Tag: particle (page 2 of 5)

Let There Be Light! Photo Shows Light As Wave And Particle For First Time


Light as a particle and a wave


Excerpt from escapistmagazine.com

According to quantum mechanics light acts as both a particle and a wave, but now we can finally see what that looks like.

Quantum mechanics is an incredibly complex field for a simple reason: So much of what it studies can be two different things at the exact same time. Light is a great example since it behaves like both a particle and a wave, but only appears in one state during experiments. Mathematically speaking, we have to treat light as both ways for the universe to make sense but actually confirming it visually has been impossible. Or at least that was the case until scientists from Switzerland's École polytechnique fédérale de Lausanne developed their own unique photography method.
The image was created by shooting a pulse of laser light at a metallic nanowire to make its charged particles vibrate. Next the scientists fired a stream of electrons past the wire holding the trapped light. When the two collided, it created an energy exchange that could be photographed from the electron microscope.

So what does this mean when looking at the photograph? When the photons and electrons collide, they either slow down or speed up, which creates a visualization of a light wave. At the same time the speed change appears as a quanta - packets of energy - transferred between the electrons and photons as particles. In other words, it's the first case of observing light particles and waves simultaneously.

"This experiment demonstrates that, for the first time ever, we can film quantum mechanics - and its paradoxical nature - directly," research leader Fabrizio Carbone explained. This has enormous implications not only for quantum research, but also quantum-based technologies still in development. "Being able to image and control quantum phenomena at the nanometer scale like this opens up a new route towards quantum computing," he continued.

The experiment results were posted in today's Nature Communications, which will help other scientists build on this research with further studies. After all, it's not like we've unlocked all of light's secrets yet - we can barely even tell what color a dress is sometimes.

View Article Here Read More

‘God Particle’ analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor


The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • uperconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

View Article Here Read More

New quantum theory says universe has ‘no end and no beginning’

Excerpt from inhabitat.com

by Cat DiStasio


Until now, scientists have generally agreed that the universe has celebrated about 13.8 billion birthdays, as calculated using Einstein’s theory of general relativity. The ‘Big Bang’ theory (no relation to the popular sitcom) relies on Einstein’s ideas to clearly explain what happens in the moments and years and eons following the expansion of the universe from a point of singularity, but it fails to offer an explanation for what happened prior to that event. For this reason, quantum theorists have long been brainstorming other possible explanations that don’t have such glaring inadequacies.

Ahmed Farag Ali, at Benha University and the Zewail City of Science and Technology (both in Egypt), and Saurya Das, at the University of Lethbridge in Alberta, Canada, believe they have the answer to this quandary, as well as a few others. The two co-authored the paper outlining their new model, in which the universe has no beginning and no end. Their new quantum model, which the scientists refer to as ‘quantum correction terms,’ resolves the problem of the Big Bang singularity.

Das participated in a separate study, with Rajat Bhaduri of McMaster University, Canada, which has takes this model one step further. They theorize a new gravity particle that was present in the universe at all epochs. Further analysis of their model will be the future focus, as they seek to explore the potential to account for dark matter and dark energy.

Essentially, these cosmologists believe their model will take much of what we think about the origin of our universe and throw it out the window.
Via Phys.org

View Article Here Read More

Scientists Slow Down The Speed Of Light in Lab


Photon race rendering
Two photons, or particles of light approach a finish line used to determine if light can travel at different speeds through the air. Illustration courtesy University of Glasgow

Excerpt from popsci.com


Light passes through air at about 299,000,000 meters per second, an accepted constant that hasn’t been challenged—until now. By manipulating a single particle of light as it passed through free space, researchers have found a way to slow down the speed of light through air.

