Tag: offer (page 3 of 14)

The Best Star Gazing Binoculars for 2015




Excerpt from space.com

Most people have two eyes. Humans evolved to use them together (not all animals do). People form a continuous, stereoscopic panorama movie of the world within in their minds. With your two eyes tilted upward on a clear night, there's nothing standing between you and the universe. The easiest way to enhance your enjoyment of the night sky is to paint your brain with two channels of stronger starlight with a pair of binoculars. Even if you live in — or near — a large, light-polluted city, you may be surprised at how much astronomical detail you'll see through the right binoculars!
Our editors have looked at the spectrum of current binocular offerings. Thanks to computer-aided design and manufacturing, there have never been more high-quality choices at reasonable prices. Sadly, there's also a bunch of junk out there masquerading as fine stargazing instrumentation. We've selected a few that we think will work for most skywatchers.
There was a lot to consider: magnification versus mass, field of view, prism type, optical quality ("sharpness"), light transmission, age of the user (to match "exit pupil" size, which changes as we grow older), shock resistance, waterproofing and more. 

The best binoculars for you

"Small" astronomy binoculars would probably be considered "medium" for bird watching, sports observation and other terrestrial purposes. This comes about as a consequence of optics (prism type and objective size, mostly). "Large" binoculars are difficult to use for terrestrial applications and have a narrow field of view. They begin to approach telescope quality in magnification, resolution and optical characteristics.

Most of our Editors' Choicesfor stargazing binoculars here are under $300. You can pay more than 10 times that for enormous binocular telescopes used by elite enthusiasts on special mounts! You'll also pay more for ruggedized ("mil spec," or military standard) binoculars, many of which suspend their prisms on shock mounts to keep the optics in precise alignment.

Also, our Editors' Choices use Porro prism optics. Compact binoculars usually employ "roof" prisms, which can be cast more cheaply, but whose quality can vary widely. [There's much more about Porro prisms in our Buyer's Guide.]
We think your needs are best served by reviewing in three categories.
  • Small, highly portable binoculars can be hand-held for viewing ease.
  • Medium binoculars offer higher powers of magnification, but still can be hand-held, if firmly braced.
  • Large binoculars have bigger "objective" lenses but must be mounted on a tripod or counterweighted arm for stability.
Here's a detailed look at our Editor's Choice selections for stargazing binoculars:

Best Small Binoculars 

Editor's Choice: Oberwerk Mariner 8x40 (Cost: $150)

Oberwerk in German means "above work." The brand does indeed perform high-level optical work, perfect for looking at objects above, as well as on the ground or water. Founder Kevin Busarow's Mariner series is not his top of the line, but it benefits greatly from engineering developed for his pricier models. The Oberwerk 8x40’s treat your eyes to an extremely wide field, at very high contrast, with razor-sharp focus; they are superb for observing the broad starscapes of the Milky Way. Just 5.5 inches (14 cm) from front to back and 6.5 inches wide (16.5 cm), the Mariners are compact and rugged enough to be your favorite "grab and go binoculars." But at 37 ounces, they may be more than a small person wants to carry for a long time.


Runner-Up: Celestron Cometron 7x50 (Cost: $30)

Yes, you read that price correctly! These Celestron lightweight, wide-field binoculars bring honest quality at a remarkably low price point. The compromise comes in the optics, particularly the prism's glass type (you might see a little more chromatic aberration around the edges of the moon, and the exit pupil isn't a nice, round circle). Optimized for "almost infinitely distant" celestial objects, these Cometrons won't focus closer than about 30 feet (9.1 meters).  But that's fine for most sports and other outdoor use. If you're gift-buying for multiple young astronomers – or you want an inexpensive second set for yourself – these binoculars could be your answer. Just maybe remind those young folks to be a little careful around water; Celestron claims only that the Cometrons are "water resistant," not waterproof. 


Honorable Mention: Swarovski Habicht 8x30 (Cost: $1,050)

From the legendary Austrian firm of Swarovski Optik, these "bins" are perfect. Really. Very sharp. Very lightweight. Very wide field. Very versatile. And very expensive! Our editors would have picked them if we could have afforded them. 

Honorable Mention: Nikon Aculon 7x50 (Cost: $110) 

Nikon's legendary optical quality and the large, 7mm exit pupil diameter make these appropriate as a gift for younger skywatchers. 

Best Medium Binoculars

Editor's Choice: Celestron SkyMaster 8x56 (Cost: $210)

A solid, chunky-feeling set of quality prisms and lenses makes these binoculars a pleasant, 38oz. handful. A medium wide 5.8 degrees filed of view and large 7mm exit pupil brings you gently into a sweet sky of bright, though perhaps not totally brilliant, stars. Fully dressed in a rubber wetsuit, these SkyMasters are waterproof. Feel free to take them boating or birding on a moist morning. Their optical tubes were blown out with dry nitrogen at the factory, then sealed. So you can expect them not to fog up, at least not from the inside. Celestron's strap-mounting points on the Skymaster 8x56 are recessed, so they don't bother your thumbs, but that location makes them hard to fasten. 


Runner-Up: Oberwerk Ultra 15x70 (Cost: $380)

The most rugged pair we evaluated, these 15x70s are optically outstanding. Seen through the Ultra's exquisitely multi-coated glass, you may find yourself falling in love with the sky all over again. Oberwerk's method of suspending their BAK4 glass Porro prisms offers greater shock-resistance than most competitors’ designs. While more costly than some comparable binoculars, they deliver superior value. Our only complaint is with their mass: At 5.5 lbs., these guys are heavy!  You can hand-hold them for a short while, if you’re lying down. But they are best placed on a tripod, or on a counterweighted arm, unless you like shaky squiggles where your point-source stars are supposed to be. Like most truly big binoculars, the eyepieces focus independently; there’s no center focus wheel. These "binos" are for true astronomers. 


Honorable Mention: Vixen Ascot 10x50 (Cost:$165)

These quirky binoculars present you with an extremely wide field. But they are not crash-worthy – don't drop them in the dark – nor are they waterproof, and the focus knob is not conveniently located. So care is needed if you opt for these Vixen optics. 

