Tag: opportunities (page 2 of 7)

Earth’s Moon May Not Be Critical to Life Afterall




Excerpt from space.com

The moon has long been viewed as a crucial component in creating an environment suitable for the evolution of complex life on Earth, but a number of scientific results in recent years have shown that perhaps our planet doesn't need the moon as much as we have thought.

In 1993, French astronomer Jacques Laskar ran a series of calculations indicating that the gravity of the moon is vital to stabilizing the tilt of our planet. Earth's obliquity, as this tilt is technically known as, has huge repercussions for climate. Laskar argued that should Earth's obliquity wander over hundreds of thousands of years, it would cause environmental chaos by creating a climate too variable for complex life to develop in relative peace.
So his argument goes, we should feel remarkably lucky to have such a large moon on our doorstep, as no other terrestrial planet in our solar system has such a moon. Mars' two satellites, Phobos and Deimos, are tiny, captured asteroids that have little known effect on the Red Planet. Consequently, Mars' tilt wobbles chaotically over timescales of millions of years, with evidence for swings in its rotational axis at least as large as 45 degrees. 


The stroke of good fortune that led to Earth possessing an unlikely moon, specifically the collision 4.5 billion years ago between Earth and a Mars-sized proto-planet that produced the debris from which our Moon formed, has become one of the central tenets of the 'Rare Earth' hypothesis. Famously promoted by Peter Ward and Don Brownlee, it argues that planets where everything is just right for complex life are exceedingly rare.

New findings, however, are tearing up the old rule book. In 2011, a trio of scientists — Jack Lissauer of NASA Ames Research Center, Jason Barnes of the University of Idaho and John Chambers of the Carnegie Institution for Science — published results from new simulations describing what Earth's obliquity would be like without the moon. What they found was surprising.

"We were looking into how obliquity might vary for all sorts of planetary systems," says Lissauer. "To test our code we began with integrations following the obliquity of Mars and found similar results to other people. But when we did the obliquity of Earth we found the variations were much smaller than expected — nowhere near as extreme as previous calculations suggested they would be."
Lissauer's team found that without the moon, Earth's rotational axis would only wobble by 10 degrees more than its present day angle of 23.5 degrees. The reason for such vastly different results to those attained by Jacques Laskar is pure computing power. Today's computers are much faster and capable of more accurate modeling with far more data than computers of the 1990s.

Lissauer and his colleagues also found that if Earth were spinning fast, with one day lasting less than 10 hours, or rotating retrograde (i.e. backwards so that the sun rose in the West and set in the East), then Earth stabilized itself thanks to the gravitational resonances with other planets, most notably giant Jupiter. There would be no need for a large moon. 

Earth's rotation has not always been as leisurely as the current 24 hour spin-rate. Following the impact that formed the moon, Earth was spinning once every four or five hours, but it has since gradually slowed by the moon's presence. As for the length of Earth's day prior to the moon-forming impact, nobody really knows, but some models of the impact developed by Robin Canup of the Southwest Research Institute, in Boulder, Colorado, suggest that Earth could have been rotating fast, or even retrograde, prior to the collision.

Tilted Orbits
Planets with inclined orbits could find that their increased obliquity is beneficial to their long-term climate – as long as they do not have a large moon.


"Collisions in the epoch during which Earth was formed determined its initial rotation," says Lissauer. "For rocky planets, some of the models say most of them will be prograde, but others say comparable numbers of planets will be prograde and retrograde. Certainly, retrograde worlds are not expected to be rare."

The upshot of Lissauer's findings is that the presence of a moon is not the be all and end all as once thought, and a terrestrial planet can exist without a large moon and still retain its habitability. Indeed, it is possible to imagine some circumstances where having a large moon would actually be pretty bad for life.

Rory Barnes, of the University of Washington, has also tackled the problem of obliquity, but from a different perspective. Planets on the edge of habitable zones exist in a precarious position, far enough away from their star that, without a thick, insulating atmosphere, they freeze over, just like Mars. Barnes and his colleagues including John Armstrong of Weber State University, realized that torques from other nearby worlds could cause a planet's inclination to the ecliptic plane to vary. This in turn would result in a change of obliquity; the greater the inclination, the greater the obliquity to the Sun. Barnes and Armstrong saw that this could be a good thing for planets on the edges of habitable zones, allowing heat to be distributed evenly over geological timescales and preventing "Snowball Earth" scenarios. They called these worlds "tilt-a-worlds," but the presence of a large moon would counteract this beneficial obliquity change.

