Tag: observer (page 1 of 4)

Arcturian Group via Marilyn Raffaele MARCH 25 2018 Galactic Federation Of Light

http://www.onenessofall.com/newest.html
By Marilyn Raffaele.

MARCH 25,2018

Greetings, dear ones. Once again we lovingly offer guidance in order to assist your evolutionary journey at this time of so much

View Article Here Read More

The Nature of Conspiracy & How it is Exposed

 Conspiracy: an evil, unlawful, treacherous, or surreptitious plan formulated in secret by two or more persons. (dictionary.com)  While I near completion on my next blog entry entitled, The Hidden Agenda of the Galactic Federation Progra...

View Article Here Read More

The World Of Quantum Physics: EVERYTHING Is Energy

by John Assaraf,Nobel Prize winning physicists have proven beyond doubt that the physical world is one large sea of energy that flashes into and out of being in milliseconds, over and over again.Nothing is solid.This is the world of Quantum Physics.They have proven that thoughts are what put together and hold together this ever-changing energy field into the ‘objects’ that we see.So why do we see a person instead of a flashing cluster of energy?Think of a movie [...]

View Article Here Read More

Quantum Entanglement Verified: Why Space Is Just The Construct That Gives The Illusion Of Separate Objects

“Space is just the construct that gives the illusion that there are separate objects” – Dr. Quantum (see video below)There is a phenomenon so strange, so fascinating, and so counter to what we believe to be the known scientific laws of the universe, that Einstein himself could not wrap his head around it. It’s called “quantum entanglement,” though Einstein referred to it as “spooky action at a distance.”An [...]

View Article Here Read More

Physicists: Black holes don’t erase information




Excerpt from earthsky.org
Since 1975, when Hawking showed that black holes evaporate from our universe, physicists have tried to explain what happens to a black hole’s information.

What happens to the information that goes into a black hole? Is it irretrievably lost? Does it gradually or suddenly leak out? Is it stored somehow? Physicists have puzzled for decades over what they call the information loss paradox in black holes. A new study by physicists at University at Buffalo – published in March, 2015 in the journal in Physical Review Letters – shows that information going into a black hole is not lost at all.

Instead, these researchers say, it’s possible for an observer standing outside of a black hole to recover information about what lies within.

Dejan Stojkovic, associate professor of physics at the University at Buffalo, did the research with his student Anshul Saini as co-author. Stojkovic said in a statement:
According to our work, information isn’t lost once it enters a black hole. It doesn’t just disappear.
What sort of information are we talking about? In principle, any information drawn into a black hole has an unknown future, according to modern physics. That information could include, for example, the characteristics of the object that formed the black hole to begin with, and characteristics of all matter and energy drawn inside.

Stojkovic says his research “marks a significant step” toward solving the information loss paradox, a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time, disappearing from the universe and taking their information with them. 

Disappearing information is a problem for physicists because it’s a violation of quantum mechanics, which states that information must be conserved.
According to modern physics, any information about an astronaut entering a black hole - for example, height, weight, hair color - may be lost.  Likewise, information about he object that formed the hole, or any matter and energy entering the hole, may be lost.  This notion violates quantum mechanics, which is why it's known as the 'black hole information paradox.


According to modern physics, any information related to an astronaut entering a black hole – for example, height, weight, hair color – may be lost. This notion is known as the ‘information loss paradox’ of black holes because it violates quantum mechanics. Artist’s concept via Nature.

Stojkovic says that physicists – even those who believed information was not lost in black holes – have struggled to show mathematically how the information is preserved. He says his new paper presents explicit calculations demonstrating how it can be preserved. His statement from University at Buffalo explained:
In the 1970s, [Stephen] Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it’s possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini’s new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such “correlations” have long been known to exist, but many scientists discounted them as unimportant in the past.
Stojkovic added:
These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference.
Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome.
Artist's impression of a black hole, via Icarus
Artist’s impression of a black hole, via Icarus

Bottom line: Since 1975, when Stephen Hawking and Jacob Bekenstein showed that black holes should slowly radiate away energy and ultimately disappear from the universe, physicists have tried to explain what happens to information inside a black hole. Dejan Stojkovic and Anshul Saini, both of University at Buffalo, just published a new study that contains specific calculations showing that information within a black hole is not lost.