Best Large Binoculars

Don't even think about hand-holding this 156-ounce beast! The SkyMaster 25x100 is really a pair of side-by-side 100mm short-tube refractor telescopes. Factor the cost of a sturdy tripod into your purchase decision, if you want to go this big.  The monster Celestron comes with a sturdy support spar for mounting. Its properly multi-coated optics will haul in surprising detail from the sky.  Just make sure your skies are dark; with this much magnification, light pollution can render your images dingy. As with many in the giant and super-giant class of binoculars, the oculars (non-removable eyepieces) focus separately, each rotating through an unusually long 450 degrees.  Getting to critical focus can be challenging, but the view is worth it. You can resolve a bit of detail on face of the new moon (lit by "Earthshine") and pick out cloud bands on Jupiter; tha's pretty astonishing for binoculars. 


Runner-Up: Orion Astronomy 20x80 (Cost: $150)

These big Orions distinguish themselves by price point; they're an excellent value. You could pay 10 times more for the comparably sized Steiners Military Observer 20x80 binoculars! Yes, the Orions are more delicate, a bit less bright and not quite as sharp. But they do offer amazingly high contrast; you'll catch significant detail in galaxies, comets and other "fuzzies." Unusually among such big rigs, the Astronomy 20x80 uses a center focus ring and one "diopter" (rather than independently focusing oculars); if you’re graduating from smaller binoculars, which commonly use that approach, this may be a comfort. These binoculars are almost lightweight enough to hold them by hand. But don't do that, at least not for long periods. And don't drop them. They will go out of alignment if handled roughly. 


Honorable Mention: Barska Cosmos 25x100 (Cost: $230)

They are not pretty, but you're in the dark, right? Built around a tripod-mountable truss tube, these Barskas equilibrate to temperature quickly and give you decent viewing at rational cost. They make for a cheaper version of our Editors' Choice Celestron SkyMasters. 

Honorable Mention: Steiner Observer 20x80 (Cost: $1,500)

Not at all a practical cost choice for a beginning stargazer, but you can dream, can't you? These Steiner binoculars are essentially military optics "plowshared" for peaceful celestial observing. 

Why we chose NOT to review certain types

Image stabilized?

Binoculars with active internal image stabilization are a growing breed. Most use battery-powered gyroscope/accelerometer-driven dynamic optical elements. We have left this type out of our evaluation because they are highly specialized and pricey ($1,250 and up). But if you are considering active stabilization, you can apply the same judgment methods detailed in our Buyer's Guide.

Comes with a camera?

A few binoculars are sold with built-in cameras. That seems like a good idea. But it isn't, at least not for skywatching. Other than Earth's moon, objects in the night sky are stingy with their photons. It takes a lengthy, rock-steady time exposure to collect enough light for a respectable image. By all means, consider these binocular-camera combos for snapping Facebook shots of little Jenny on the soccer field. But stay away from them for astronomy.

Mega monster-sized?

Take your new binoculars out under the night sky on clear nights, and you will fall in love with the universe. You will crave more ancient light from those distant suns. That may translate into a strong desire for bigger stereo-light buckets.

Caution: The next level up is a quantum jump of at least one financial order of magnitude. But if you have the disposable income and frequent access to dark skies, you may want to go REALLY big. Binocular telescopes in this class can feature interchangeable matching eyepieces, individually focusing oculars, more than 30x magnification and sturdy special-purpose tripods. Amateurs using these elite-level stereoscopes have discovered several prominent comets.

Enjoy your universe

If you are new to lens-assisted stargazing, you'll find excellent enhanced views among the binocular choices above. To get in deeper and to understand how we picked the ones we did, jump to our Buyer's Guide: How to Choose Binoculars for Sky Watching.

You have just taken the first step to lighting up your brain with star fire. May the photons be with you. Always. 

Skywatching Events 2015

Once you have your new binoculars, it's time to take them for a spin. This year intrepid stargazers will have plenty of good opportunities to use new gear.

On March 20, for example, the sun will go through a total solar eclipse. You can check out the celestial sight using the right sun-blocking filters for binoculars, but NEVER look at the sun directly, even during a solar eclipse. It's important to find the proper filters in order to observe the rare cosmic show. 

Observers can also take a look at the craggy face of the moon during a lunar eclipse on April 4. Stargazers using binoculars should be able to pick out some details not usually seen by the naked eye when looking at Earth's natural satellite.

Skywatchers should also peek out from behind the binoculars for a chance to see a series of annual meteor showers throughout the year.

View Article Here Read More

CEO of Tesla Motors is trying to bring the Internet to space

 Excerpt from cnet.com The SpaceX CEO wants to build a satellite network high above Earth that would speed up the Internet and bring access to underserved communities. And he'll use the profits to help colonize Mars.  Elon Musk, the man who...

View Article Here Read More

The Best Bet for Alien Life May Be in Planetary Systems Very Different From Ours




Excerpt from wired.com


In the hunt for extraterrestrial life, scientists started by searching for a world orbiting a star just like the sun. After all, the steady warmth of that glowing yellow ball in the sky makes life on Earth possible.

But as astronomers continue to discover thousands of planets, they’re realizing that if (or when) we find signs of extraterrestrial life, chances are good that those aliens will orbit a star quite different from the sun—one that’s redder, cooler, and at a fraction of the sun’s size and mass. So in the quest for otherworldly life, many astronomers have set their sights on these small stars, known as red dwarfs or M dwarfs.

At first, planet-hunting astronomers didn’t care so much about M dwarfs. After the first planet outside the solar system was discovered in 1995, scientists began hunting for a true Earth twin: a rocky planet like Earth with an orbit like ours around a sun-like star. Indeed, the search for that kind of system drove astronomers through most of the 2000s, says astronomer Phil Muirhead of Boston University.