"I think one of the most important points from our tilt-a-world paper is that at the outer edge of the habitable zone, having a large moon is bad, there's no other way to look at it," says Barnes. "If you have a large moon that stabilizes the obliquity then you have a tendency to completely freeze over."

Barnes is impressed with the work of Lissauer's team.
"I think it is a well done study," he says. "It suggests that Earth does not need the moon to have a relatively stable climate. I don't think there would be any dire consequences to not having a moon."

Mars' Changing Tilt
The effects of changing obliquity on Mars’ climate. Mars’ current 25-degree tilt is seen at top left. At top right is a Mars that has a high obliquity, leading to ice gather at its equator while the poles point sunwards. At bottom is Mars with low obliquity, which sees its polar caps grow in size.


Of course, the moon does have a hand in other factors important to life besides planetary obliquity. Tidal pools may have been the point of origin of life on Earth. Although the moon produces the largest tides, the sun also influences tides, so the lack of a large moon is not necessarily a stumbling block. Some animals have also evolved a life cycle based on the cycle of the moon, but that's more happenstance than an essential component for life.

"Those are just minor things," says Lissauer.

Without the absolute need for a moon, astrobiologists seeking life and habitable worlds elsewhere face new opportunities. Maybe Earth, with its giant moon, is actually the oddball amongst habitable planets. Rory Barnes certainly doesn't think we need it.
"It will be a step forward to see the myth that a habitable planet needs a large moon dispelled," he says, to which Lissauer agrees.
Earth without its moon might therefore remain habitable, but we should still cherish its friendly presence. After all, would Beethoven have written the Moonlight Sonata without it?

View Article Here Read More

Jupiter Wins the Starring Role in February’s Planet Parade

Excerpt from nbc.com Planets are on parade in February's night sky. Giant Jupiter will dazzle all nig...

View Article Here Read More

With innovators from around the globe digging in, public moon travel may be only 20 years away



moon
Image Credit: hkeita/Shutterstock


Excerpt from  venturebeat.com
By Vivek Wadhwa

Five teams competing for the $30 million Google Lunar XPRIZE have just been awarded a combined $5.25 million for meeting significant milestones in developing a robot that can safely land on the surface of the moon, travel 500 meters over the lunar surface, and send mooncasts back to the Earth. A tiny startup from India, Team Indus, with no experience in robotics or space flight just won $1 million of this prize. It stood head to head with companies that had been funded by billionaires, had received the assistance of NASA, and had the support of leading universities.
The good news is that governments no longer have a monopoly on space exploration. In two or three decades, we will have entrepreneurs taking us on private spaceflights to the moon. That is what has become possible.

What has changed since the days of the Apollo moon landings is that the cost of building technologies has dropped exponentially. What cost billions of dollars then costs millions now, and sometimes even less. Our smartphones have computers that are more powerful than the Cray supercomputers of yesteryear — which had strict export controls and cost tens of millions of dollars. We carry high-definition cameras in our pockets that are more powerful than those on NASA spacecraft. The cameras in the Mars Curiosity Rover, for example, have a resolution of 2 megapixels with 8GB of flash memory, the same as our clunky first-generation iPhones. The Apollo Guidance Computer, which took humans to the moon in 1966, had a 2.048 MHz processor — slower than those you find in calculators and musical greeting cards.

The same technologies as are available in the United States and Europe are available worldwide. Innovation has globalized.
I met Team Indus while I was in Mumbai to speak at INK last November. When they told me they were competing for the Google Lunar XPRIZE. I didn’t take them seriously because I had seen their counterpart in Silicon Valley, Moon Express, which has the support of tech moguls such as Naveen Jain. How could a scrawny little startup in Bangalore take on Naveen Jain, former NASA engineer Bob Richards, and NASA itself, I thought. The Moon Express team is a force of nature, has the advantage of being on the NASA Ames Research campus, and has been given R&D worth billions of dollars by NASA.

