers and navigators use the landmark-method on the comet to understand its rotation. The team is moving around the outer space relying only on the information provided by the model. Both the model and information guides them in accurately projecting the trajectory of the satellite in the best position.

As they were trying out the model, the ESA team noticed that the landmarks were not following the usual track at the expected time.
During September 2014, the team were determined and very convinced that comet’s rotation period lengthen by 33 milliseconds per day. At present, the comet is approaching the Sun. As it does, it releases great volumes of gas and dust as a result of the so-called Spin-Down effect; further lengthening the rotation period to a second per day.

Accomazzo clarified that Comet 67P is not going to slow down in a slow motion. But its current speed allows them achieve the great magnitude of accuracy in navigating the spacecraft around the comet.

Rosetta made significant observations of the comet last December and January as it moves like an orbit within 30 km distance from the comet. However, this movement is no longer going to happen because Rosetta has retreated from the comet as the gas and dust are being released.

But it does them well as Accomazzo said that, “The aerodynamic effects are now more and more important. The jets are getting stronger and stronger… To give you an idea, these gases come out of the comet for a few kilometers and are moving at 800 meters per second. We definitely have to take this into account. We are a big spacecraft with 64 square meter s of solar panels. We’re like a big sail.”

The trackers were confused during the recent weeks because they have mistaken the dust particles for stars. It was due to the fact that the dusts in the atmosphere were moving around the comet.

Now, Rosetta is using its propulsion system to move in a hyperbolic orbital rotation around Comet 67P. It approaches the comet no closer than 60 to 70 km. With the slowdown of the comet, the ESA team is planning to fly closer.

They were estimating a flight as close as 20 km to get a better look at the surface of the comet and find their lost landing probe, Philae. They lost contact with the robotic probe since November 12 due to lost battery power only days after it successfully landed on the comet.

The slowdown gives them an opportunity to search for Philae. As it moves closer to the Sun, lighting conditions are definitely better than their previous runs. The controllers are now calling onto Philae using radio shout outs.

Philae is solar powered so the team hopes that enough solar energy falls on the panels awaking the probe. But one problem still persist, “The problem is that even if Philae hears Rosetta, it has to have enough charge to turn on its radio transmitter.”

The flight director is quite doubtful if Philae will be awakening. Andrea suggested, “I put it at 50-50, but I will be the happiest person in the world if it happens,”

Their mission achieved great progress and observation of a comet. The team is wishing for better things as the 67P slow down leaving them with more advantage

View Article Here Read More

Amazing Images of Comet 67P/Churyumov-Gerasimenko

Rosetta photo of Comet 67P/C-G.
Comet 67P/C-G is about as large as Central Park of Manhattan Island, New York

Excerpt from nytimes.com

By JONATHAN CORUM 


The European Space Agency’s Rosetta spacecraft caught up with Comet 67P/Churyumov-Gerasimenko last August, then dropped a lander onto the comet in November. Now Rosetta will follow the rubber-duck-shaped comet as it swings closer to the sun.
Scale in miles
Scale in km
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 9 Rosetta was 45 miles from Comet 67P/C-G when it photographed the comet’s head ringed with a halo of gas and dust. These jets extend from active areas of the comet’s surface and will become much more prominent over the next few months as the comet approaches the sun.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 6 The comet’s head is angled down in this image of crisscrossing sunlit jets taken from 53 miles away.
Comet’s location when Rosetta was launched Rosetta launched in March 2004
Earth
Sun
Mars
Rendezvous
with Comet
67P/C-G
Orbit of
Jupiter
Rosetta today

Where is Rosetta? The Rosetta spacecraft took 10 years to match speed and direction with Comet 67P/C-G. The chase ended last August, and Rosetta will now follow the comet in its elliptical orbit as it moves closer to the sun. The spacecraft is no longer orbiting the comet because of increasing dust, but it is planning a series of close flybys.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 6 Rosetta was 52 miles away when it looked up at the comet’s flat underbelly. The smooth plain at center covered with large boulders is named Imhotep.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 28 Rosetta captured a profile of the comet surrounded by curving jets of gas and dust from active regions. The spacecraft was 64 miles away.

Rosetta photo of Comet 67P/C-G.