View Article Here Read More

Huge Alien Planet Bathes in the Light of Four Suns



30 Ari with its newly discovered companion stars
Karen Teramura

Excerpt from nbcnews.com


Astronomers have spotted a fourth star in a planetary system called 30 Ari, bringing the number of known planet-harboring quadruple-sun systems to two. 

"Star systems come in myriad forms. There can be single stars, binary stars, triple stars, even quintuple star systems," study lead author Lewis Roberts, of NASA's Jet Propulsion Laboratory, said in a statement. "It's amazing the way nature puts these things together." 

30 Ari lies 136 light-years from the sun in the constellation Aries. Astronomers discovered a giant planet in the system in 2009; the world is about 10 times more massive than Jupiter and orbits its primary star every 335 days. There's also a pair of stars that lie approximately 1,670 astronomical units away. (One AU is the distance between Earth and the sun — about 93 million miles, or 150 million kilometers).

The newfound star circles its companion once every 80 years, at a distance of just 22 AU, but it does not appear to affect the exoplanet's orbit despite such proximity. This is a surprising result that will require further observations to understand, researchers said. 

To a hypothetical observer cruising through the giant planet's atmosphere, the sky would appear to host one small sun and two bright stars visible in daylight. With a large enough telescope, one of the bright stars could be resolved into a binary pair. 

The discovery marks just the second time a planet has been identified in a four-star system. The first four-star planet, PH1b or Kepler-64b, was spotted in 2012 by citizen scientists using publicly available data from NASA's Kepler mission. 

Planets with multiple suns have become less of a novelty in recent years, as astronomers have found a number of real worlds that resemble Tatooine, Luke Skywalker's home planet in the Star Wars films. 

The research was published online this month in the Astronomical Journal.

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

Does the Past Exist Yet? Evidence Suggests Your Past Isn’t Set in Stone


thumbnail



Excerpt from robertlanza.com
By Robert Lanza 

Recent discoveries require us to rethink our understanding of history. “The histories of the universe,” said renowned physicist Stephen Hawking “depend on what is being measured, contrary to the usual idea that the universe has an objective observer-independent history.”

Is it possible we live and die in a world of illusions? Physics tells us that objects exist in a suspended state until observed, when they collapse in to just one outcome. Paradoxically, whether events happened in the past may not be determined until sometime in your future – and may even depend on actions that you haven’t taken yet.

In 2002, scientists carried out an amazing experiment, which showed that particles of light “photons” knew — in advance — what their distant twins would do in the future. They tested the communication between pairs of photons — whether to be either a wave or a particle. Researchers stretched the distance one of the photons had to take to reach its detector, so that the other photon would hit its own detector first. The photons taking this path already finished their journeys — they either collapse into a particle or don’t before their twin encounters a scrambling device.
Somehow, the particles acted on this information before it happened, and across distances instantaneously as if there was no space or time between them. They decided not to become particles before their twin ever encountered the scrambler. It doesn’t matter how we set up the experiment. Our mind and its knowledge is the only thing that determines how they behave. Experiments consistently confirm these observer-dependent effects.

More recently (Science 315, 966, 2007), scientists in France shot photons into an apparatus, and showed that what they did could retroactively change something that had already happened. As the photons passed a fork in the apparatus, they had to decide whether to behave like particles or waves when they hit a beam splitter. 
Later on – well after the photons passed the fork – the experimenter could randomly switch a second beam splitter on and off. It turns out that what the observer decided at that point, determined what the particle actually did at the fork in the past. At that moment, the experimenter chose his history.