Scientists have known for a while how fast light passes through different mediums, such as water or glass, and how to slow that speed down. But researchers at the University of Glasgow and Heriot-Watt University decided to take this concept further and see if the speed of light could be changed as it passes through gases.
To make that happen, the team decided to look at individual light particles, or photons. “Measuring with single photons is the cleanest experiment you can get,” Jacquiline Romero, one of the study’s lead authors and a physics professor at the University of Glasgow, tells Popular Science. The group wanted to explicitly establish that different photons have different velocities depending on their placement within a light beam's structure. Depending on where a photon is in a light beam, it has either a slower or faster relative speed. It's similar to a group of runners: Even as the group stays together, the one at the front has to constantly be moving faster than the ones at the side or in the back. Daniel Giovannini, another study lead author from the University of Glasgow, says that researchers have known this for a while, but the team wanted to know just how slow the photons in the 'back of the pack' are moving.

The experiment set out to measure the arrival times of single photons, Romero says. To do that, the researchers passed one photon through a filter, which changed the photon's structure. They then compared the velocity of this photon to an unstructured photon. The researchers were able to decrease the velocity of the structured photon through air by 0.001 percent, which seems quite small, but the amount was not accidental. “We had to try it out and convince ourselves that it can be done and that it’s real,” Giovannini says. He and Romero say they anticipate the results will be divisive, between people who think the conclusion is obvious and those who think it’s a groundbreaking experiment.

The study was published January 23 in Science Express.

View Article Here Read More

New data that fundamental physics constants underlie life-enabling universe

Excerpt from spacedaily.com For nearly half a century, theoretical physicists have made a series of discoveries that certain constants in fundamental physics seem extraordinarily fine-tuned to allow for the emergence of a life-enabling universe.Thi...

View Article Here Read More

The Particle at the End of the Universe ~ Opening a door into the mind-boggling domain of dark matter

 It was the universe's most elusive particle, the linchpin for everything scientists dreamed up to explain how stuff works. It had to be found. But projects as big as CERN's Large Hadron Collider don't happen without dealing and conniving, incr...

View Article Here Read More

Did European scientists find dark-matter signal buried in X-rays?


Dark matter findings XMM-Newton
This illustration shows the ESA's XMM-Newton space telescope. Using X-ray data collected by the telescope, scientists say they may have identified a dark-matter signal. (D. Ducros / European Space Agency)


Excerpt from latimes.com

Scientists say they may have discovered a possible dark matter signal coded in the X-rays emanating from two bright objects in the sky. 

The findings, set to be published next week in Physical Review Letters, could offer tangible evidence for the existence of dark matter -- and help researchers build new tools to search for and study this mysterious stuff.

When it comes to matter in the universe, dark matter is like a backroom political power broker: You never see it, but behind the scenes, it’s been throwing its weight around. The effects of its gravitational influence can be seen in the large-scale structures of the cosmos. Dark matter makes up about 84.5% of the matter in the universe while all the stuff we actually see -- stars, galaxies, planets, ourselves -- makes up the remaining 15.5%.* The enormous galaxies and clusters of galaxies that populate the universe are bantamweights compared to the massive, unseen dark matter ‘halos’ that anchor them.
Dark matter’s formidable gravitational influence is the only way that the strange stuff can be detected, because it’s invisible -- it does not interact with light. Physicists have no idea what it’s made of, although they’ve looked for it by building detectors in underground former gold mines, sending satellites into space and other methods. 

But now, a team led by researchers at Leiden University in the Netherlands and the École Polytechnique Fédérale de Lausanne in Switzerland say they’ve discovered a signal that could be a sign of dark matter. 

The scientists looked at X-ray emissions coming from the Andromeda galaxy and the Perseus galaxy cluster, collected by the European Space Agency’s XMM-Newton space telescope. After accounting for all the light particles (called photons) emanating from known sources in the Andromeda galaxy, they were left with a strange set of photons that had no known source. The found the same light signature emanating from the Perseus cluster. And when they turned their attention to the Milky Way, they found signs of this signal in our home galaxy, as well.
“It is consistent with the behavior of a line originating from the decay of dark matter particles,” the authors wrote in a pre-print of the study.

This weird light signal, they think, could be coming from the destruction of a hypothetical particle called a sterile neutrino (which, if it exists, might help explain dark matter). But it's going to take a lot of follow-up study to determine whether this signal is a scientific breakthrough or an anomalous blip.