Team Indus was also up against Astrobotic, which is a spinoff from the Carnegie Mellon University Robotics Institute, and Israel-based SpaceIL, which has the backing of the country’s top research institutes.

The company’s win blew my mind. Even though the subject of my INK talk was how Indian entrepreneurs could help change the world, I didn’t think it was already happening.

(See my Jan. 1 story on the Indian tech scene and watch this talk to learn more: Why India shouldn’t be succeeding but is.)

The Bangalore-based startup was founded by former I.T. executive Rahul Narayan and four of his friends: an Air Force pilot, a marketing executive, an investment banker, and an aerospace engineer. None of the team had experience in building spacecraft or robots, yet they were able to build technology that could navigate to the moon.

Narayan says he expects completion of his space mission to cost around $30 million. Moon Express chief executive Bob Richards estimates $50 million. These numbers are higher than the $20 million prize that they hope to win. But both see far greater opportunities: They hope to be pioneers in what could be a trillion-dollar industry. Richards is looking to mine the moon for minerals and bring them back to Earth. Each payload could be worth billions.

The Google Lunar XPRIZE has 26 teams competing from around the world. Collectively, they will spend in the hundreds of millions of dollars on their efforts. For them, it is not all about winning the contest; many of the losers will still commercialize their space technologies or put their knowledge to use in other fields. This is the power of such competitions. They lead entrants to spend multiples of the offered purse on innovative solutions. And they motivate people outside the industry, such as Narayan, to enter it with out-of-the-box thinking.

Innovation prizes are not new. In fact, a number of celebrated historical feats were made possible, in part, by the desire to win these prizes. In the 1920s, New York hotel owner Raymond Orteig offered a $25,000 prize to the first person to fly non-stop between New York and Paris. Several unsuccessful attempts were made before an American airmail pilot named Charles Lindbergh won the competition in 1927 with his plane, The Spirit of St. Louis
Lindbergh’s achievement made him a national hero and a global celebrity. And it sparked the interest and investment that led to the modern aviation industry.

That is what I expect will come of the Lunar XPRIZE. And that is why I am looking forward to booking my round-trip ticket to the moon one summer in the 2030s.

View Article Here Read More

The Best Star Gazing Binoculars for 2015




Excerpt from space.com

Most people have two eyes. Humans evolved to use them together (not all animals do). People form a continuous, stereoscopic panorama movie of the world within in their minds. With your two eyes tilted upward on a clear night, there's nothing standing between you and the universe. The easiest way to enhance your enjoyment of the night sky is to paint your brain with two channels of stronger starlight with a pair of binoculars. Even if you live in — or near — a large, light-polluted city, you may be surprised at how much astronomical detail you'll see through the right binoculars!
Our editors have looked at the spectrum of current binocular offerings. Thanks to computer-aided design and manufacturing, there have never been more high-quality choices at reasonable prices. Sadly, there's also a bunch of junk out there masquerading as fine stargazing instrumentation. We've selected a few that we think will work for most skywatchers.
There was a lot to consider: magnification versus mass, field of view, prism type, optical quality ("sharpness"), light transmission, age of the user (to match "exit pupil" size, which changes as we grow older), shock resistance, waterproofing and more. 

The best binoculars for you

"Small" astronomy binoculars would probably be considered "medium" for bird watching, sports observation and other terrestrial purposes. This comes about as a consequence of optics (prism type and objective size, mostly). "Large" binoculars are difficult to use for terrestrial applications and have a narrow field of view. They begin to approach telescope quality in magnification, resolution and optical characteristics.

Most of our Editors' Choicesfor stargazing binoculars here are under $300. You can pay more than 10 times that for enormous binocular telescopes used by elite enthusiasts on special mounts! You'll also pay more for ruggedized ("mil spec," or military standard) binoculars, many of which suspend their prisms on shock mounts to keep the optics in precise alignment.