But then astronomers realized that it might be technically easier to find planets around M dwarfs. Detecting another planet is really hard, and scientists rely on two main methods. In the first, they look for a drop in a star’s brightness when a planet passes in front of it. In the second, astronomers measure the slight wobble of a star, caused by the gentle gravitational tug of an orbiting planet. With both of these techniques, the signal is stronger and easier to detect for a planet orbiting an M dwarf. A planet around an M dwarf also orbits more frequently, increasing the chances that astronomers will spot it.

M dwarfs got a big boost from the Kepler space telescope, which launched in 2008. By staring at small patch of the sky, the telescope searches for suddenly dimming stars when a planet passes in front of them. In doing so, the spacecraft discovered a glut of planets—more than 1,000 at the latest count—it found a lot of planets around M dwarfs. “Kepler changed everything,” Muirhead said. Because M-dwarf systems are easier to find, the bounty of such planets is at least partly due to a selection effect. But, as Muirhead points out, Kepler is also designed to find Earth-sized planets around sun-like stars, and the numbers so far suggest that M-dwarfs may offer the best odds for finding life.

“By sheer luck you would be more likely to find a potentially habitable planet around an M dwarf than a star like the sun,” said astronomer Courtney Dressing of Harvard. She led an analysis to estimate how many Earth-sized planets—which she defined as those with radii ranging from one to one-and-a-half times Earth’s radius—orbit M dwarfs in the habitable zone, the region around the star where liquid water can exist on the planet’s surface. According to her latest calculations, one in four M dwarfs hosts such a planet.

That’s higher than the estimated number of Earth-sized planets around a sun-like star, she says. For example, an analysis by astronomer Erik Petigura of UC Berkeley suggests that fewer than 10 percent of sun-like stars have a planet with a radius between one and two times that of Earth’s.

This illustration shows Kepler-186f, the first rocky planet found in a star's habitable zone. Its star is an M dwarf.
This illustration shows Kepler-186f, the first rocky planet found in a star’s habitable zone. Its star is an M dwarf. NASA Ames/SETI Institute/JPL-Caltech


M dwarfs have another thing going for them. They’re the most common star in the galaxy, comprising an estimated 75 percent of the Milky Way’s hundreds of billions of stars. If Dressing’s estimates are right, then our galaxy could be teeming with 100 billion Earth-sized planets in their stars’ habitable zones.

To be sure, these estimates have lots of limitations. They depend on what you mean by the habitable zone, which isn’t well defined. Generally, the habitable zone is where it’s not too hot or too cold for liquid water to exist. But there are countless considerations, such as how well a planet’s atmosphere can retain water. With a more generous definition that widens the habitable zone, Petigura’s numbers for Earth-sized planets around a sun-like star go up to 22 percent or more. Likewise, Dressing’s numbers could also go up.
Astronomers were initially skeptical of M-dwarf systems because they thought a planet couldn’t be habitable near this kind of star. For one, M dwarfs are more active, especially during within the first billion years of its life. They may bombard a planet with life-killing ultraviolet radiation. They can spew powerful stellar flares that would strip a planet of its atmosphere.

And because a planet will tend to orbit close to an M dwarf, the star’s gravity can alter the planet’s rotation around its axis. When such a planet is tidally locked, as such a scenario is called, part of the planet may see eternal daylight while another part sees eternal night. The bright side would be fried while the dark side would freeze—hardly a hospitable situation for life.

But none of these are settled issues, and some studies suggest they may not be as big of a problem as previously thought, says astronomer Aomawa Shields of UCLA. For example, habitability may depend on specific types and frequency of flares, which aren’t well understood yet. Computer models have also shown that an atmosphere can help distribute heat, preventing the dark side of a planet from freezing over.

View Article Here Read More

California breaks ground on bullet train project despite opposition, as price tag soars





Excerpt from foxnews.com

Despite cost overruns, lawsuits, public opposition and a projected completion date 13 years behind schedule, California Gov. Jerry Brown broke ground Tuesday on what is to become the most expensive public works project in U.S. history: the California bullet train. 

Over the next 1,000 days, California is estimated to spend roughly $4 million a day on the project. 

The high-speed train, set to be finished in 2033, originally was supposed to deliver passengers from San Francisco to Los Angeles in two hours and 40 minutes. That was the promise when voters narrowly approved $10 billion in bonds for the project in 2008. Since then, however, the estimated trip time has grown considerably, and the train has encountered persistent problems -- as experts uncovered misrepresentations in the ballot proposition, and opponents sued to stop the project on environmental and fiscal grounds. 

"We're talking about real money here," said Kris Vosburgh, executive director of taxpayer watchdog group Howard Jarvis Taxpayers Association. "This is money that's not available for health care or education, for public safety, or put back in taxpayers' pockets so they have something to spend. This is money being drawn out of the system for a program that is going to serve very few people." 

Much about the project has changed since it was sold to the public. 
Voters were told the project would cost just $33 billion. Once experts crunched the numbers, however, the price tag soared to $98 billion. It was supposed to whoosh riders from Southern California to the Bay Area in less than three hours, but now it’s more than four hours due to changing track configurations and route adjustments. The train was supposed to get people off the freeway and reduce carbon emissions, but a panel of experts now says any carbon savings will be nominal. (A drive by car takes just over 6 hours. Ed.) 

Further, ridership projections have been cut by two-thirds from a projected 90 million to 30 million a year. Fewer riders means higher prices. According to a panel of transportation experts hired by the Reason Foundation, Citizens Against Government Waste and the Howard Jarvis Taxpayers Association, tickets will exceed $80 -- not $50 -- and the system will require annual subsidies of more than $300 million annually. 

"The public has turned sour on this plan but the governor, to paraphrase Admiral Farragut, has taken a position of 'damn the people, full speed ahead'," Vosburgh said. 

Undaunted by critics, Brown broke ground in Fresno on Tuesday on the first 29-mile segment of the train's system. Under Brown's direction, the California High Speed Rail Authority has gone to court to seek an exemption from an environmental quality law the state imposes on other projects but not this one. Brown also convinced the state Legislature to dedicate an annual revenue stream from the state's carbon tax, to help pay for the bullet train. 
"It's a long project, a bold project and one that will transform the Central Valley," Brown said Monday as he began his fourth and final term as governor. 