View Article Here Read More

How will the world end? From ‘demonic’ AI to nuclear war — seven scenarios that could end human race




news.nationalpost.com 


Humanity may have already created its own nemesis, Professor Stephen Hawking warned last week. The Cambridge University physicist claimed that new developments in the field of artificial intelligence (AI) mean that within a few decades, computers thousands of times more powerful than in existence today may decide to usurp their creators and effectively end humanity’s 100,000-year dominance of Earth.
This Terminator scenario is taken seriously by many scientists and technologists. Before Prof. Hawking made his remarks, Elon Musk, the genius behind the Tesla electric car and PayPal, had stated that “with artificial intelligence, we are summoning the demon,” comparing it unfavourably with nuclear war as the most potent threat to humanity’s existence.
Aside from the rise of the machines, many potential threats have been identified to our species, our civilization, even our planet. To keep you awake at night, here are seven of the most plausible.
Getty Images / ThinkStock
Getty Images / ThinkStockAn artist's depiction of an asteroid approaching Earth.
1. ASTEROID STRIKE
Our solar system is littered with billions of pieces of debris, from the size of large boulders to objects hundreds of kilometres across. We know that, from time to time, these hit the Earth. Sixty-five-million years ago, an object – possibly a comet a few times larger than the one on which the Philae probe landed last month – hit the Mexican coast and triggered a global winter that wiped out the dinosaurs. In 1908, a smaller object hit a remote part of Siberia and devastated hundreds of square kilometres of forest. Last week, 100 scientists, including Lord Rees of Ludlow, the Astronomer Royal, called for the creation of a global warning system to alert us if a killer rock is on the way.
Probability: remote in our lifetime, but one day we will be hit.
Result: there has been no strike big enough to wipe out all life on Earth – an “extinction-level event” – for at least three billion years. But a dino-killer would certainly be the end of our civilization and possibly our species.
Warner Bros.
Warner Bros.When artificial intelligence becomes self-aware, there is a chance it will look something like this scene from Terminator 3.
2. ARTIFICIAL INTELLIGENCE
Prof. Hawking is not worried about armies of autonomous drones taking over the world, but something more subtle – and more sinister. Some technologists believe that an event they call the Singularity is only a few decades away. This is a point at which the combined networked computing power of the world’s AI systems begins a massive, runaway increase in capability – an explosion in machine intelligence. By then, we will probably have handed over control to most of our vital systems, from food distribution networks to power plants, sewage and water treatment works, and the global banking system. The machines could bring us to our knees without a shot being fired. And we cannot simply pull the plug, because they control the power supplies.