Also, our Editors' Choices use Porro prism optics. Compact binoculars usually employ "roof" prisms, which can be cast more cheaply, but whose quality can vary widely. [There's much more about Porro prisms in our Buyer's Guide.]
We think your needs are best served by reviewing in three categories.
  • Small, highly portable binoculars can be hand-held for viewing ease.
  • Medium binoculars offer higher powers of magnification, but still can be hand-held, if firmly braced.
  • Large binoculars have bigger "objective" lenses but must be mounted on a tripod or counterweighted arm for stability.
Here's a detailed look at our Editor's Choice selections for stargazing binoculars:

Best Small Binoculars 

Editor's Choice: Oberwerk Mariner 8x40 (Cost: $150)

Oberwerk in German means "above work." The brand does indeed perform high-level optical work, perfect for looking at objects above, as well as on the ground or water. Founder Kevin Busarow's Mariner series is not his top of the line, but it benefits greatly from engineering developed for his pricier models. The Oberwerk 8x40’s treat your eyes to an extremely wide field, at very high contrast, with razor-sharp focus; they are superb for observing the broad starscapes of the Milky Way. Just 5.5 inches (14 cm) from front to back and 6.5 inches wide (16.5 cm), the Mariners are compact and rugged enough to be your favorite "grab and go binoculars." But at 37 ounces, they may be more than a small person wants to carry for a long time.


Runner-Up: Celestron Cometron 7x50 (Cost: $30)

Yes, you read that price correctly! These Celestron lightweight, wide-field binoculars bring honest quality at a remarkably low price point. The compromise comes in the optics, particularly the prism's glass type (you might see a little more chromatic aberration around the edges of the moon, and the exit pupil isn't a nice, round circle). Optimized for "almost infinitely distant" celestial objects, these Cometrons won't focus closer than about 30 feet (9.1 meters).  But that's fine for most sports and other outdoor use. If you're gift-buying for multiple young astronomers – or you want an inexpensive second set for yourself – these binoculars could be your answer. Just maybe remind those young folks to be a little careful around water; Celestron claims only that the Cometrons are "water resistant," not waterproof. 


Honorable Mention: Swarovski Habicht 8x30 (Cost: $1,050)

From the legendary Austrian firm of Swarovski Optik, these "bins" are perfect. Really. Very sharp. Very lightweight. Very wide field. Very versatile. And very expensive! Our editors would have picked them if we could have afforded them. 

Honorable Mention: Nikon Aculon 7x50 (Cost: $110) 

Nikon's legendary optical quality and the large, 7mm exit pupil diameter make these appropriate as a gift for younger skywatchers. 

Best Medium Binoculars

Editor's Choice: Celestron SkyMaster 8x56 (Cost: $210)

A solid, chunky-feeling set of quality prisms and lenses makes these binoculars a pleasant, 38oz. handful. A medium wide 5.8 degrees filed of view and large 7mm exit pupil brings you gently into a sweet sky of bright, though perhaps not totally brilliant, stars. Fully dressed in a rubber wetsuit, these SkyMasters are waterproof. Feel free to take them boating or birding on a moist morning. Their optical tubes were blown out with dry nitrogen at the factory, then sealed. So you can expect them not to fog up, at least not from the inside. Celestron's strap-mounting points on the Skymaster 8x56 are recessed, so they don't bother your thumbs, but that location makes them hard to fasten. 


Runner-Up: Oberwerk Ultra 15x70 (Cost: $380)

The most rugged pair we evaluated, these 15x70s are optically outstanding. Seen through the Ultra's exquisitely multi-coated glass, you may find yourself falling in love with the sky all over again. Oberwerk's method of suspending their BAK4 glass Porro prisms offers greater shock-resistance than most competitors’ designs. While more costly than some comparable binoculars, they deliver superior value. Our only complaint is with their mass: At 5.5 lbs., these guys are heavy!  You can hand-hold them for a short while, if you’re lying down. But they are best placed on a tripod, or on a counterweighted arm, unless you like shaky squiggles where your point-source stars are supposed to be. Like most truly big binoculars, the eyepieces focus independently; there’s no center focus wheel. These "binos" are for true astronomers. 


Honorable Mention: Vixen Ascot 10x50 (Cost:$165)

These quirky binoculars present you with an extremely wide field. But they are not crash-worthy – don't drop them in the dark – nor are they waterproof, and the focus knob is not conveniently located. So care is needed if you opt for these Vixen optics. 