Once construction begins, supporters say it will be harder to stop the project. Several lawsuits linger, but a bigger question concerns the money: Where will it come from? If every penny committed to the project is added up, the project is still more than $30 billion short. Republicans in Congress are vowing not to commit a dollar more than President Obama approved in 2012. 

"For years now, Governor Brown and the high-speed rail authority have turned the idea of high-speed rail into a public albatross far beyond what Californians envisioned or voted for," House Majority Leader Kevin McCarthy, R-Calif., said in a statement released Tuesday. "Sadly, today's groundbreaking is a political maneuver. Supporters of the railroad in Sacramento can't admit their project is deeply flawed, and they won't give up on it despite the cost. But these political tricks are exactly what the American people are tired of and what the new Republican Congress is committed to ending." 

Supporters don't see waste. They argue the project will reduce freeway gridlock, offer competition to air travel and provide an alternative to trucking freight. 

Environmentalists also have opposed the project, suing and claiming the construction project would harm 11 endangered species and worsen air quality in the already dirty Central Valley. They lost when a federal judge ruled the project did not have to adhere to the state Environmental Quality Act, unlike other projects. Additional legal challenges remain, but supporters believe once the train leaves the station and ground is broken, there's no going back. 

"The legacy of the Brown family is that they have been big thinkers, but also big builders," said Democratic state Assemblyman Henry Perea. "I think this is an opportunity for the legislature to step up, support Governor Brown. "

View Article Here Read More

Ursid Meteor Shower Peaks: Here’s How to See It



Image: Geminid meteor shower
December is usually marked by a series of meteor showers. Geminid meteors (like the one seen in this picture of Florida) light up the skies at the beginning of the month, while the Ursids - which peak Monday night (Dec. 22) - put on a show just before Christmas.

Excerpt from space.com
 

The Ursid meteor shower peaks tonight, and it should be a great show. 

When skywatchers think of meteor showers during the month of December, the Geminid shower (which peaked earlier this month) usually comes to mind. But the Ursid meteor shower — peaking tonight and into the wee hours of Tuesday (Dec. 23) morning — should also offer skywatchers a good view this year. 

Even if you can't see tonight's meteor shower due to light pollution or bad weather, you can still catch the Ursids online thanks to the Slooh Community Observatory. Tune in for Slooh's Ursid meteor shower webcast tonight starting at 8 p.m. EST (0100 Dec. 23 GMT) live on Space.com. You can also watch the webcast directly through Slooh.
The Ursids are so named because they appear to fan out from the vicinity of the bright orange star Kochab, in the constellation of Ursa Minor, the Little Bear. Kochab is the brighter of the two outer stars in the bowl of the Little Dipper (the other being Pherkad), that seem to march in a circle like sentries around the North Star, Polaris. These meteors are sometimes called the Umids, in a rather unsuccessful attempt to make clear that their radiant is in Ursa Minor, not Ursa Major. 

The fact that Kochab is positioned so near to the north pole of the sky means that this star almost never sets for most viewers in the Northern Hemisphere. And since the Ursids seem to fan out from this particular region of the sky, you have a reference point to look for these faint, medium-speed meteors all through the night if you care to. 

The fact that the shower peaks tonight is good news for observers braving the cold to see the display. The moon is just one day past its new phase, meaning that light reflected from Earth's natural satellite won't wash out the shower.

View Article Here Read More

Is this a real sasquatch stepping over a fence? MK Davis Analyzes the Bigfoot ‘Fence Climber’ Video

In this video,  M.K. Davis will stand next to the fence and offer a film double exposure to demonstrate just how high the fence is and how high the creature captured in the video footage steps to climb over the fence in one motion. Greg &nbsp...

View Article Here Read More

Did European scientists find dark-matter signal buried in X-rays?


Dark matter findings XMM-Newton
This illustration shows the ESA's XMM-Newton space telescope. Using X-ray data collected by the telescope, scientists say they may have identified a dark-matter signal. (D. Ducros / European Space Agency)


Excerpt from latimes.com

Scientists say they may have discovered a possible dark matter signal coded in the X-rays emanating from two bright objects in the sky. 

The findings, set to be published next week in Physical Review Letters, could offer tangible evidence for the existence of dark matter -- and help researchers build new tools to search for and study this mysterious stuff.

When it comes to matter in the universe, dark matter is like a backroom political power broker: You never see it, but behind the scenes, it’s been throwing its weight around. The effects of its gravitational influence can be seen in the large-scale structures of the cosmos. Dark matter makes up about 84.5% of the matter in the universe while all the stuff we actually see -- stars, galaxies, planets, ourselves -- makes up the remaining 15.5%.* The enormous galaxies and clusters of galaxies that populate the universe are bantamweights compared to the massive, unseen dark matter ‘halos’ that anchor them.
Dark matter’s formidable gravitational influence is the only way that the strange stuff can be detected, because it’s invisible -- it does not interact with light. Physicists have no idea what it’s made of, although they’ve looked for it by building detectors in underground former gold mines, sending satellites into space and other methods. 

But now, a team led by researchers at Leiden University in the Netherlands and the École Polytechnique Fédérale de Lausanne in Switzerland say they’ve discovered a signal that could be a sign of dark matter. 

The scientists looked at X-ray emissions coming from the Andromeda galaxy and the Perseus galaxy cluster, collected by the European Space Agency’s XMM-Newton space telescope. After accounting for all the light particles (called photons) emanating from known sources in the Andromeda galaxy, they were left with a strange set of photons that had no known source. The found the same light signature emanating from the Perseus cluster. And when they turned their attention to the Milky Way, they found signs of this signal in our home galaxy, as well.
“It is consistent with the behavior of a line originating from the decay of dark matter particles,” the authors wrote in a pre-print of the study.

