Tag: oxygen (page 2 of 4)

Could Saturn’s moon Titan host an alternate type of life?


Titan


Excerpt from mashable.com

In a world first, chemical engineers have taken a different look at a question astronomers and biologists have been pondering for decades: Does Saturn moon Titan host life?

Of course, Titan is way too hostile for life as we know it to eke out an existence — it is a frigid world awash with liquid methane and ethane and a noxious atmosphere devoid of any liquid water. But say if there is a different kind of biology, a life as we don't know it, thriving on the organic chemistry that is abundant on Titan's surface?

Normally, astrobiologists combine what we know about Earth's biosphere and astronomers zoom in on other stars containing exoplanets in the hope that some of those alien world have some similarities to Earth. By looking for small rocky exoplanets orbiting inside their star's habitable zones, we are basically looking for a "second Earth" where liquid water is at least possible. Where there's liquid water on Earth, there's inevitably life, so scientists seeking out alien life 'follow the water' in the hope of finding life with a similar terrestrial template on other planets.

Titan, however, does not fall into this category, it is about as un-Earth-like as you can get. So, chemical molecular dynamics expert Paulette Clancy and James Stevenson, a graduate student in chemical engineering, from Cornell University, Ithaca, New York, have looked at Titan in a different light and created a theoretical model of a methane-based, oxygen-free life form that could thrive in that environment.

There is no known template for this kind of life on Earth, but the researchers have studied what chemicals are in abundance on Titan and worked out how a very different kind of life could be sparked.

As a collaborator on the NASA/ESA Cassini-Huygens mission, Lunine, professor in the Physical Sciences in the College of Arts and Sciences’ Department of Astronomy, has been fascinated with the possibility of methane-based life existing on Titan for some time, so he joined forces with Clancy and Stevenson to see what this hypothetical life form might look like.

In their research published in the journal Science Advances on Feb. 27, Clancy and Stevenson focused on building a cell membrane "composed of small organic nitrogen compounds and capable of functioning in liquid methane temperatures of 292 degrees below zero (Fahrenheit; or 94 Kelvin)," writes a Cornell press release. On Earth, water-based molecules form phospholipid bilayer membranes that give cells structure, housing organic materials inside while remaining permeable. On Titan, liquid water isn't available to build these cell membranes.

"We're not biologists, and we're not astronomers, but we had the right tools," said Clancy, lead researcher of the study. "Perhaps it helped, because we didn't come in with any preconceptions about what should be in a membrane and what shouldn't. We just worked with the compounds that we knew were there and asked, 'If this was your palette, what can you make out of that?'"

The researchers were able to model the ideal cell that can do all the things that life can do (i.e. support metabolism and reproduction), but constructed it from nitrogen, carbon and hydrogen-based molecules that are known to exist in Titan's liquid methane seas. This chemical configuration gives this theoretical alien cell stability and flexibility in a similar manner to Earth life cells.
"The engineers named their theorized cell membrane an 'azotosome,' 'azote' being the French word for nitrogen. 'Liposome' comes from the Greek 'lipos' and 'soma' to mean 'lipid body;' by analogy, 'azotosome' means 'nitrogen body.'" — Cornell
"Ours is the first concrete blueprint of life not as we know it," said lead author Stevenson, who also said that he was inspired, in part, by Isaac Asimov, who wrote the 1962 essay "Not as We Know It" about non-water-based life.

Having identified a possible type of cell membrane chemistry that functions in the Titan environment as a cell on Earth might, the next step is to model how such a hypothetical type of biology would function on Titan. In the long run, we might also be able to model what kinds of observable indicators we should look for that might reveal that alien biology's presence.

That way, should a mission be eventually sent to Titan's seas, sampling the chemical compounds in the soup of organics may reveal a biology of a very alien nature.
Scientists have been trying to know if life could exist on Titan, the largest moon of Saturn. According to scientists, there are possibilities that life could survive amidst methane-based lakes of Titan. After conducting many studies, they have found signs of life on Titan, but the scientists also said that life will not be like life on earth.
As per some scientific reports, Titan is the only object other than earth which has clear evidence of stable bodies of surface liquid. Like earth, the moon has mountains, islands, lakes and storms, but it doesn’t have oxygen, which is a major element to support life. It means that only oxygen-free and methane-based can exist on Titan.
According to lead researcher Paulette Clancy, “We didn’t come in with any preconceptions about what should be in a membrane and what shouldn’t. We just worked with the compounds that, we knew were there and asked, ‘If this was your palette, what can you make out of that”.
Clancy said although they are not biologists or astronomers, they had the right tools to find life on Saturn’s largest moon. Adding to that, the researchers didn’t know what should be in a membrane and what should be not. They worked with compounds and found that life can exist on Titan, but would be very different from earth’s life, Clancy added.
According to reports, the researchers had used a molecular dynamics method to know about Titan. They screened for suitable candidate compounds from methane for self-assembly into membrane-like structures. As per the researchers, the most promising compound they discovered was an acrylonitrile azotosome, which is present in the atmosphere of Titan.
As per the researchers, acrylonitrile has shown good stability and flexibility similar to that of phospholipid membranes on Earth. It means that the Saturn largest has atmosphere and conditions to support life in a different way than earth.
- See more at: http://perfscience.com/content/2141391-life-titan-would-be-different-earth#sthash.2Kqc3Ewf.dpuf

View Article Here Read More

Mars Had an Ocean, Scientists Say, Pointing to a Treasure Trove of New Data





Excerpt from nytimes.com

After six years of planetary observations, scientists at NASA say they have found convincing new evidence that ancient Mars had an ocean.