Best Large Binoculars

Don't even think about hand-holding this 156-ounce beast! The SkyMaster 25x100 is really a pair of side-by-side 100mm short-tube refractor telescopes. Factor the cost of a sturdy tripod into your purchase decision, if you want to go this big.  The monster Celestron comes with a sturdy support spar for mounting. Its properly multi-coated optics will haul in surprising detail from the sky.  Just make sure your skies are dark; with this much magnification, light pollution can render your images dingy. As with many in the giant and super-giant class of binoculars, the oculars (non-removable eyepieces) focus separately, each rotating through an unusually long 450 degrees.  Getting to critical focus can be challenging, but the view is worth it. You can resolve a bit of detail on face of the new moon (lit by "Earthshine") and pick out cloud bands on Jupiter; tha's pretty astonishing for binoculars. 


Runner-Up: Orion Astronomy 20x80 (Cost: $150)

These big Orions distinguish themselves by price point; they're an excellent value. You could pay 10 times more for the comparably sized Steiners Military Observer 20x80 binoculars! Yes, the Orions are more delicate, a bit less bright and not quite as sharp. But they do offer amazingly high contrast; you'll catch significant detail in galaxies, comets and other "fuzzies." Unusually among such big rigs, the Astronomy 20x80 uses a center focus ring and one "diopter" (rather than independently focusing oculars); if you’re graduating from smaller binoculars, which commonly use that approach, this may be a comfort. These binoculars are almost lightweight enough to hold them by hand. But don't do that, at least not for long periods. And don't drop them. They will go out of alignment if handled roughly. 


Honorable Mention: Barska Cosmos 25x100 (Cost: $230)

They are not pretty, but you're in the dark, right? Built around a tripod-mountable truss tube, these Barskas equilibrate to temperature quickly and give you decent viewing at rational cost. They make for a cheaper version of our Editors' Choice Celestron SkyMasters. 

Honorable Mention: Steiner Observer 20x80 (Cost: $1,500)

Not at all a practical cost choice for a beginning stargazer, but you can dream, can't you? These Steiner binoculars are essentially military optics "plowshared" for peaceful celestial observing. 

Why we chose NOT to review certain types

Image stabilized?

Binoculars with active internal image stabilization are a growing breed. Most use battery-powered gyroscope/accelerometer-driven dynamic optical elements. We have left this type out of our evaluation because they are highly specialized and pricey ($1,250 and up). But if you are considering active stabilization, you can apply the same judgment methods detailed in our Buyer's Guide.

Comes with a camera?

A few binoculars are sold with built-in cameras. That seems like a good idea. But it isn't, at least not for skywatching. Other than Earth's moon, objects in the night sky are stingy with their photons. It takes a lengthy, rock-steady time exposure to collect enough light for a respectable image. By all means, consider these binocular-camera combos for snapping Facebook shots of little Jenny on the soccer field. But stay away from them for astronomy.

Mega monster-sized?

Take your new binoculars out under the night sky on clear nights, and you will fall in love with the universe. You will crave more ancient light from those distant suns. That may translate into a strong desire for bigger stereo-light buckets.

Caution: The next level up is a quantum jump of at least one financial order of magnitude. But if you have the disposable income and frequent access to dark skies, you may want to go REALLY big. Binocular telescopes in this class can feature interchangeable matching eyepieces, individually focusing oculars, more than 30x magnification and sturdy special-purpose tripods. Amateurs using these elite-level stereoscopes have discovered several prominent comets.

Enjoy your universe

If you are new to lens-assisted stargazing, you'll find excellent enhanced views among the binocular choices above. To get in deeper and to understand how we picked the ones we did, jump to our Buyer's Guide: How to Choose Binoculars for Sky Watching.

You have just taken the first step to lighting up your brain with star fire. May the photons be with you. Always. 

Skywatching Events 2015

Once you have your new binoculars, it's time to take them for a spin. This year intrepid stargazers will have plenty of good opportunities to use new gear.

On March 20, for example, the sun will go through a total solar eclipse. You can check out the celestial sight using the right sun-blocking filters for binoculars, but NEVER look at the sun directly, even during a solar eclipse. It's important to find the proper filters in order to observe the rare cosmic show. 

Observers can also take a look at the craggy face of the moon during a lunar eclipse on April 4. Stargazers using binoculars should be able to pick out some details not usually seen by the naked eye when looking at Earth's natural satellite.

Skywatchers should also peek out from behind the binoculars for a chance to see a series of annual meteor showers throughout the year.