Feb. 25–27 One day on Comet 67P/C-G is about 12 hours, the time it takes the comet to spin on its axis. The jets of gas and dust surrounding the comet are thought to curve from a combination of the comet’s rotation and the uneven gravity of its two-lobed structure.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 20 The comet’s sunlit underbelly casts a shadow obscuring the neck that joins the two lobes. Rosetta took this image from 74 miles away.
Rosetta photo of Comet 67P/C-G.
1 MILE

Feb. 18 Pale jets of gas and dust surround Comet 67P/C-G, seen from 123 miles away. Bright marks in the background are a mix of stars, camera noise and streaks from small particles ejected from the comet.
Rosetta photo of Comet 67P/C-G.
1/4 MILE
Panorama by The New York Times

Feb. 14 On Valentine’s Day, Rosetta made its first close flyby of the comet, passing within four miles of the surface. Here the spacecraft looks down on the large depression at the top of the comet’s head.

Rosetta photo of Comet 67P/C-G.
500 FEET

Feb. 14 An image of the comet’s underbelly taken six miles above the surface during the Valentine’s Day flyby. The smooth plain in the foreground is called Imhotep.

Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 9 The comet is upside down in this image from 65 miles away, and a fan-shaped jet of dust streams from the comet’s neck region.

Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 6 Jets of gas and dust extend from the comet’s neck and other sunlit areas in this image taken from 77 miles away.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Feb. 3 This close-up image of the comet’s neck was taken from 18 miles away, and was the last image taken from orbit around Comet 67P/C-G. Rosetta will continue to follow the comet, but will leave its gravity-bound orbit because of increasing dust and instead begin a series of flybys.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 31 The comet’s head, neck and back are sunlit in this image taken from 17 miles away. A prominent jet of gas and dust extends from an active region of the surface near the comet’s neck.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 16 The tail of the comet’s larger lobe points up, revealing a smooth plain named Imhotep at left. Rosetta was 18 miles away when it took this image.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 3 The smooth plain named Imhotep, at center right, lies on the comet’s flat underbelly, seen here from a distance of about 18 miles.

Rosetta photo of Comet 67P/C-G.
1/4 MILE
Cheops
IMHOTEP

Dec. 14, 2014 The large triangular boulder on the flat Imhotep plain is named Cheops, after the Egyptian pyramid. The spacecraft was about 12 miles from the comet when it took this image.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Dec. 10 Sunlight falls between the body and head of the comet, lighting up a large group of boulders in the smooth Hapi region of the comet’s neck. To the right of the boulders, the cliffs of Hathor form the underside of the comet’s head. Rosetta took this image from a distance of 12 miles.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Dec. 2 The round depression in the middle of the comet’s head is filled with shadow in this image taken 12 miles above the comet.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Nov. 22 An overexposed image of Comet 67P/C-G from 19 miles away shows faint jets of gas and dust extending from the sunlit side of the comet.

Philae photo from the surface of Comet 67P/C-G.

Nov. 12 Rosetta’s washing-machine sized lander Philae successfully touched down on the comet’s head. But anchoring harpoons failed and Philae bounced twice before going missing in the shadow of a cliff or crater (above). Without sunlight Philae quickly lost power, but might revive as the comet gets closer to the sun. On March 12, Rosetta resumed listening for radio signals from the missing lander.

Rosetta photo of Comet 67P/C-G.

Photo illustration by The New York Times

How big is the comet? The body of Comet 67P/C-G is about as long as Central Park. For images of Rosetta’s rendezvous and the Philae landing, see Landing on a Comet, 317 Million Miles From Home.

Sources: European Space Agency and the Rosetta mission. Images by ESA/Rosetta, except where noted. Some images are composite panoramas created by ESA, and most images were processed by ESA to bring out details of the comet’s activity.

View Article Here Read More

If the Moon Landings Were Real, Then Why is NASA Stumped by This?

Buck Rogers, Staff WriterWaking TimesDuring the cold war era the Soviet Union and the United States were locked in an arms and technology race, each nation wanting to prove their dominance over the other, each striving to be the next reigning superpower in a world still shattered by the second world war. The Soviet’s took the lead when in April of 1961, cosmonaut Yuri Gagarin successfully orbited the earth and returned home safely. In May, president John F. Kennedy ma [...]

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