Of course, we live in the same world. Particles have a range of possible states, and it’s not until observed that they take on properties. So until the present is determined, how can there be a past? According to visionary physicist John Wheeler (who coined the word “black hole”), “The quantum principle shows that there is a sense in which what an observer will do in the future defines what happens in the past.” Part of the past is locked in when you observe things and the “probability waves collapse.” But there’s still uncertainty, for instance, as to what’s underneath your feet. If you dig a hole, there’s a probability you’ll find a boulder. Say you hit a boulder, the glacial movements of the past that account for the rock being in exactly that spot will change as described in the Science experiment.

But what about dinosaur fossils? Fossils are really no different than anything else in nature. For instance, the carbon atoms in your body are “fossils” created in the heart of exploding supernova stars. 
Bottom line: reality begins and ends with the observer. “We are participators,” Wheeler said “in bringing about something of the universe in the distant past.” Before his death, he stated that when observing light from a quasar, we set up a quantum observation on an enormously large scale. It means, he said, the measurements made on the light now, determines the path it took billions of years ago.

Like the light from Wheeler’s quasar, historical events such as who killed JFK, might also depend on events that haven’t occurred yet. There’s enough uncertainty that it could be one person in one set of circumstances, or another person in another. Although JFK was assassinated, you only possess fragments of information about the event. But as you investigate, you collapse more and more reality. According to biocentrism, space and time are relative to the individual observer – we each carry them around like turtles with shells.

History is a biological phenomenon — it’s the logic of what you, the animal observer experiences. You have multiple possible futures, each with a different history like in the Science experiment. Consider the JFK example: say two gunmen shot at JFK, and there was an equal chance one or the other killed him. This would be a situation much like the famous Schrödinger’s cat experiment, in which the cat is both alive and dead — both possibilities exist until you open the box and investigate.

“We must re-think all that we have ever learned about the past, human evolution and the nature of reality, if we are ever to find our true place in the cosmos,” says Constance Hilliard, a historian of science at UNT. Choices you haven’t made yet might determine which of your childhood friends are still alive, or whether your dog got hit by a car yesterday. In fact, you might even collapse realities that determine whether Noah’s Ark sank. “The universe,” said John Haldane, “is not only queerer than we suppose, but queerer than we can suppose.”

View Article Here Read More

Does Death Exist? New Theory Says ‘No’