View Article Here Read More

Liftoff! SpaceX Gets $1 Billion From Google and Fidelity

 Excerpt from  nbcnews.com SpaceX, the California-based rocket company that now has its sights set on a globe-spanning satellite constellation, says it has received a $1 billion investment from Google and Fidelity that values the c...

View Article Here Read More

Mars Capsule Test Heralds New Space Age With Musk Alongside NASA




Excerpt from
bloomberg.com

The U.S. is preparing to launch the first craft developed to fly humans to Mars, presaging a second space age -- this one fueled by billionaires like Elon Musk rather than a Cold War contest with the Soviet Union. 

An unmanned version of the Orion spaceship built by Lockheed Martin Corp. (LMT) is scheduled for liftoff tomorrow to an altitude of 3,600 miles (5,800 kilometers), the farthest from Earth by a vehicle designed for people since the Apollo program was scrapped in 1972. 

Entrepreneurs such as Musk and longtime contractors like Lockheed are helping shape the technology needed to find other homes for humanity in the solar system with an eye to one day commercializing their work. 

“These are really exciting times for space exploration and for our nation as we begin to return to the ability to fly humans to space,” said Jim Crocker, vice president and general manager of civil space at Lockheed Martin Space Systems. “What Orion is about is going further into space than humans have ever gone before.”
Photographer: Brent Lewis/The Denver Post via Getty Images

Launched from Kennedy Space Center in Florida atop a Delta IV rocket, the Orion capsule will test the riskiest systems needed to carry astronauts far beyond the moon, although its first flight will cover only about 2 percent of the 238,900-mile distance to the lunar surface.

Speed Limit

After orbiting earth twice, Orion will accelerate to 20,000 miles per hour during descent, mimicking the speeds of a craft returning from a mission to deep space. The capsule is supposed to make a parachute-cushioned splashdown in the Pacific Ocean off Mexico’s Baja peninsula. 

To explore the universe, the National Aeronautics and Space Administration must first redevelop capabilities abandoned more than 40 years ago when the U.S. shifted focus from Apollo’s lunar forays to rocketing crews a few hundred miles to low Earth orbit.
NASA has used Russian craft to reach the International Space Station since the space shuttle program ended in 2011. 

In a strategic shift, the Obama administration canceled plans to return to the moon, turning some flights to commercial companies while setting its sights -- and limited funds -- on pioneering deep space. The Orion capsule was originally commissioned in 2006 for the defunct Constellation program.

Musk, Bezos

Those moves paved the way for technology chieftains including Musk and Amazon.com Inc. (AMZN) founder Jeff Bezos to pursue their own space ambitions. 

Musk founded Hawthorne, California-based SpaceX in 2002 with the goal of enabling people to live on other planets, a massive endeavor that would require innovations such as reusable rocket stages to lower costs. 

Mars is also in focus for NASA as the space agency maps plans to “pioneer the space frontier,” according to a May 29 white paper.

$22 Billion

NASA proposes an initial $22 billion effort that includes two other Orion missions over the next eight years and building a powerful new rocket. The Delta IV being used tomorrow is manufactured by United Launch Alliance, a Lockheed-Boeing Co. (BA) venture.

A new Space Launch System rocket being developed by the partnership is slated to hoist the next Orion craft beyond the moon in fiscal 2018, Lockheed’s Crocker said in a phone interview. The first manned Orion mission is slated for early in the next decade.
NASA’s plans are “sketchy” beyond that, aside from broad goals to capture asteroid samples in the 2020s and reach Mars a decade later, said Marco Caceres, director of space studies with Fairfax, Virginia-based consultant Teal Group. 

Average Distance

While Mars’s distance from Earth varies because of the two planets’ orbits, the average is about 140 million miles, almost 600 times longer than a trip to the moon. It’s so far that radio communications take as long as 20 minutes to travel each way, according to Bill Hill, NASA’s deputy associate administrator for exploration systems development. 


Entrepreneurs such as Musk will have opportunities to get involved as NASA refines capsule and rocket designs. NASA plans to develop two larger rockets beyond the initial launch vehicle, which will be capable of hauling a 70-metric ton payload. 

“We’re not taking any options off the table,” Hill said. “We want to be sufficiently flexible so that if we find a new path, we can introduce it and not change course.” 