It was probably the size of the Arctic Ocean, larger than previously estimated, the researchers reported on Thursday. The body of water spread across the low-lying plain of the planet’s northern hemisphere for millions of years, they said.

If confirmed, the findings would add significantly to scientists’ understanding of the planet’s history and lend new weight to the view that ancient Mars had everything needed for life to emerge.
“The existence of a northern ocean has been debated for decades, but this is the first time we have such a strong collection of data from around the globe,” said Michael Mumma, principal investigator at NASA’s Goddard Center for Astrobiology and an author of the report, published in the journal Science. “Our results tell us there had to be a northern ocean.”
But other experts said the question was hardly resolved. The ocean remains “a hypothesis,” said Ashwin Vasavada, project scientist of the Curiosity rover mission at the Jet Propulsion Laboratory in Pasadena, Calif.

Dr. Mumma and Geronimo Villanueva, a planetary scientist at NASA, measured two slightly different forms of water in Mars’ atmosphere. One is the familiar H2O, which consists of two hydrogen atoms and one oxygen atom.

The other is a slightly “heavier” version of water, HDO, in which the nucleus of one hydrogen atom contains a neutron. The atom is called deuterium.

The two forms exist in predictable ratios on Earth, and both have been found in meteorites from Mars. A high level of heavier water today would indicate that there was once a lot more of the “lighter” water, somehow lost as the planet changed.

The scientists found eight times as much deuterium in the Martian atmosphere than is found in water on Earth. Dr. Villanueva said the findings “provide a solid estimate of how much water Mars once had by determining how much water was lost to space.”

He said the measurements pointed to an ancient Mars that had enough water to cover the planet to a depth of at least 137 meters, or about 450 feet. Except for assessments based on the size of the northern basin, this is the highest estimate of the amount of water on early Mars that scientists have ever made.

The water on Mars mostly would have pooled in the northern hemisphere, which lies one to three kilometers — 0.6 to 1.8 miles — below the bedrock surface of the south, the scientists said.
At one time, the researchers estimated, a northern ocean would have covered about 19 percent of the Martian surface. In comparison, the Atlantic Ocean covers about 17 percent of Earth’s surface.

The new findings come at a time when the possibility of a northern ocean on Mars has gained renewed attention.

The Curiosity rover measured lighter and heavier water molecules in the Gale Crater, and the data also indicated that Mars once had substantial amounts of water, although not as much as Dr. Mumma and Dr. Villanueva suggest.

“The more water was present — and especially if it was a large body of water that lasted for a longer period of time — the better the chances are for life to emerge and to be sustained,” said Paul Mahaffy, chief of the atmospheric experiments laboratory at the Goddard Space Flight Center.

Just last month, the science team running the Curiosity rover held its first formal discussion about the possibility of such an ocean and what it would have meant for the rest of Mars.

Scientists generally agree that lakes must have existed for millions of years in Gale Crater and elsewhere. But it is not clear how they were sustained and replenished.

“For open lakes to remain relatively stable for millions of years — it’s hard to figure how to do that without an ocean,” Dr. Vasavada said. “Unless there was a large body of water supplying humidity to the planet, the water in an open lake would quickly evaporate and be carried to the polar caps or frozen out.”

Yet climate modelers have had difficulty understanding how Mars could have been warm enough in its early days to keep water from freezing. Greenhouse gases could have made the planet much warmer at some point, but byproducts of those gases have yet to be found on the surface.

James Head, a professor of geological sciences at Brown University, said in an email that the new paper had “profound implications for the total volume of water” on ancient Mars.

But, he added, “climate models have great difficulty in reconstructing an early Mars with temperatures high enough to permit surface melting and liquid water.”

Also missing are clear signs of the topographic and geological features associated with large bodies of water on Earth, such as sea cliffs and shorelines.

Based on low-resolution images sent back by the Viking landers, the geologist Timothy Parker and his colleagues at the NASA Jet Propulsion Lab reported in 1989 the discovery of ancient shorelines. But later high-resolution images undermined their conclusions.

Still, Dr. Parker and his colleagues have kept looking for — and finding, they say — some visible signs of a northern ocean. The new data “certainly encourages me to do more,” he said in an interview.

Other researchers have also been looking for signs of an ancient ocean.

In 2013, Roman DiBiase, then a postdoctoral student at the California Institute of Technology, and Michael Lamb, an assistant professor of geology there, identified what might have been a system of channels on Mars that originated in the southern hemisphere and emptied steeply into the northern basin — perhaps, they said, water flowing through a delta to an ocean.

View Article Here Read More

Strange find on Titan sparks chatter about life


Titan


Excerpt from nbcnews.com

Studies may suggest methane-based organic processes ... but maybe not  
New findings have roused a great deal of hoopla over the possibility of life on Saturn's moon Titan, which some news reports have further hyped up as hints of extraterrestrials.
However, scientists also caution that aliens might have nothing to do with these findings.