Excerpt from robertlanza.com

Many of us fear death. We believe in death because we have been told we will die. We associate ourselves with the body, and we know that bodies die. But a new scientific theory suggests that death is not the terminal event we think.
One well-known aspect of quantum physics is that certain observations cannot be predicted absolutely. Instead, there is a range of possible observations each with a different probability. One mainstream explanation, the “many-worlds” interpretation, states that each of these possible observations corresponds to a different universe (the ‘multiverse’). A new scientific theory – called biocentrism – refines these ideas. There are an infinite number of universes, and everything that could possibly happen occurs in some universe. Death does not exist in any real sense in these scenarios. All possible universes exist simultaneously, regardless of what happens in any of them. Although individual bodies are destined to self-destruct, the alive feeling – the ‘Who am I?’- is just a 20-watt fountain of energy operating in the brain. But this energy doesn’t go away at death. One of the surest axioms of science is that energy never dies; it can neither be created nor destroyed. But does this energy transcend from one world to the other?
Consider an experiment that was recently published in the journal Science showing that scientists could retroactively change something that had happened in the past. Particles had to decide how to behave when they hit a beam splitter. Later on, the experimenter could turn a second switch on or off. It turns out that what the observer decided at that point, determined what the particle did in the past. Regardless of the choice you, the observer, make, it is you who will experience the outcomes that will result. The linkages between these various histories and universes transcend our ordinary classical ideas of space and time. Think of the 20-watts of energy as simply holo-projecting either this or that result onto a screen. Whether you turn the second beam splitter on or off, it’s still the same battery or agent responsible for the projection.
According to Biocentrism, space and time are not the hard objects we think. Wave your hand through the air – if you take everything away, what’s left? Nothing. The same thing applies for time. You can’t see anything through the bone that surrounds your brain. Everything you see and experience right now is a whirl of information occurring in your mind. Space and time are simply the tools for putting everything together.
Death does not exist in a timeless, spaceless world. In the end, even Einstein admitted, “Now Besso” (an old friend) “has departed from this strange world a little ahead of me. That means nothing. People like us…know that the distinction between past, present, and future is only a stubbornly persistent illusion.” Immortality doesn’t mean a perpetual existence in time without end, but rather resides outside of time altogether.
This was clear with the death of my sister Christine. After viewing her body at the hospital, I went out to speak with family members. Christine’s husband – Ed – started to sob uncontrollably. For a few moments I felt like I was transcending the provincialism of time. I thought about the 20-watts of energy, and about experiments that show a single particle can pass through two holes at the same time. I could not dismiss the conclusion: Christine was both alive and dead, outside of time.
Christine had had a hard life. She had finally found a man that she loved very much. My younger sister couldn’t make it to her wedding because she had a card game that had been scheduled for several weeks. My mother also couldn’t make the wedding due to an important engagement she had at the Elks Club. The wedding was one of the most important days in Christine’s life. Since no one else from our side of the family showed, Christine asked me to walk her down the aisle to give her away.
Soon after the wedding, Christine and Ed were driving to the dream house they had just bought when their car hit a patch of black ice. She was thrown from the car and landed in a banking of snow.
“Ed,” she said “I can’t feel my leg.”
She never knew that her liver had been ripped in half and blood was rushing into her peritoneum.
After the death of his son, Emerson wrote “Our life is not so much threatened as our perception. I grieve that grief can teach me nothing, nor carry me one step into real nature.”
Whether it’s flipping the switch for the Science experiment, or turning the driving wheel ever so slightly this way or that way on black-ice, it’s the 20-watts of energy that will experience the result. In some cases the car will swerve off the road, but in other cases the car will continue on its way to my sister’s dream house.
Christine had recently lost 100 pounds, and Ed had bought her a surprise pair of diamond earrings. It’s going to be hard to wait, but I know Christine is going to look fabulous in them the next time I see her.

View Article Here Read More

Have Aliens Left The Universe? Theory Predicts We’ll Follow

























Excerpt from robertlanza.com

In Star Wars, the bars are bustling with all types of alien creatures. And then, of course, there’s Yoda and Chewbacca. Recently, renowned scientist Stephen Hawking stated that he too believes aliens exist: “To my mathematical brain, the numbers alone make thinking about aliens perfectly rational.”

Hawking thinks we should be cautious about interacting with aliens — that they might raid Earth’s resources, take our ores, and then move on like pirates. “I imagine they might exist in massive ships, having used up all the resources from their home planet. Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they can reach.”
But where are they all anyhow?

For years, NASA and others have been searching for extraterrestrial intelligence. The universe is 13.7 billion years old and contains some 10 billion trillion stars. Surely, in this lapse of suns, advanced life would have evolved if it were possible. Yet despite half a century of scanning the sky, astronomers have failed to find any evidence of life or to pick up any of the interstellar radio signals that our great antennas should be able to easily detect.

Some scientists point to the “Fermi Paradox,” noting that extraterrestrials should have had plenty of time to colonize the entire galaxy but that perhaps they’ve blown themselves up. It’s conceivable the problem is more fundamental and that the answer has to do with the evolutionary course of life itself.

Look at the plants in your backyard. What are they but a stem with roots and leaves bringing nutriments to the organism? After billions of years of evolution, it was inevitable life would acquire the ability to locomote, to hunt and see, to protect itself from competitors. 
Observe the ants in the woodpile — they can engage in combat just as resolutely as humans. Our guns and ICBM are merely the mandibles of a cleverer ant. The effort for self-preservation is vague and varied. But when we’ve overcome our struggles, what do we do next? Build taller and more splendid houses?

What happens after life completes its transition to perfection? Perhaps across space, more advanced intelligences have taken the next evolutionary step. Perhaps they’ve evolved beyond the three dimensions we vertebrates know. A new theory — Biocentrism — tells us that space and time aren’t physical matrices, but simply tools our mind uses to put everything together. These algorithms are the key to consciousness, and why space and time — indeed the properties of matter itself — are relative to the observer. More advanced civilizations would surely understand these algorithms well enough to create realities that we can’t even imagine, and to have expanded beyond our corporeal cage.