Expense, shifting political priorities and the lack of a clear NASA road map could still derail the latest effort as they did the Apollo program in the early 1970s, said Micah Walter-Range, director of research analysis with the Space Foundation, a non-profit organization based in Colorado Springs, Colorado. 

“All of the challenges that exist are surmountable,” Walter-Range said by phone. “It’s just a question of having the money to do it.”

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

Baby Ben Born to Our World Bearing a Message for Humanity ~ By Greg Giles



Baby Ben calf 09252014 A new calf at Vale Wood Farms, a family dairy farm business in Loretto, Cambria County, bears a No. 7 on his forehead. The farm has named him "Baby Ben."
Beautiful Pennsylvania calf Baby Ben


Does Baby Ben, the beautiful Cambria County Pennsylvania calf named after hometown Pittsburgh Steeler quarterback Ben Roethlisberger, come into our our world bearing a message for an awakening humanity?


The number SEVEN is one of the most significant numbers in the Holy Bible, and was the most sacred number to the ancient Hebrews. Seven is the total sum of earth crowned with heaven - the four-square earth plus the divine COMPLETENESS OF GOD.

The number SEVEN is used over 700 times in the Bible, and in the  Book of Revelation the number SEVEN is used symbolically from beginning to end. There are SEVEN churches, SEVEN Spirits, SEVEN stars, SEVEN seals, SEVEN trumpets, SEVEN vials, SEVEN personages, SEVEN dooms, and SEVEN new things.

SEVEN symbolizes Spiritual Perfection. All of life revolves around this number, and for very good reason. If a universe was to be created and it was to be seeded with everlasting life, SEVEN levels or stages or dimensions would be the natural choice, as in music theory, there are seven notes to the major scale, with the 8th note being the octave when another scale begins  again.  
  
Baby Ben was born Saturday on Vale Wood Farms in Loretto, Pennsylvania, about 80 miles east of Pittsburgh. “He turned to face me, and I said, ‘Wow, it’s a perfect little 7,’ ” Ms. Itle-Westrick said.She posted the picture to the farm’s Facebook page Wednesday. By the next afternoon, Baby Ben totaled more than 1,100 “likes” and nearly 100 comments.

The family doesn’t sell any meat from their cows, Ms. Itle-Westrick said. Baby Ben will be on display, and available for photo opportunities — during the farm’s pumpkin patch event Oct. 1-19.
Greg Giles

View Article Here Read More

What is Enlightenment?

Thomas Razzeto, GrahamHancock.comMy most passionate plea is for you to wake up to your true self as pure awareness. We have all heard it said that you are not a human being having a spiritual experience, but instead, you are a spiritual being having a human experience. Yet you are not a being of any kind, spiritual or physical. You are pure awareness! And most importantly, your awareness is the One Awareness – the Divine Awareness – and as such, it is the only reality tha [...]

View Article Here Read More

What Most People Do Not Know About Manifestation

As the planet continues to raise her vibration toward a fifth dimensional frequency, the ability to manifest is becoming easier and faster. Ultimately those who are awakened to the possibility of a New Earth are working toward manifesting this into reality and need to know the missing piece of manifestation in order to be successful co-creators. The trinity of manifestation Manifestation involves using heartfelt intention, the Law of Attraction, and the Universal Law of Detachment. T [...]

View Article Here Read More

Galactic Federation of LIght Quan Yin June-18-2013

Quan Yin through Laura Lee Lizak
June 18, 2013
http://quanyincenter.org

We are each and all magnificent in our powers. We enlighten each other continuously at this time in

View Article Here Read More

Galactic Federation of Light ~Sheldan Nidle June-11-2013

Sheldan’s update for June 09, 2013
http://www.paoweb.com/sn061113.htm
0 Kayab, 3 Eb, 9 Eb

Dratzo! We return! At this time our associates are making the adjustments and orders of scale necessary

View Article Here Read More

Galactic Federation of Jesus May-19-2013

Everything that happens anywhere on Earth has a spiritual aspect to it
May 19, 2013 by John Smallman
http://johnsmallman2.wordpress.com/2013/05/19/everything-that-happens-anywhere-on-earth-has-a-spiritual-aspect-to-it/

Waiting is always draining and tiring when you do not know

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