All this excitement is rooted in analyses of chemical data returned by NASA's Cassini spacecraft. One study suggested that hydrogen was flowing down through Titan's atmosphere and disappearing at the surface. Astrobiologist Chris McKay at NASA's Ames Research Center speculated that this could be a tantalizing hint that hydrogen is getting consumed by life.

"It's the obvious gas for life to consume on Titan, similar to the way we consume oxygen on Earth," McKay said.

Another study investigating hydrocarbons on Titan's surface found a lack of acetylene, a compound that could be consumed as food by life that relies on liquid methane instead of liquid water to live.
"If these signs do turn out to be a sign of life, it would be doubly exciting because it would represent a second form of life independent from water-based life on Earth," McKay said.
However, NASA scientists caution that aliens might not be involved at all.

"Scientific conservatism suggests that a biological explanation should be the last choice after all non-biological explanations are addressed," said Mark Allen, principal investigator with the NASA Astrobiology Institute Titan team. "We have a lot of work to do to rule out possible non-biological explanations. It is more likely that a chemical process, without biology, can explain these results."
McKay told Space.com that "both results are still preliminary."

To date, methane-based life forms are only speculative, with McKay proposing a set of conditions necessary for these kinds of organisms on Titan in 2005. Scientists have not yet detected this form of life anywhere, although there are liquid-water-based microbes on Earth that thrive on methane or produce it as a waste product. 

On Titan, where temperatures are around minus-290 degrees Fahrenheit (-179 degrees Celsius), any organisms would have to use a substance that is liquid as its medium for living processes. Water itself cannot do, because it is frozen solid on Titan's surface. The list of liquid candidates is very short — liquid methane and related molecules such as ethane. Previous studies have found Titan to have lakes of liquid methane.

Missing hydrogen? 

The dearth of hydrogen Cassini detected is consistent with conditions that could produce methane-based life, but do not conclusively prove its existence, cautioned researcher Darrell Strobel, a Cassini interdisciplinary scientist based at Johns Hopkins University in Baltimore. Strobel wrote the paper on hydrogen appearing online in the journal Icarus.


Strobel looked at densities of hydrogen in different parts of the atmosphere and at the surface. Previous models from scientists had predicted that hydrogen molecules, a byproduct of ultraviolet sunlight breaking apart acetylene and methane molecules in the upper atmosphere, should be distributed fairly evenly throughout the atmospheric layers.

Strobel's computer simulations suggest a hydrogen flow down to the surface at a rate of about 10,000 trillion trillion molecules per second. 

"It's as if you have a hose and you're squirting hydrogen onto the ground, but it's disappearing," Strobel said. "I didn't expect this result, because molecular hydrogen is extremely chemically inert in the atmosphere, very light and buoyant. It should 'float' to the top of the atmosphere and escape."

Strobel said it is not likely that hydrogen is being stored in a cave or underground space on Titan. An unknown mineral could be acting as a catalyst on Titan's surface to help convert hydrogen molecules and acetylene back to methane.

Although Allen commended Strobel, he noted "a more sophisticated model might be needed to look into what the flow of hydrogen is."

Consumed acetylene? 

Scientists had expected the sun's interactions with chemicals in the atmosphere to produce acetylene that falls down to coat Titan's surface. But when Cassini mapped hydrocarbons on Titan's surface, it detected no acetylene on the surface, according to findings appearing online in the Journal of Geophysical Research.


Instead of alien life on Titan, Allen said one possibility is that sunlight or cosmic rays are transforming the acetylene in icy aerosols in the atmosphere into more complex molecules that would fall to the ground with no acetylene signature.

In addition, Cassini detected an absence of water ice on Titan's surface, but loads of benzene and another as-yet-unidentified material, which appears to be an organic compound. The researchers said that a film of organic compounds is covering the water ice that makes up Titan's bedrock. This layer of hydrocarbons is at least a few millimeters to centimeters thick, but possibly much deeper in some places. 

"Titan's atmospheric chemistry is cranking out organic compounds that rain down on the surface so fast that even as streams of liquid methane and ethane at the surface wash the organics off, the ice gets quickly covered again," said Roger Clark, a Cassini team scientist based at the U.S. Geological Survey in Denver. "All that implies Titan is a dynamic place where organic chemistry is happening now."

All this speculation "is jumping the gun, in my opinion," Allen said.

"Typically in the search for the existence of life, one looks for the presence of evidence -- say, the methane seen in the atmosphere of Mars, which can't be made by normal photochemical processes," Allen added. "Here we're talking about absence of evidence rather than presence of evidence — missing hydrogen and acetylene — and oftentimes there are many non-life processes that can explain why things are missing."

These findings are "still a long way from evidence of life," McKay said. "But it could be interesting."