This weird light signal, they think, could be coming from the destruction of a hypothetical particle called a sterile neutrino (which, if it exists, might help explain dark matter). But it's going to take a lot of follow-up study to determine whether this signal is a scientific breakthrough or an anomalous blip.

View Article Here Read More

The New American Dream ~ The Case for Colonizing Mars




Excerpt from Ad Astra

by Robert Zubrin


Mars Is The New World

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce.

The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting.

You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon.

But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies, is that sunlight is not available in a form useful for growing crops. A single acre of plants on Earth requires four megawatts of sunlight power, a square kilometer needs 1,000 MW. The entire world put together does not produce enough electrical power to illuminate the farms of the state of Rhode Island, that agricultural giant. Growing crops with electrically generated light is just economically hopeless. But you can't use natural sunlight on the Moon or any other airless body in space unless you put walls on the greenhouse thick enough to shield out solar flares, a requirement that enormously increases the expense of creating cropland. Even if you did that, it wouldn't do you any good on the Moon, because plants won't grow in a light/dark cycle lasting 28 days.

But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes could be rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes.

The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.

Interplanetary Commerce

Mars is the best target for colonization in the solar system because it has by far the greatest potential for self-sufficiency. Nevertheless, even with optimistic extrapolation of robotic manufacturing techniques, Mars will not have the division of labor required to make it fully self-sufficient until its population numbers in the millions. Thus, for decades and perhaps longer, it will be necessary, and forever desirable, for Mars to be able to import specialized manufactured goods from Earth. These goods can be fairly limited in mass, as only small portions (by weight) of even very high-tech goods are actually complex. Nevertheless, these smaller sophisticated items will have to be paid for, and the high costs of Earth-launch and interplanetary transport will greatly increase their price. What can Mars possibly export back to Earth in return?
It is this question that has caused many to incorrectly deem Mars colonization intractable, or at least inferior in prospect to the Moon.

For example, much has been made of the fact that the Moon has indigenous supplies of helium-3, an isotope not found on Earth and which could be of considerable value as a fuel for second generation thermonuclear fusion reactors. Mars has no known helium-3 resources. On the other hand, because of its complex geologic history, Mars may have concentrated mineral ores, with much greater concentrations of precious metal ores readily available than is currently the case on Earth — because the terrestrial ores have been heavily scavenged by humans for the past 5,000 years. If concentrated supplies of metals of equal or greater value than silver (such as germanium, hafnium, lanthanum, cerium, rhenium, samarium, gallium, gadolinium, gold, palladium, iridium, rubidium, platinum, rhodium, europium, and a host of others) were available on Mars, they could potentially be transported back to Earth for a substantial profit. Reusable Mars-surface based single-stage-to-orbit vehicles would haul cargoes to Mars orbit for transportation to Earth via either cheap expendable chemical stages manufactured on Mars or reusable cycling solar or magnetic sail-powered interplanetary spacecraft. The existence of such Martian precious metal ores, however, is still hypothetical.

But there is one commercial resource that is known to exist ubiquitously on Mars in large amount — deuterium. Deuterium, the heavy isotope of hydrogen, occurs as 166 out of every million hydrogen atoms on Earth, but comprises 833 out of every million hydrogen atoms on Mars. Deuterium is the key fuel not only for both first and second generation fusion reactors, but it is also an essential material needed by the nuclear power industry today. Even with cheap power, deuterium is very expensive; its current market value on Earth is about $10,000 per kilogram, roughly fifty times as valuable as silver or 70% as valuable as gold. This is in today's pre-fusion economy. Once fusion reactors go into widespread use deuterium prices will increase. All the in-situ chemical processes required to produce the fuel, oxygen, and plastics necessary to run a Mars settlement require water electrolysis as an intermediate step. As a by product of these operations, millions, perhaps billions, of dollars worth of deuterium will be produced.

Ideas may be another possible export for Martian colonists. Just as the labor shortage prevalent in colonial and nineteenth century America drove the creation of "Yankee ingenuity's" flood of inventions, so the conditions of extreme labor shortage combined with a technological culture that shuns impractical legislative constraints against innovation will tend to drive Martian ingenuity to produce wave after wave of invention in energy production, automation and robotics, biotechnology, and other areas. These inventions, licensed on Earth, could finance Mars even as they revolutionize and advance terrestrial living standards as forcefully as nineteenth century American invention changed Europe and ultimately the rest of the world as well.

Inventions produced as a matter of necessity by a practical intellectual culture stressed by frontier conditions can make Mars rich, but invention and direct export to Earth are not the only ways that Martians will be able to make a fortune. The other route is via trade to the asteroid belt, the band of small, mineral-rich bodies lying between the orbits of Mars and Jupiter. There are about 5,000 asteroids known today, of which about 98% are in the "Main Belt" lying between Mars and Jupiter, with an average distance from the Sun of about 2.7 astronomical units, or AU. (The Earth is 1.0 AU from the Sun.) Of the remaining two percent known as the near-Earth asteroids, about 90% orbit closer to Mars than to the Earth. Collectively, these asteroids represent an enormous stockpile of mineral wealth in the form of platinum group and other valuable metals.


Historical Analogies

The primary analogy I wish to draw is that Mars is to the new age of exploration as North America was to the last. The Earth's Moon, close to the metropolitan planet but impoverished in resources, compares to Greenland. Other destinations, such as the Main Belt asteroids, may be rich in potential future exports to Earth but lack the preconditions for the creation of a fully developed indigenous society; these compare to the West Indies. Only Mars has the full set of resources required to develop a native civilization, and only Mars is a viable target for true colonization. Like America in its relationship to Britain and the West Indies, Mars has a positional advantage that will allow it to participate in a useful way to support extractive activities on behalf of Earth in the asteroid belt and elsewhere.