Probability: unknown, although computing power is doubling every 18 months. We do not know if machines can be conscious or “want” to do anything, and sceptics point out that the cleverest computers in existence are currently no brighter than cockroaches.
Result: if the web wakes up and wants to sweep us aside, we may have a fight on our hands (perhaps even something similar to the man vs. machines battle in the Terminator films). But it is unlikely that the machines will want to destroy the planet – they “live” here, too.
Handout/AFP/Getty Images
Handout/AFP/Getty ImagesLaboratory technicians and physicians work on samples during research on the evolving Ebola disease in bats, at the Center for Emerging and Zoonotic Diseases research Laboratory of the National Institute for Communicable Diseases in Pretoria on Nov. 21, 2011.
3. A GENETICALLY CREATED PLAGUE
This is possibly the most terrifying short-term threat because it is so plausible. The reason Ebola has not become a worldwide plague – and will not do so – is because it is so hard to transmit, and because it incapacitates and kills its victims so quickly. However, a modified version of the disease that can be transmitted through the air, or which allows its host to travel around for weeks, symptom-free, could kill many millions. It is unknown whether any terror group has the knowledge or facilities to do something like this, but it is chilling to realize that the main reason we understand Ebola so well is that its potential to be weaponized was quickly realized by defence experts.
Probability: someone will probably try it one day.
Result: potentially catastrophic. “Ordinary” infectious diseases such as avian-flu strains have the capability to wipe out hundreds of millions of people.
AP Photo/U.S. Army via Hiroshima Peace Memorial Museum
AP Photo/U.S. Army via Hiroshima Peace Memorial MuseumA mushroom cloud billows about one hour after a nuclear bomb was detonated above Hiroshima, Japan Aug. 6, 1945.
4. NUCLEAR WAR
This is still the most plausible “doomsday” scenario. Despite arms-limitations treaties, there are more than 15,000 nuclear warheads and bombs in existence – many more, in theory, than would be required to kill every human on Earth. Even a small nuclear war has the potential to cause widespread devastation. In 2011, a study by NASA scientists concluded that a limited atomic war between India and Pakistan involving just 100 Hiroshima-sized detonations would throw enough dust into the air to cause temperatures to drop more than 1.2C globally for a decade.
Probability: high. Nine states have nuclear weapons, and more want to join the club. The nuclear wannabes are not paragons of democracy.
Result: it is unlikely that even a global nuclear war between Russia and NATO would wipe us all out, but it would kill billions and wreck the world economy for a century. A regional war, we now know, could have effects far beyond the borders of the conflict.
CERN)/MCT
CERN)/MCTThis is one of the huge particle detectors in the Large Hadron Collider, a 17 mile-long tunnel under the French-Swiss border. Scientists are searching for evidence of what happened right after- and perhaps before- the Big Bang.
5. PARTICLE ACCELERATOR DISASTER
Before the Large Hadron Collider (LHC), the massive machine at CERN in Switzerland that detected the Higgs boson a couple of years ago, was switched on, there was a legal challenge from a German scientist called Otto Rossler, who claimed the atom-smasher could theoretically create a small black hole by mistake – which would then go on to eat the Earth.
The claim was absurd: the collisions in the LHC are far less energetic than those caused naturally by cosmic rays hitting the planet. But it is possible that, one day, a souped-up version of the LHC could create something that destroys the Earth – or even the universe – at the speed of light.
Probability: very low indeed.
Result: potentially devastating, but don’t bother cancelling the house insurance just yet.
AP Photo/Oculus Rift/Fox
AP Photo/Oculus Rift/FoxThis photo shows a scene fromX-Men: Days of Future Past virtual reality experience. Oxford University philosopher Nick Bostrom has speculated that our universe may be one of countless "simulations" running in some alien computer, much like a computer game.
6. ‘GOD’ REACHES FOR THE OFF-SWITCH
Many scientists have pointed out that there is something fishy about our universe. The physical constants – the numbers governing the fundamental forces and masses of nature – seem fine-tuned to allow life of some form to exist. The great physicist Sir Fred Hoyle once wondered if the universe might be a “put-up job”.
More recently, the Oxford University philosopher Nick Bostrom has speculated that our universe may be one of countless “simulations” running in some alien computer, much like a computer game. If so, we have to hope that the beings behind our fake universe are benign – and do not reach for the off-button should we start misbehaving.
Probability: according to Professor Bostrom’s calculations, if certain assumptions are made, there is a greater than 50% chance that our universe is not real. And the increasingly puzzling absence of any evidence of alien life may be indirect evidence that the universe is not what it seems.
Result: catastrophic, if the gamers turn against us. The only consolation is the knowledge that there is absolutely nothing we can do about it.
AP Photo/Charles Rex Arbogast
AP Photo/Charles Rex ArbogastFloodwaters from the Souris River surround homes near Minot State University in Minot, N.D. on June 27, 2011. Global warming is rapidly turning America the beautiful into America the stormy and dangerous, according to the National Climate Assessment report released Tuesday, May 6, 2014.
7. CLIMATE CATASTROPHE
Almost no serious scientists now doubt that human carbon emissions are having an effect on the planet’s climate. The latest report by the Intergovernmental Panel on Climate Change suggested that containing temperature rises to below 2C above the pre-industrial average is now unlikely, and that we face a future three or four degrees warmer than today.
This will not literally be the end of the world – but humanity will need all the resources at its disposal to cope with such a dramatic shift. Unfortunately, the effects of climate change will really start to kick in just at the point when the human population is expected to peak – at about nine billion by the middle of this century. Millions of people, mostly poor, face losing their homes to sea-level rises (by up to a metre or more by 2100) and shifting weather patterns may disrupt agriculture dramatically.
Probability: it is now almost certain that CO2 levels will keep rising to 600 parts per billion and beyond. It is equally certain that the climate will respond accordingly.
Result: catastrophic in some places, less so in others (including northern Europe, where temperature rises will be moderated by the Atlantic). The good news is that, unlike with most of the disasters here, we have a chance to do something about climate change now.