View Article Here Read More

Scientists Believe Oxygen Free Methane Based Aliens Might Exist on Icy Saturn Moon Titan





Excerpt from viralglobalnews.com

A group of scientists at Cornell University believe that Titan, one of Saturn’s moons, may be a haven of life. However, it would not be in the form that human beings know. Methane based life forms might live on Titan, the scientists have said, after they created a model of an oxygen free life form which would be able to thrive in the icy, unforgiving conditions that Saturn’s moon offers.
They studied the various forms of cell membranes that exist on Earth, which are made up of lipid bi-layer structures. The Cornell scientists said such membranes would not be able to exist in environments where liquid water could not be present, according to Design and Trend.
Titan has plenty of lakes filled with methane, so that means it might not be habitable in the way that scientists had formerly described habitability. However, Dr. James Stevenson and his team thinks that contrarily structured membranes could offer the foundation for life to exist on Saturn’s moon. The model they created used organic nitrogen mixtures, so that the new structure could easily function on Titan in the richness of the methane that exists in liquid form there.

 Titan

Dr. Stevenson said it was Isaac Asimov, the celebrated sci-fi writer, who first gave the rudimentary inspiration for the idea in the paper he penned, which was called the Not as We Know It essay. It was written about non-water-based life forms. Because Saturn’s moon is the only known celestial form in the solar system to have naturally occurring fluids on its surface, except for the Earth, the group of scientists believe it to be a possible perfect foundation for life forms to develop.
Dr. Paulette Clancy, who has helped lead the group, constructed an “azotosome.” It is comparable in name origin to liposome which comes from the Greek words lipos and soma. An azotosome comes from the French word for nitrogen. Therefore, the word is describing a nitrogen body.
Instead of trying to find alien life within the area that surrounds the Sun where water exists in liquid form, the group decided to try and imagine a new kind of cell, grounded on methane instead of water. Clancy and the team were dumbfounded to find that this new projected model presented an alike stability to the cell membranes already here on Earth.
Dr. Clancy seemed very anxious to carry on the group’s work and find out how such compounds would truly work in the methane atmosphere. Dr. Jonathan Lunine, who is a top expert in Titan and also one of the co-authors of the study, thinks that it might be possible in the future to in fact test these theories by actually examing organic material from Saturn’s moon. In the years to come, Dr. Lunine stated that probes might be sent to Titan to gather the needed material by floating down on the methane seas of the moon of Saturn.
The group discovered a compound they named acrylonitrile azotosome, which appeared to show good stability. It had a strong barricade to decomposition, and a suppleness that was similar to phospholipid membranes that exist on Earth. Acrylonitrile is a poisonous, colorless, liquid organic compound that is used in the production of acrylic fibers and thermoplastics and it is present in Titan’s atmosphere as well.
They have written up about their discovery and what they believe to be possible. The scientists’ paper was printed up in the journal Science Advances on Friday.

View Article Here Read More

How will life on earth compare to life for the Mars One pioneers?


To infinity and beyond? Maggie Lieu
To infinity and beyond? Maggie Lieu Photo: Peter Quinnell


From telegraph.co.uk
By Nick Curtis

On a different planet - Nick Curtis imagines a message from 'Martianaut' Maggie Lieu to her parents back at home


Mars Mission, British Martianaut Maggie Lieu’s Log
Day One: Stardate 22/02/2025. 

Hello Mission Control.... Just kidding! Hi mum, hi dad, or should I say earthlings! 
Well, me and Bruce the Australian Martianaut finally touched down beside the Herschel II Strait on the red planet today, the last of 12 pairs to arrive - though as you know it was touch and go. Ten years of training and research almost went down the drain when Google got hit by a massive retrospective tax bill and had to withdraw all its branded sponsorship from the starship at the last minute: 

fortunately Amazon stepped in, on the agreement we install its first matter transference delivery portal (“It’s there before you know it”) here. And rename the ship Bezos 1, of course 
The trip was textbook, with both of us uploading videos on how to apply makeup and bake cupcakes in space direct to the Weibo-spex of our crowdsource funders in China - great practice for The Great Martian Bakeoff on BBC 12 next year (subscribers only). The one hairy moment was a near miss with that Virgin Galactic rocket, Beardie IV, that went AWOL five years ago. We were so close we could see Leonardo diCaprio’s little screaming face pressed against his porthole. And Kim Kardashian’s bum pressed against hers - though it’s looking kinda old now and I hoped we’d seen the last of it.


So what can I tell you? When we landed the others threw us a party with full fat milk, rare beef and waffles (the only official space superfoods since it was discovered that kale and quinoa cause impotence). The landscape is pretty barren, just acres of rolling sand and no one in sight, sort of like Greece after it left the Eurozone and the entire population moved to Germany. Or like the so-called Caliphate after Islamic State finally perfected its time machine and managed to transport itself and all its followers back to the 12th century. 

The temperature outside is about 20c, so a lot cooler than it is at home since the ice caps melted. There’s water here, but not as much as is now covering Indonesia, Holland and Somerset. The atmosphere is 96% carbon dioxide so Juan, the Spanish Martianaut, had to keep his suit on when he went out to smoke. He tried to get us all to buy duty free for him in Mexico City spaceport before we left, now that a pack of cigarettes costs 450 Euros in the shops, and they’ve been camouflaged so you can’t find them. 

Maggie Lieu (Guardian)


The construction-droids did a pretty good job building Mars Camp out of the recycled parts of all those closed Tesco Metros. They say we have enough air up here to last 20 years, Earth’s stocks of storable oxygen having increased tenfold when the European Parliament collapsed following the expenses scandal. I still can’t believe that Dasha Putin-Mugabe was claiming for SIX driverless cars while she was EU President, and employing her wife as her accountant. And her being the first transgender Russian lesbian to hold the office, too. 