But despite the shortsighted calculations of eighteenth-century European statesmen and financiers, the true value of America never was as a logistical support base for West Indies sugar and spice trade, inland fur trade, or as a potential market for manufactured goods. The true value of America was as the future home for a new branch of human civilization, one that as a combined result of its humanistic antecedents and its frontier conditions was able to develop into the most powerful engine for human progress and economic growth the world had ever seen. The wealth of America was in fact that she could support people, and that the right kind of people chose to go to her. People create wealth. People are wealth and power. Every feature of Frontier American life that acted to create a practical can-do culture of innovating people will apply to Mars a hundred-fold.

Mars is a harsher place than any on Earth. But provided one can survive the regimen, it is the toughest schools that are the best. The Martians shall do well.



Robert Zubrin is former Chairman of the National Space Society, President of the Mars Society, and author of The Case For Mars: The Plan to Settle the Red Planet and Why We Must.

View Article Here Read More

7 Types of Non-Believers Who Don’t Need Religion

Valerie Tarico, AlterNetReligious labels help shore up identity. So what are some of the things non-believers can call themselves?Catholic, born-again, Reformed, Jew, Muslim, Shiite, Sunni, Hindu, Sikh, Buddhist…religions give people labels. The downside can be tribalism, an assumption that insiders are better than outsiders, that they merit more compassion, integrity and generosity or even that violence toward “infidels” is acceptable. But the upside is that religious o [...]

View Article Here Read More

What Would You Take With You to the Afterlife? – Life, Death, Out-of-Body Experiences & the Journey of Consciousness




beforeitsnews.com
By Matthew Butler 

People save up for retirement, but how well do we prepare for the journey after? Ancient cultures put great emphasis on the afterlife, because they knew consciousness continued after death. They were right: Out-of-body experiences reveal we really do exist beyond the body. Knowing this truth should inspire us to seek in life what really matters and remains after death – awakened consciousness.

What is the greatest mystery of life? According to a legendary Q&A in the Indian spiritual epic the Mahabharata, the greatest wonder is that countless people die every day, yet those left behind believe they will live forever.
There is a well-known saying that the only certainty in life is death, but our hyper-connected modern society is not exactly inspiring much reflection on what lies beyond the transient.
People put aside savings for retirement, and some take out life insurance to take care of the loved ones they leave behind. This looks after physical needs, but what about the needs of consciousness which continues without the body? What preparations are made for its journey after death – the ultimate journey of a lifetime?
Religious institutions offer a solution to their followers that usually depends on adopting a set of beliefs rather than personal spiritual discovery.  On the other hand, some scientists will tell you with equal conviction that nothing comes after death, so don’t worry about it. Both of these points of view depend on belief, but what if, when the final moment comes, you realise you wasted the great opportunity your life provided? An alternative option is to discover for ourselves why we are here, and what  our place in the universe is, while we are alive and have the opportunity to do something with the knowledge we gain.
Ancient spiritual cultures almost universally placed importance on the individual’s preparations and journey into the afterlife. They clearly understood our existence extended beyond our bodies, and that life and death were best seen with the bigger picture of creation in mind – as part of an ongoing journey of consciousness – with life presenting an amazing opportunity for conscious evolution that we take the fruits from after death.
This was bought home to me in an interesting way during a trip to a museum exhibition showcasing ancient Egyptian afterlife cosmology; it reminded me of the universal nature of the afterlife, and how Near-Death Experiences and Out-of-Body Experiences offer us a glimpse into the reality of existence beyond the body, revealing that awakening consciousness is what creation is really all about.
With our modern culture drifting more and more into shallow short-sighted materialism and faux metaphysics, the need to re-discover and live this deeper purpose to life, so cherished by the ancients, is more important than ever.

A Journey into the Ancient Egyptian Afterlife

A while back I was fortunate to have the opportunity to take a one-way self-guided tour through the ancient Egyptian afterlife, thanks to a special museum exhibition featuring artefacts from the British Museum collection.
The local museum was packed, and we had to wait in a queue before being allowed in. Finally we entered a dimly-lit passage thronging with people, winding past ancient Egyptian artefacts, artworks, tools, scriptures, and mummies.

Geb_Nut_Shu-300x202The exhibit started with depictions of ancient Egyptian cosmology like this. Here the sky goddess is held up above the earth.


It was arranged so that you went on an afterlife “journey” vicariously, stage by stage, in the way the ancient Egyptians understood it. It began with displays showing ancient Egyptian depictions of the world’s creation, and culminated with the judgement of the soul and its journey after death. In between you were shown artefacts demonstrating how ancient Egyptians understood and prepared for death.
There were ancient scrolls of the pyramid texts on display, and ancient art depicting the soul’s journey through the afterlife. A major theme in their art was judgement and the “weighing of the heart”, where a deceased person’s heart was weighed against a feather, and their fate was dependent on their inner qualities and the sum of their actions while alive. Toward the end of the exhibition they had a mockup display of this, with a large set of scales on which you could weigh your “heart” against a feather, while Egyptian Gods looked on from a mural.
After that, you passed into a depiction of the Egyptian paradise before stepping outside into the sunlight. I doubt the effect was intentional on the part of the exhibitors, but after passing through the exhibition’s dark passageway with its ordered depictions of the afterlife, judgment and then stepping into the light, I couldn’t help but think of accounts of near-death experiences, in which people often report passing through a dark tunnel toward the light, and experiencing a life review where they see the consequences of all their actions.

BD_Hunefer_cropped_1-300x231Depiction of the “weighing of the heart”

The exhibit really brought home to me how the ancient Egyptians understood they existed for a purpose that went beyond everyday life. Death was a doorway to the next stage of existence, and their lives were an opportunity to prepare for it. They knew we do not cease to exist when we die, and saw the quest for immortality through awakening consciousness as the real purpose to creation.
From looking at artefacts from different periods, it was apparent the ancient Egyptian understanding of death changed over time. It seemed to me that originally, the emphasis was on living spiritually and obtaining an immortality of the soul, while in later periods their understanding declined into more literal interpretations of preparing the body (rather than consciousness) for the afterlife through mummification, and a preoccupation with the arrangement of one’s burial and tomb with the right spells and amulets.
But I was vividly struck by how through that civilisation’s long and varied existence, the importance of the afterlife always reigned supreme, and being prepared for life after death was absolutely central to existence. Death, and therefore life, was taken very seriously.