Like breathing, we take for granted how our mind puts everything together. I can recall a dream I had of a flying saucer landing in Times Square. It was so real it took awhile to convince myself that it was a dream (that I was actually at home in bed). I was standing in a crowd surrounded by skyscrapers when a massive spaceship appeared overhead. Everyone started running. My mind had somehow generated this spatio-temporal experience out of electrochemical information. I could feel the vibrations under my feet as the ship started to land, merging this 3D world with my inner thoughts and sensations.

Although I was in bed with my eyes closed, I was able to run and move my arms and fingers. My mind had created a fully functioning body and placed it in a virtual world (replete with clouds in the sky and the Sun) that was indistinguishable from the one I’m in right now. Life as we know it is defined by this spatial-temporal logic, which traps us in the universe of up and down. But like my dream, quantum theory confirms that the properties of particles in the “real” world are also observer-determined.

Other information systems surely exist that correspond to other physical realities, universes based on logic completely different from ours and not based on space and time as we know it. In fact, the simplest invertebrates may only experience existence in one dimension of space. Evolutionary biology suggests life has progressed from a one dimensional reality, to two dimensions to three dimensions, and there’s no scientific reason to think that the evolution of life stops there.

Advanced civilizations would certainly have changed the algorithms so that instead of being trapped in the linear dimensions we find ourselves in, their consciousness moves through the multiverse and beyond. Why would Aliens build massive ships and spend thousands of years to colonize planetary systems (most of which are probably useless and barren), when they could simply tinker with the algorithms and get whatever they want?

Life on Earth is just beginning to send its shoots upward into the heavens. We’ve even flung a piece of metal outside the solar system. Affixed to the spacecraft is a record with greetings in 60 languages. One can’t but wonder whether some civilization more advanced than ours will come upon it. Or will it just drift across the gulf of space? To me the answer is clear. But in case I’m wrong, I have a pitch fork guarding the ore in my backyard.

View Article Here Read More

The Best Star Gazing Binoculars for 2015




Excerpt from space.com

Most people have two eyes. Humans evolved to use them together (not all animals do). People form a continuous, stereoscopic panorama movie of the world within in their minds. With your two eyes tilted upward on a clear night, there's nothing standing between you and the universe. The easiest way to enhance your enjoyment of the night sky is to paint your brain with two channels of stronger starlight with a pair of binoculars. Even if you live in — or near — a large, light-polluted city, you may be surprised at how much astronomical detail you'll see through the right binoculars!
Our editors have looked at the spectrum of current binocular offerings. Thanks to computer-aided design and manufacturing, there have never been more high-quality choices at reasonable prices. Sadly, there's also a bunch of junk out there masquerading as fine stargazing instrumentation. We've selected a few that we think will work for most skywatchers.
There was a lot to consider: magnification versus mass, field of view, prism type, optical quality ("sharpness"), light transmission, age of the user (to match "exit pupil" size, which changes as we grow older), shock resistance, waterproofing and more. 

The best binoculars for you

"Small" astronomy binoculars would probably be considered "medium" for bird watching, sports observation and other terrestrial purposes. This comes about as a consequence of optics (prism type and objective size, mostly). "Large" binoculars are difficult to use for terrestrial applications and have a narrow field of view. They begin to approach telescope quality in magnification, resolution and optical characteristics.

Most of our Editors' Choicesfor stargazing binoculars here are under $300. You can pay more than 10 times that for enormous binocular telescopes used by elite enthusiasts on special mounts! You'll also pay more for ruggedized ("mil spec," or military standard) binoculars, many of which suspend their prisms on shock mounts to keep the optics in precise alignment.