Speaking of politics, how is life in coalition Britain? Who has the upper hand at the moment? UKIP? Scots Nats? The Greens? or those nutters from Cornwall, Mebion Kernow? Or are they underwater now. And how is young Straw doing now Labour is the smallest party in Parliament, after the New New New Conservatives? Hard to believe it’s three years since the last Lib Dem lost her seat. 

I gather that some things have improved internationally now that Brian Cox has developed his own time machine at the Wowcher-Hawking Institute in Cambridge, and worked out that the entire world can now transport all its waste products back to the Caliphate in the 12th century. 

We can see the Earth from here through the Clinton2020 Telescope that the US president endowed us with after her brief period in office. The joke up here is that she did it to keep a proper eye either on her husband (though he doesn’t get around so much any more, obviously) or on what President Palin is up to. I still can’t believe that she sold Alaska to Russia to pay the compensation bill for the Grand Canyon Fracking Collapse. 

Even through the Clinton2020 the Earth looks pretty small, though at times, when the stars are really bright, we can see the Great Wall 2 ring of laser satellites that China has pointed at Russia to discourage any more “accidental” incursions. 

Our team up here is like a microcosm of human life on earth. Well, up to a point. As you know the French and Italian Martianauts were expelled from the team before lift-off, because of some scandal or other. We weren’t told if it was financial or sexual but a space bra and a data stick with three million Bitcoins on it were found in the airlock. 

The African and Brazilian Martianauts swan around the place as if they PERSONALLY solved the world’s food and energy problems.
And the North Korean guy just sits in the corner, muttering into some device up his sleeve and scowling. All the freeze-dried cheese has gone and he’s looking quite fat, if you get my meaning. 

I don’t get much time to myself, what with work, the non-denominational Sorry Meetings where we apologise in case we’ve accidently offended someone’s beliefs, and the communal space-pilates sessions (the North Korean guy skips those so he may be in line for a compulsory gastric band, as mandated by the Intergalactic Health Organisation). 

I always try and upload the latest Birmingham City Games onto my cortex chip when I feel homesick: I know it's not fashionable, but I think football got better when they replaced the players with robots and the wage bill - and the number of court cases - dropped to zero. I know the electricity bill is massive, but the new Brazilian solar technology should fix that. 

Anyway, got to run now. We’re putting together a bid to have the 2036 Olympics up here. 

Bye, or as we say on Mars - see you on the dark side.

View Article Here Read More

Mummified monk revealed inside Buddha statue


635603189441117628-mummy-buddha



Excerpt from usatoday.com

The mummified remains of a monk have been revealed inside a nearly 1,000-year old Chinese statue of a Buddha.

The mummy inside the gold-painted papier-mâché statue is believed to be that of Liuquan, a Buddhist master of the Chinese Meditation School who died around the year 1100, researchers said. It's the only Chinese Buddhist mummy to undergo scientific research in the West.

The statue was on display last year at the Drents Museum as part of an exhibit on mummies. It was an cited as an example of self-mummification, an excruciating, years-long process of meditation, starvation, dehydration and poisoning that some Buddhist monks undertook to achieve enlightenment and veneration.

When the exhibit ended in August, a CT scan at the Meander Medical Center in the Netherlands revealed the seated skeleton. Samples taken from organ cavities provided one big surprise: paper scraps printed with ancient Chinese characters indicating the high-status monk may have been worshiped as a Buddha.

A CT scan has revealed a mummified Chinese monk inside a Buddha statue. The remains date back about 1,000 years. Video provided by Newsy Newslook
The finding was first reported in December but did not get wide notice. Irish Archaeology carried a report over the weekend, which apparently started the news ball rolling.

But the revelation is not, as some reports claim, "a shocking discovery," The History Blog notes: "It was known to be inside the statue all along ... that's why it was sent to the Drents Museum in the first place as part of the Mummies exhibition."

The mummy's existence was discovered in 1996 when the statue was being restored in the Netherlands, Live Science writes, explaining what was found, how its age was determined and when the first detailed skeletal imaging was performed.




DNA tests were conducted on bone samples, and the Dutch team plans to publish its finding in a forthcoming monograph.
Researchers still have not determined whether the monk mummified himself, a practice that was also widespread in Japan and that was outlawed in the 19th century. If he did, the process was gruesome, as Ancient Origins explains:
For the first 1,000 days, the monks ceased all food except nuts, seeds, fruits and berries and they engaged in extensive physical activity to strip themselves of all body fat. For the next one thousand days, their diet was restricted to just bark and roots. Near the end of this period, they would drink poisonous tea made from the sap of the Urushi tree, which caused vomiting and a rapid loss of body fluids. It also acted as a preservative and killed off maggots and bacteria that would cause the body to decay after death.
In the final stage, after more than six years of torturous preparation, the monk would lock himself in a stone tomb barely larger than his body, where he would go into a state of meditation. He was seated in the lotus position, a position he would not move from until he died. A small air tube provided oxygen to the tomb. Each day, the monk rang a bell to let the outside world know he was still alive. When the bell stopped ringing, the tube was removed and the tomb sealed for the final thousand day period of the ritual.
At the end of this period, the tomb would be opened to see if the monk was successful in mummifying himself. If the body was found in a preserved state, the monk was raised to the status of Buddha, his body was removed from the tomb and he was placed in a temple where he was worshiped and revered. If the body had decomposed, the monk was resealed in his tomb and respected for his endurance, but not worshiped
If you find yourself in Budapest before May, the Buddha mummy statue is on display at the Hungarian Natural History Museum.