View Article Here Read More

Space Mysteries ~ Alien Safari

We use the most cutting edge theories and technologies available, top astronomers, astrophysicists and astrobiologists seek answers to the mysteries of space in our universe.Since the dawn of humankind, our species has looked to the sky in wonder an...

View Article Here Read More

MIT Scientists Found an Invisible Force Field Protecting Earth






Excerpt from
wallstreetotc.com

The invisible force field seems to be taken from a Star-Trek movie script – it’s invisible, it’s steady, and it doesn’t allow harmful cosmic radiation penetrating into our planet’s atmosphere. Massachusetts Institute of Technology researchers say it was first noticed by two NASA spacecrafts orbiting the Van Allen radiation belt on a 7,200 miles (11,000 km) altitude.

This new invisible force field protecting Earth does a very good job at blocking highly radioactive electrons populating Earth’s upper atmospheric region. NASA said these “ultrarelativistic” electrons were extremely aggressive and they easily circulate in space at speeds very close to the speed of light. They also fry everything on their way from spacecrafts to communication satellites. NASA launched two probe crafts, the Van Allen probes, for the sole purpose of studying these electrons and improving the safety level of their spacecrafts and crew.

NASA says although these electrons are attracted towards Earth by its magnetic field, they cannot get closer than 7,200 miles to it due an invisible shield-like barrier, never detected before. This barrier protects Earth from harmful cosmic radiation and has already done a good job in the past by deflecting several solar blows directed towards Earth. It seems that this mysterious force field operates on low frequency electromagnetism, but its source is still uncertain.

In the end, researchers found out that the barrier was probably generated by the plasmaspheric hiss, a phenomenon occurring in the upper parts of the atmosphere. This plasmaspheric hiss deviates from orbit the fast-moving dangerous particles, and sets them on a parallel plan to one of the Earth’s magnetic field lines, forcing them to fall into the atmosphere, collide with neutrally charged particles, and disappear.

Mary Hudson, professor of physics, said the new NASA observations made over more than two years through its Van Allen probes confirmed the inner barrier’s existence, and brought invaluable new information to the particle acceleration theory.

View Article Here Read More

Could ‘Interstellar’ Wormhole Travel Actually Happen?

Excerpt from  techtimes.com Interstellar may be attracting viewers to the movies at warp speed, but wormholes like the one featured in the new film are likely a reality, deep in space.The movie Interstellar follows a group of astronauts who...

View Article Here Read More

Elusive dark matter may be detected with GPS satellites


This two-clocks-illustration shows the pattern of how two atomic clocks would desynchronize and then resynchronize due to a lump of dark matter sweeping through a Global Positioning System or other atomic clock based network. Photo courtesy of Andrei Derevianko, University of Nevada, Reno.


Excerpt from
sciencerecorder.com


Global Positioning System, or GPS for short, devices are typically used for navigation purposes. But this satellite network could also alert us to something else: the presence of dark matter.

Dark matter is thought to form 80% of the universe, but is difficult to detect because it rarely interacts with ordinary matter. Its makeup is unknown, as it has never been viewed by science. Some have suggested that dark matter is a particle; however, a new study indicates that dark matter may consist of kinks in the quantum field.

According to Andrei Derevianko at the University of Nevada, Reno, and Maxim Pospelov at the Perimeter Institute in Waterloo, Ontario, Canada, dark matter may be made of quantum field cracks that can be detected by GPS. The theory is a revolutionary one, and would change the nature of time and space where the kinds are located.