Also, our Editors' Choices use Porro prism optics. Compact binoculars usually employ "roof" prisms, which can be cast more cheaply, but whose quality can vary widely. [There's much more about Porro prisms in our Buyer's Guide.]
We think your needs are best served by reviewing in three categories.
  • Small, highly portable binoculars can be hand-held for viewing ease.
  • Medium binoculars offer higher powers of magnification, but still can be hand-held, if firmly braced.
  • Large binoculars have bigger "objective" lenses but must be mounted on a tripod or counterweighted arm for stability.
Here's a detailed look at our Editor's Choice selections for stargazing binoculars:

Best Small Binoculars 

Editor's Choice: Oberwerk Mariner 8x40 (Cost: $150)

Oberwerk in German means "above work." The brand does indeed perform high-level optical work, perfect for looking at objects above, as well as on the ground or water. Founder Kevin Busarow's Mariner series is not his top of the line, but it benefits greatly from engineering developed for his pricier models. The Oberwerk 8x40’s treat your eyes to an extremely wide field, at very high contrast, with razor-sharp focus; they are superb for observing the broad starscapes of the Milky Way. Just 5.5 inches (14 cm) from front to back and 6.5 inches wide (16.5 cm), the Mariners are compact and rugged enough to be your favorite "grab and go binoculars." But at 37 ounces, they may be more than a small person wants to carry for a long time.


Runner-Up: Celestron Cometron 7x50 (Cost: $30)

Yes, you read that price correctly! These Celestron lightweight, wide-field binoculars bring honest quality at a remarkably low price point. The compromise comes in the optics, particularly the prism's glass type (you might see a little more chromatic aberration around the edges of the moon, and the exit pupil isn't a nice, round circle). Optimized for "almost infinitely distant" celestial objects, these Cometrons won't focus closer than about 30 feet (9.1 meters).  But that's fine for most sports and other outdoor use. If you're gift-buying for multiple young astronomers – or you want an inexpensive second set for yourself – these binoculars could be your answer. Just maybe remind those young folks to be a little careful around water; Celestron claims only that the Cometrons are "water resistant," not waterproof. 


Honorable Mention: Swarovski Habicht 8x30 (Cost: $1,050)

From the legendary Austrian firm of Swarovski Optik, these "bins" are perfect. Really. Very sharp. Very lightweight. Very wide field. Very versatile. And very expensive! Our editors would have picked them if we could have afforded them. 

Honorable Mention: Nikon Aculon 7x50 (Cost: $110) 

Nikon's legendary optical quality and the large, 7mm exit pupil diameter make these appropriate as a gift for younger skywatchers. 

Best Medium Binoculars

Editor's Choice: Celestron SkyMaster 8x56 (Cost: $210)

A solid, chunky-feeling set of quality prisms and lenses makes these binoculars a pleasant, 38oz. handful. A medium wide 5.8 degrees filed of view and large 7mm exit pupil brings you gently into a sweet sky of bright, though perhaps not totally brilliant, stars. Fully dressed in a rubber wetsuit, these SkyMasters are waterproof. Feel free to take them boating or birding on a moist morning. Their optical tubes were blown out with dry nitrogen at the factory, then sealed. So you can expect them not to fog up, at least not from the inside. Celestron's strap-mounting points on the Skymaster 8x56 are recessed, so they don't bother your thumbs, but that location makes them hard to fasten. 


Runner-Up: Oberwerk Ultra 15x70 (Cost: $380)

The most rugged pair we evaluated, these 15x70s are optically outstanding. Seen through the Ultra's exquisitely multi-coated glass, you may find yourself falling in love with the sky all over again. Oberwerk's method of suspending their BAK4 glass Porro prisms offers greater shock-resistance than most competitors’ designs. While more costly than some comparable binoculars, they deliver superior value. Our only complaint is with their mass: At 5.5 lbs., these guys are heavy!  You can hand-hold them for a short while, if you’re lying down. But they are best placed on a tripod, or on a counterweighted arm, unless you like shaky squiggles where your point-source stars are supposed to be. Like most truly big binoculars, the eyepieces focus independently; there’s no center focus wheel. These "binos" are for true astronomers. 