View Article Here Read More

Mars One mission cuts candidate pool down to 100 aspiring colonists

Excerpt from mashable.comOnly 100 people are still competing for four seats on a one-way trip to Mars advertised by Dutch nonprofit Mars One.In its latest round of cuts, the foundation cut its applicant pool from 660 to 100 finalists on Tuesday. More ...

View Article Here Read More

Ancient rocks show life could have flourished on Earth 3.2 billion years ago


photo of red rocks and blue sky
The oldest samples are sedimentary rocks that formed 3.2 billion years ago in
northwestern Australia. They contain chemical evidence for nitrogen
fixation by microbes.R. Buick / UW



Excerpt from
washington.edu

A spark from a lightning bolt, interstellar dust, or a subsea volcano could have triggered the very first life on Earth.
But what happened next? Life can exist without oxygen, but without plentiful nitrogen to build genes – essential to viruses, bacteria and all other organisms – life on the early Earth would have been scarce.

The ability to use atmospheric nitrogen to support more widespread life was thought to have appeared roughly 2 billion years ago. Now research from the University of Washington looking at some of the planet’s oldest rocks finds evidence that 3.2 billion years ago, life was already pulling nitrogen out of the air and converting it into a form that could support larger communities.

“People always had the idea that the really ancient biosphere was just tenuously clinging on to this inhospitable planet, and it wasn’t until the emergence of nitrogen fixation that suddenly the biosphere become large and robust and diverse,” said co-author Roger Buick, a UW professor of Earth and space sciences. “Our work shows that there was no nitrogen crisis on the early Earth, and therefore it could have supported a fairly large and diverse biosphere.”
The results were published Feb. 16 in Nature.

The authors analyzed 52 samples ranging in age from 2.75 to 3.2 billion years old, collected in South Africa and northwestern Australia. These are some of the oldest and best-preserved rocks on the planet. The rocks were formed from sediment deposited on continental margins, so are free of chemical irregularities that would occur near a subsea volcano. They also formed before the atmosphere gained oxygen, roughly 2.3 to 2.4 billion years ago, and so preserve chemical clues that have disappeared in modern rocks.

Even the oldest samples, 3.2 billion years old – three-quarters of the way back to the birth of the planet – showed chemical evidence that life was pulling nitrogen out of the air. The ratio of heavier to lighter nitrogen atoms fits the pattern of nitrogen-fixing enzymes contained in single-celled organisms, and does not match any chemical reactions that occur in the absence of life.

“Imagining that this really complicated process is so old, and has operated in the same way for 3.2 billion years, I think is fascinating,” said lead author Eva Stüeken, who did the work as part of her UW doctoral research. “It suggests that these really complicated enzymes apparently formed really early, so maybe it’s not so difficult for these enzymes to evolve.”

Genetic analysis of nitrogen-fixing enzymes have placed their origin at between 1.5 and 2.2 billion years ago.

“This is hard evidence that pushes it back a further billion years,” Buick said.

Fixing nitrogen means breaking a tenacious triple bond that holds nitrogen atoms in pairs in the atmosphere and joining a single nitrogen to a molecule that is easier for living things to use. The chemical signature of the rocks suggests that nitrogen was being broken by an enzyme based on molybdenum, the most common of the three types of nitrogen-fixing enzymes that exist now. 

Molybdenum is now abundant because oxygen reacts with rocks to wash it into the ocean, but its source on the ancient Earth – before the atmosphere contained oxygen to weather rocks – is more mysterious.

The authors hypothesize that this may be further evidence that some early life may have existed in single-celled layers on land, exhaling small amounts of oxygen that reacted with the rock to release molybdenum to the water.

“We’ll never find any direct evidence of land scum one cell thick, but this might be giving us indirect evidence that the land was inhabited,” Buick said. “Microbes could have crawled out of the ocean and lived in a slime layer on the rocks on land, even before 3.2 billion years ago.”

Future work will look at what else could have limited the growth of life on the early Earth. Stüeken has begun a UW postdoctoral position funded by NASA to look at trace metals such as zinc, copper and cobalt to see if one of them controlled the growth of ancient life.

Other co-authors are Bradley Guy at the University of Johannesburg in South Africa, who provided some samples from gold mines, and UW graduate student Matthew Koehler. The research was funded by NASA, the UW’s Virtual Planetary Laboratory, the Geological Society of America and the Agouron Institute.

View Article Here Read More

Virgin Galactic Opens LauncherOne Facility in Long Beach ~ Schedules March 7th Job Fair


 


Excerpt from spacenews.com
by Jeff Foust 

Virgin Galactic announced Feb. 12 that the company is opening a new facility in Long Beach, California, devoted to development of its small satellite launch vehicle.  Virgin Galactic said that it is leasing a 13,900-square-meter building at the Long Beach Airport that it will use for the design and manufacturing of LauncherOne.