One of these elements is time, which is tracked by the extremely accurate GPS system. With a network of satellites spanning 50,000 kilometers and traveling through space at 300 kilometers a second, a cosmic kink could disturb the GPS clocks. This quantum crack would require 170 seconds to jump across the networks.

GPS clocks could be interrupted by other factors, but Deverianko and Pospelov believe that only dark matter could disturb the system’s timekeeping in a certain way.

Derevianko is currently pulling data from 15 years of GPS records to search for signs of dark matter’s presence. If no fingerprints are detected, he will use the ground-based atomic clocks belonging to the Network for European Accurate Time and Frequency Transfer.
If dark matter is nothing more than cosmic kinks, it could give some people a new thing to grumble about. “I hear these stories about people getting lost using GPS,” said Derevianko. “Now they could have another excuse: maybe it was dark matter that caused them to lose their way.”

View Article Here Read More

The Mission to land robot on comet to take final step







Excerpt from  theglobeandmail.com
By Ivan Semeniuk

Half a billion kilometres from Earth and 10 years into its remarkable journey, a small robot is about to plunge into space history.

Pending a final green light from mission controllers on Tuesday night, the robot – nicknamed Philae (fee-lay) – will detach from its mother ship and try to hook itself onto one of the most challenging and mysterious objects in the solar system.



It’s a high-risk manoeuvre with plenty of unknowns. But if it works, then the probe will be able to show us what no one has ever experienced: what it’s like to stand on the surface of a comet.

“Comets are new territory,” said Ralf Gellert, a professor of physics at the University of Guelph. “There could be some big surprises.”

Prof. Gellert should know. Fifteen years ago, he helped build one of the instruments on the dishwasher-size lander that will reveal the comet’s composition. No such direct measurement has been made before. Even designing how the instrument should work was fraught with challenges since there was so little known about what kind of surface the lander might find itself on.

“Is it an ice ball with rock and trace metals, or a rock ball with ice on it … or ice below the surface? We didn’t know,” he said.
And scientists still don’t.

When the European Space Agency launched the Rosetta mission in 2004, the mission’s target – Comet Churyumov-Gerasimenko – was little more than a fuzzy blip in astronomers’ telescopes. But Rosetta just arrived in August and it’s been in orbit around the comet since then.

What was assumed to be a single, homogeneous lump of ice and rock has turned out to be a bizarre-looking object in two parts, arranged a bit like the head and body of a rubber duck. By October, scientists had zeroed in on the head portion, which is four kilometres across at its widest point, and settled on a landing site.

Remote sensing data from Rosetta suggest that the comet is quite porous, with a surface that is as black as coal and somewhat warmer than expected. In other words, Philae will probably not be landing on skating-rink-hard ice. Yet, whether the surface will be crusty like a roadside snowbank, fluffy like cigarette ash, or something else entirely is anyone’s guess.

And while scientists and engineers say they’ve done everything they can think of to maximize the lander’s chance of success, they acknowledge it’s entirely possible that Philae will encounter something it can’t handle and smash to bits or sink into oblivion.


Yet the landing is more than a daring jaunt to see what has never been seen before. Comets are also among the most primitive bodies in the solar system. Each one is an amalgam of ice and rock that has been around since Earth and its sister planets formed billions of years ago. In a sense, comets are the leftovers of that process – primordial fossils from the birth of the solar system.

The instrument Prof. Gellert worked on, known as the alpha particle X-ray spectrometer (APXS), will help illuminate this early period by making precise measurements of the comet’s elemental ingredients.

It is carried on a robot arm that will place a radioactive source near the comet’s surface. The particles and X-rays the comet material gives off as a result of this exposure will provide detailed information about what chemical elements the comet contains. This will be augmented by another experiment designed to drill and extract a comet sample for analysis inside the lander.

Prof. Gellert, who has also been closely involved in NASA’s Mars rover missions, said Rosetta’s long timeline and the many unknowns related to the comet makes this week’s landing a trickier proposition than landing on Mars – but also a tremendously exciting one.

“I think it’s a matter of hope for the best and see what happens.”

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