I couldn’t help but notice a stark contrast between our modern culture and theirs. It was a bit like being in some kind of time warp, where two very different cultures collided. The artefacts of the Egyptians gave a sense of the sacredness of life and creation, but the bustling, noisy crowds of modern onlookers apparently saw this ancient preoccupation with the afterlife as mere novelty and amusement. How different ancient Egypt was to our modern society where the reality, and inevitability, of death is given little thought or preparation, and the understanding that consciousness continues after death is often summarily discounted and ridiculed.
I highly doubt that many people who attended the exhibition paused to reflect on whether they would continue to exist after death and, if so, how? And why are we here anyway? This was driven home when, just prior to reaching the scales of “judgement”, I noticed a whiteboard, styled with papyrus veneer, with a pertinent question written at the top.

What would you take with you to the afterlife?

Good question. A pen hung from the board, inviting people to write their response underneath. The answers ranged from the sentimental, to the mundane, to the silly.

WP_000293-EDIT1-1024x845How would you answer the question?

Some wanted to take their friends and family with them, while others wanted to take things like their iPhone, make-up, favourite band, football team, favourite rock star, chocolate, alcohol, and so forth.
A “time machine” was perhaps the only clever response. I could see the benefit of that if you realised you had wasted your life. I don’t think it’s really an option however.
This brought home how we don’t take death and the meaning of our lives anywhere near as seriously as we should today. The ancients knew a lot more about life and death than we do. We have lost their ancient wisdom, and with it the understanding of the amazing opportunity our existence in this universe presents.
This is a serious problem. Our consciousness will continue to exist without the body. But if we don’t question our existence and why we are here, we will not awaken consciousness and we will never reach our true potential.

Near-Death Experiences and the Reality of Existence Beyond the Body

Existence after death is not something the ancient Egyptians invented. Concepts of an afterlife are so common across geographically isolated cultures around the world that it cannot simply be dismissed as a coincidence. There may be cultural differences in the details, but the understanding that we continue existing without the body has been pretty much universal for thousands of years.
In fact, the burial of the dead and the realisation of an afterlife are considered some of the most important hallmarks of cultural development in Stone Age people. It was a sign of intelligence distinguishing people from animals, and paved the way for the development of more sophisticated civilisations.

Hieronymus_Bosch_013The medieval painting ‘Ascent of the Blessed’ by Hieronymus Bosch shows the light at the end of the tunnel common to NDE accounts

Near-Death Experiences (NDEs) provide compelling anecdotal evidence that the afterlife mythologies of the world share a real common source and that consciousness exists beyond the brain. In NDEs, people who are clinically dead or close to death go through experiences that follow a pattern with universal traits, which they recall after being revived.
These include an out of body experience, where they leave their body and realise they are separate from it, perhaps seeing their body lying beneath them. Then they may go on a journey, which may feature common aspects like travelling through a tunnel, and a life review, where a person is shown everything they have done, and feels the effects of their actions toward others, whether good or bad.
Although some scientists speculate that these phenomena may be caused by the brain, the reality is that these experiences have occurred when patients are clinically brain dead, and it has not been proven these experiences are produced biologically. Furthermore, there is no ultimate proof that consciousness is produced by the brain anyway, although this is a strongly-held assumption among those entrenched in materialistic beliefs.
NDEs challenge rigid materialistic beliefs about life. In light of the prevalence and commonality of NDEs, some scientists now suggest that consciousness interacts with the brain rather than being produced by it. Rather, the brain is a conduit through which consciousness can express itself, much like the way a computer is a conduit for the internet, but the internet continues to exist when the computer is switched off.
NDEs are increasingly reported in the modern world due to improvements in health care leading to more people being revived, but they are also an ancient phenomenon. Research by the scholar Gregory Shushan found there are universal afterlife experiences which underpinned both modern NDE accounts and ancient afterlife mythologies. His research involved an in-depth comparative analysis of afterlife conceptions of five ancient civilisations (Old and Middle Kingdom Egypt, Sumerian and Old Babylonian Mesopotamia, Vedic India, pre-Buddhist China, and pre-Columbian Mesoamerica) and compared them to modern NDE accounts. He demonstrated that, although there were some variations in the details based on the cultural origin, there were specific recurring similarities that reappeared too consistently to be mere coincidence, suggesting that, “afterlife conceptions are not entirely culturally-determined and… appear to be universal or quasi-universal to some degree”.

Life is an Opportunity to Awaken Consciousness

Realising that you are consciousness, and continue to exist without the body, awakens you to the bigger picture of life. It puts your whole life in perspective.
In an NDE life review, people tend to see that what really matters in life is not how much money they made or what they achieved in a given field, but how they treated other people, and whether they acted with love. These experiences tend to change people’s lives, inspiring them to be more spiritual.
afterlife
Discovering you exist beyond the body can be a life-changing revelation

We do not need to have an NDE to verify that we exist without the body, or to have life-changing experiences. Through astral projection, we can have wilful out of body experiences and use these mystical experiences to learn about ourselves and make positive changes in our lives.
Realising that we exist beyond the body can open the door to awakening. You realise that what really matters in life is not what we gain physically, but developing consciousness. Then the question, “what will you take with you to the afterlife” becomes much more meaningful. You can’t take physical things with you when you die like your iPhone, but you can take consciousness. Then you see that the focus on the afterlife in ancient cultures was not a preoccupation with death, but a deep understanding of life, and how to live it in the most meaningful way to bring spiritual benefits to yourself and others, the effects of which continue after death.
States like anger, greed and hatred have their consequences in the world which are bad enough, but who wants to take these states with them to afterlife? If these states don’t bring happiness here, why drag them along after death? Expressions of consciousness like love, wisdom and inner peace are much  better qualities to carry within. By awakening and expressing consciousness in a world filled with ignorance, hatred and darkness, we not only help to make the world a better place, but continue to carry these spiritual qualities in our consciousness when our body is left behind.
Understanding this is so important today. We live in a society bombarded with elite-controlled propaganda and entertainment that not only hides the darker agendas working in the world, but blankets people in ignorance, keeping us from uncovering the deeper potential of our consciousness and empowering ourselves by striving to awaken – which enables us to break free of the grip of darkness that exerts its influence over humanity. Failing to wake up to this agenda has it implications in the world, and also for our consciousness, and it’s consciousness that really counts, both in life and beyond.
So what would you take with you to the afterlife?