The company did not disclose the terms of the lease.  “The technical progress our team has made designing and testing LauncherOne has enabled a move into a dedicated facility to produce the rocket at quantity,” Virgin Galactic chief executive George Whitesides said in a statement announcing the new facility. 

LauncherOne work has been based to date in Mojave, California.  LauncherOne is an air-launch system for satellites weighing up to 225 kilograms. The system will use the same aircraft, WhiteKnightTwo, as the company’s SpaceShipTwo suborbital vehicle, but replaces SpaceShipTwo with a two-stage launch vehicle using engines fueled by liquid oxygen and kerosene.  At the Federal Aviation Administration Commercial Space Transportation Conference Feb. 4, William Pomerantz, vice president of special projects for Virgin Galactic, said the company has already tested engines and other “core infrastructure” of LauncherOne. 

“We are a fairly vertically-integrated team,” he said. “We really do control a lot of the production in house.”  Pomerantz said that about 60 of the 450 employees of Virgin Galactic and its wholly-owned subsidiary, The Spaceship Company, are currently dedicated to the LauncherOne program.  Virgin Galactic said it will hold a job fair at its new Long Beach facility March 7, but did not disclose how many people it plans to hire there. The Virgin Galactic website lists approximately 20 job opening related to the LauncherOne program as of Feb. 12.  When Virgin Galactic announced the LauncherOne program in 2012, it said it had signed up several companies as initial customers, including Planetary Resources, GeoOptics, Spaceflight Inc., and Skybox Imaging, since acquired by Google.  

In January, the Virgin Group announced it was investing in OneWeb, a venture that plans a constellation of nearly 650 satellites in low Earth orbit to provide broadband communications, with at least some of those satellites to be launched by LauncherOne. 

Virgin Galactic Opens LauncherOne Facility in Long Beach

by — February 12, 2015
Virgin Galactic LauncherOne
Virgin Galactic’s LauncherOne. Credit: Virgin Galactic
WASHINGTON — Virgin Galactic announced Feb. 12 that the company is opening a new facility in Long Beach, California, devoted to development of its small satellite launch vehicle.
Virgin Galactic said that it is leasing a 13,900-square-meter building at the Long Beach Airport that it will use for the design and manufacturing of LauncherOne. The company did not disclose the terms of the lease.
“The technical progress our team has made designing and testing LauncherOne has enabled a move into a dedicated facility to produce the rocket at quantity,” Virgin Galactic chief executive George Whitesides said in a statement announcing the new facility. LauncherOne work has been based to date in Mojave, California.
Advertisement
LauncherOne is an air-launch system for satellites weighing up to 225 kilograms. The system will use the same aircraft, WhiteKnightTwo, as the company’s SpaceShipTwo suborbital vehicle, but replaces SpaceShipTwo with a two-stage launch vehicle using engines fueled by liquid oxygen and kerosene.
At the Federal Aviation Administration Commercial Space Transportation Conference Feb. 4, William Pomerantz, vice president of special projects for Virgin Galactic, said the company has already tested engines and other “core infrastructure” of LauncherOne. “We are a fairly vertically-integrated team,” he said. “We really do control a lot of the production in house.”
Pomerantz said that about 60 of the 450 employees of Virgin Galactic and its wholly-owned subsidiary, The Spaceship Company, are currently dedicated to the LauncherOne program.
Virgin Galactic said it will hold a job fair at its new Long Beach facility March 7, but did not disclose how many people it plans to hire there. The Virgin Galactic website lists approximately 20 job opening related to the LauncherOne program as of Feb. 12.
When Virgin Galactic announced the LauncherOne program in 2012, it said it had signed up several companies as initial customers, including Planetary Resources, GeoOptics, Spaceflight Inc., and Skybox Imaging, since acquired by Google.
In January, the Virgin Group announced it was investing in OneWeb, a venture that plans a constellation of nearly 650 satellites in low Earth orbit to provide broadband communications, with at least some of those satellites to be launched by LauncherOne.
- See more at: http://spacenews.com/virgin-galactic-opens-launcherone-facility-in-long-beach/#sthash.sxcVmjTW.dpuf

View Article Here Read More

A ‘bionic leaf’ that turns sunlight into fuel


Excerpt from cnbc.com

By Robert Ferris



The invention could pave the way for numerous innovations—by converting solar power into biofuels, it may help solve the vexing difficulty of storing unused solar energy, which is one of the most common criticisms of solar power as a viable energy source.
The process could also help make plastics and other chemicals and substances useful to industry and research.


The current experiment builds on previous research led by Harvard engineer Daniel Nocera, who in 2011 demonstrated an "artificial leaf" device that uses solar power to generate usable energy. 

Nocera's original invention was a wafer-like electrode suspended in water. When a current runs through the electrode from a power source such as a solar panel, for example, it causes the water to break down into its two components: hydrogen and oxygen. 

Nocera's device garnered a lot of attention for opening up the possibility of using sunlight to create hydrogen fuel—once considered a possible alternative to gasoline. 

But hydrogen has not taken off as a fuel source, even as other alternative energy sources survive and grow amid historically low oil prices. Hydrogen is expensive to transport, and the costs of adopting and distributing hydrogen are high. A gas station owner could more easily switch a pump from gasoline to biofuel, for example.


Now, Nocera and a team of Harvard researchers figured out how to use the bionic leaf to make a burnable biofuel, according to a study published Monday in the journal PNAS. The biologists on the team genetically modified a strain of bacteria that consumes hydrogen and produces isopropanol—the active ingredient in rubbing alcohol. In doing so, they successfully mimicked the natural process of photosynthesis—the way plants use energy from the sun to survive and grow.

This makes two things possible that have always been serious challenges for alternative energy space—solar energy can be converted into a storable form of energy, and the hydrogen can generate a more easily used fuel.


To be sure, the bionic leaf developments are highly unlikely to replace fossil fuels such as oil and natural gas any time soon—especially as the prices of both are currently so low. But it could be a good supplemental source. 

"One idea Dan [Nocera] and I share, which might seem a little wacky, is personalized energy" that doesn't rely on the power grid, biochemist Pamela Silver, who participated in the study, told CNBC in a telephone interview. 


Typically, people's energy needs are met by central energy production facilities—they get their electricity from the power grid, which is fed by coal- or gas-burning power plants, or solar farms, for example. Silver said locally produced energy could be feasible in developing countries that lack stable energy infrastructure, or could even appeal to people who choose to live off the grid.

"Instead of having to buy and store fuel, you can have your bucket of bacteria in your backyard," Silver said. 

Besides, the experiment was an attempt at proof-of-concept—the scientists wanted to demonstrate what could be done, Silver said. Now that they have mastered this process, further possibilities can be explored.  

"No insult to chemists, but biology is the best chemist there is, so we don't even know what we can make," said Silver. "We can make drugs, materials—we are just at the tip of the iceberg." 

The team hopes to develop many different kinds of bacteria that can produce all sorts of substances. That would mean, potentially at least, setting up the bionic leaf device and then plugging in whatever kind of bacteria might be needed at the moment.

For now, they want to increase the efficiency of the device, which is already much more efficient at photosynthesizing than plants are. Then they will focus on developing other kinds of bacteria to plug into the device.

"The uber goal, which is probably 20 years out," Silver said, "is converting the commodity industry away from petroleum."

View Article Here Read More

Scientists discover organism that hasn’t evolved in more than 2 billion years



Nonevolving bacteria
These sulfur bacteria haven't evolved for billions of years.
Credit: UCLA Center for the Study of Evolution and the Origin of Life

Excerpt from natmonitor.com
By Justin Beach

If there was a Guinness World Record for not evolving, it would be held by a sulfur-cycling microorganism found off the course of Australia. According to research published in the Proceedings of the National Academy of Sciences, they have not evolved in any way in more than two billion years and have survived five mass extinction events.
According to the researchers behind the paper, the lack of evolution actually supports Charles Darwin’s theory of evolution by natural selection.
The researchers examined the microorganisms, which are too small to see with the naked eye, in samples of rocks from the coastal waters of Western Australia. Next they examined samples of the same bacteria from the same region in rocks 2.3 billion years old. Both sets of bacteria are indistinguishable from modern sulfur bacteria found off the coast of Chile.





“It seems astounding that life has not evolved for more than 2 billion years — nearly half the history of the Earth. Given that evolution is a fact, this lack of evolution needs to be explained,” said J. William Schopf, a UCLA professor of earth, planetary and space sciences in the UCLA College who was the study’s lead author in a statement.
Critics of Darwin’s theory of evolution might be tempted to jump on this discovery as proof that Darwin was wrong, but that would be a mistake.
Darwin’s work focused more on species that changed, rather than species that didn’t. However, there is nothing in Darwin’s work that states that a successful species that has found it’s niche in an ecosystem has to change. Unless there is change in the ecosystem or competition for resources there would be no reason for change.
“The rule of biology is not to evolve unless the physical or biological environment changes, which is consistent with Darwin. These microorganisms are well-adapted to their simple, very stable physical and biological environment. If they were in an environment that did not change but they nevertheless evolved, that would have shown that our understanding of Darwinian evolution was seriously flawed.” said Schopf, who also is director of UCLA’s Center for the Study of Evolution and the Origin of Life.
It is likely that there were genetic mutations in the organisms. Mutations are fairly random and happen in all species, but unless those mutations are improvements that help the species function better in the environment, they usually do not get passed on.
Schopf said that the findings provide further proof that Darwin’s ideas were right.
The oldest fossils analyzed for the study date back to the Great Oxidation Event. This event, which occurred between 2.2 and 2.4 billion years ago, saw a substantial increase in Earth’s oxygen levels. That period also saw an increase in sulfates and nitrates, which is all that the microorganisms would have needed to survive and reproduce.
Shopf and his team used Raman spectroscopy, which allows scientists to examine the composition and chemistry of rocks as well as confocal laser scary microscopy to generate 3-D images of fossils embedded in rock.
The research was funded by NASA Astrobiology Institute, in the hope that it will help the space agency to find life elsewhere.

View Article Here Read More

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me


Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.

Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin


Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

View Article Here Read More

New data that fundamental physics constants underlie life-enabling universe

Excerpt from spacedaily.com For nearly half a century, theoretical physicists have made a series of discoveries that certain constants in fundamental physics seem extraordinarily fine-tuned to allow for the emergence of a life-enabling universe.Thi...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