View Article Here Read More

So is Pluto a Planet Again or Not?


Illustrated image of Pluto

theweathernetwork.com
ByScott Sutherland Meteorologist, theweathernetwork.com

Friday, July 18, 2014, 12:24 PM - For over 75 years, tiny Pluto enjoyed its status as the most distant planet in our solar system, but in 2006, it was demoted down to a 'dwarf planet' and its title was passed on to Neptune. Now, though, the editor of Astronomy magazine is sounding the rallying cry to re-open the debate about Pluto's nature, which could potentially redefine what it means to be a planet.

In 2006, when the International Astronomical Union (IAU) set down an official definition for what a 'planet' is, they came up with three rules:
1) The object must be in orbit around the Sun,
2) The object must be massive enough to be a sphere by its own gravitational force. More specifically, its own gravity should pull it into a shape of hydrostatic equilibrium, and
3) It must have cleared the neighborhood around its orbit.

Everything in the solar system technically orbits around the Sun, of course. Something like the Moon doesn't qualify, though, even though it's massive enough to be roughly spherical and its 'neighborhood' is as clear as Earth's is, because it only goes around the Sun as a consequence of being in orbit around Earth. Same goes for the moons of the other planets. Asteroids and comets don't qualify because they're not big enough to become spherical by their own gravity. Even Ceres (which is roughly spherical) doesn't make the cut, because it's in the asteroid belt, thus its 'neighborhood' isn't clear.
Pluto suffers the same problem as Ceres. It's definitely in orbit around the Sun (or at least the common gravitational focus it shares with Charon is in orbit around the Sun). It is massive enough to be a sphere. It just isn't considered to have cleared its neighborhood. So, not a planet, at least by the IAU rules.

However, while the first two rules are pretty clear and easy to determine, third isn't. According to Prof. Abel Méndez, of the University of Puerto Rico at Arecibo, "there is no standard 'cleared' metric." It seems that due to the very existence of the Kuiper Belt, Pluto loses its status. However, exactly how cleared does the neighborhood have to be? There are millions of near-Earth asteroids flying around us, and there are even some asteroids that are locked into the same orbit as Earth ('Earth trojans'). There are even more asteroids near Mars' orbit, due to its proximity to the asteroid belt. Jupiter has an extremely large collection of asteroids in its orbit, both preceding it (the Greeks) and following behind (the Trojans).
Even discounting these cases, as it is, when you go further out into the solar system, it gets harder and harder for an object to clear its neighborhood. This is simply because it makes fewer orbits around the Sun compared to objects closer to the Sun, and thus it encounters the other objects in its orbit far less often. Consider Earth, going around the Sun once every year, with Pluto orbiting every 247 years. So, whereas Earth has made roughly 4.5 billion trips around the Sun since it formed, Pluto has only made 18 million similar trips (if it formed at roughly the same time).
As Astronomy magazine editor David Eicher said: "At the Pluto-like distance of 40 astronomical units — 40 times farther away from the Sun then we are now — Earth would not clear its orbit of asteroids, and so would Earth then not be classified as a planet?"
Also, since recent evidence has pointed to the fact that there may be two super-Earth-sized objects out beyond Pluto, both of them would be considered 'dwarf planets' as well, despite one potentially being 10 times the mass of Earth and the other being up to 100 times the mass of Earth.
So, when it comes to Pluto, what's the case for making it a planet again? Based on the facts above and Eicher's own thoughts:
1) the definition of what 'cleared the neighborhood around its orbit' is, itself, unclear
2) it seems unjustifiable that an object even larger than the Earth would not be considered a planet, simply because it orbits far out in our solar system
3) an object's intrinsic characteristics should dictate what kind of object it is, not its location.

Indeed, if you take the IAU's definition and attempt to apply it to all objects we know about, the multitude of worlds that we've discovered outside our solar system aren't technically planets, despite being large enough and even if they've cleared their orbit, because they don't orbit around the Sun.
So, perhaps it's time to revise the IAU's definition, not only to reconsider Pluto for planetary status, but also to make the definition applicable to a wider range of objects. Even if they changed the first rule to have 'a star' instead of 'the Sun' and changed the emphasis of the third rule to be that the object is large enough compared to the rest of the objects in its orbit to be capable of clearing its neighborhood (given enough time), it might be a much better set of conditions to measure everything against.
As Astronomy's editors offer up their time and efforts to host a renewed debate about Pluto, what do you think about its status? Should it be a planet again, remain as a dwarf planet, or perhaps something else? Leave your ideas in the comments below.

pluto

View Article Here Read More

What Would You Take With You to the Afterlife? – Life, Death, Out-of-Body Experiences and the Journey of Consciousness

Matthew Butler, GuestPeople save up for retirement, but how well do we prepare for the journey after? Ancient cultures put great emphasis on the afterlife, because they knew consciousness continued after death. They were right: Out-of-body experiences reveal we really do exist beyond the body. Knowing this truth should inspire us to seek in life what really matters and remains after death – awakened consciousness.What is the greatest mystery of life? According to a legendar [...]

View Article Here Read More

Can You Fathom A World Without Money And Without Disease?

Michael Forrester, Prevent DiseaseIn many ways we’ve already selected monetary systems for termination. Money itself is not the root of all evil, however humans have bound money so tightly to contracts that it can no longer be used to benefit us in its current form and with the mindset to transcend all that it represents. Humanity has realized this and it’s only a matter of time before our monetary structures evolve to something else. That something will benefit all the struggl [...]

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