Honorable Mention: Vixen Ascot 10x50 (Cost:$165)

These quirky binoculars present you with an extremely wide field. But they are not crash-worthy – don't drop them in the dark – nor are they waterproof, and the focus knob is not conveniently located. So care is needed if you opt for these Vixen optics. 

Best Large Binoculars

Don't even think about hand-holding this 156-ounce beast! The SkyMaster 25x100 is really a pair of side-by-side 100mm short-tube refractor telescopes. Factor the cost of a sturdy tripod into your purchase decision, if you want to go this big.  The monster Celestron comes with a sturdy support spar for mounting. Its properly multi-coated optics will haul in surprising detail from the sky.  Just make sure your skies are dark; with this much magnification, light pollution can render your images dingy. As with many in the giant and super-giant class of binoculars, the oculars (non-removable eyepieces) focus separately, each rotating through an unusually long 450 degrees.  Getting to critical focus can be challenging, but the view is worth it. You can resolve a bit of detail on face of the new moon (lit by "Earthshine") and pick out cloud bands on Jupiter; tha's pretty astonishing for binoculars. 


Runner-Up: Orion Astronomy 20x80 (Cost: $150)

These big Orions distinguish themselves by price point; they're an excellent value. You could pay 10 times more for the comparably sized Steiners Military Observer 20x80 binoculars! Yes, the Orions are more delicate, a bit less bright and not quite as sharp. But they do offer amazingly high contrast; you'll catch significant detail in galaxies, comets and other "fuzzies." Unusually among such big rigs, the Astronomy 20x80 uses a center focus ring and one "diopter" (rather than independently focusing oculars); if you’re graduating from smaller binoculars, which commonly use that approach, this may be a comfort. These binoculars are almost lightweight enough to hold them by hand. But don't do that, at least not for long periods. And don't drop them. They will go out of alignment if handled roughly. 


Honorable Mention: Barska Cosmos 25x100 (Cost: $230)

They are not pretty, but you're in the dark, right? Built around a tripod-mountable truss tube, these Barskas equilibrate to temperature quickly and give you decent viewing at rational cost. They make for a cheaper version of our Editors' Choice Celestron SkyMasters. 

Honorable Mention: Steiner Observer 20x80 (Cost: $1,500)

Not at all a practical cost choice for a beginning stargazer, but you can dream, can't you? These Steiner binoculars are essentially military optics "plowshared" for peaceful celestial observing. 

Why we chose NOT to review certain types

Image stabilized?

Binoculars with active internal image stabilization are a growing breed. Most use battery-powered gyroscope/accelerometer-driven dynamic optical elements. We have left this type out of our evaluation because they are highly specialized and pricey ($1,250 and up). But if you are considering active stabilization, you can apply the same judgment methods detailed in our Buyer's Guide.

Comes with a camera?

A few binoculars are sold with built-in cameras. That seems like a good idea. But it isn't, at least not for skywatching. Other than Earth's moon, objects in the night sky are stingy with their photons. It takes a lengthy, rock-steady time exposure to collect enough light for a respectable image. By all means, consider these binocular-camera combos for snapping Facebook shots of little Jenny on the soccer field. But stay away from them for astronomy.

Mega monster-sized?

Take your new binoculars out under the night sky on clear nights, and you will fall in love with the universe. You will crave more ancient light from those distant suns. That may translate into a strong desire for bigger stereo-light buckets.

Caution: The next level up is a quantum jump of at least one financial order of magnitude. But if you have the disposable income and frequent access to dark skies, you may want to go REALLY big. Binocular telescopes in this class can feature interchangeable matching eyepieces, individually focusing oculars, more than 30x magnification and sturdy special-purpose tripods. Amateurs using these elite-level stereoscopes have discovered several prominent comets.

Enjoy your universe

If you are new to lens-assisted stargazing, you'll find excellent enhanced views among the binocular choices above. To get in deeper and to understand how we picked the ones we did, jump to our Buyer's Guide: How to Choose Binoculars for Sky Watching.

You have just taken the first step to lighting up your brain with star fire. May the photons be with you. Always. 

Skywatching Events 2015

Once you have your new binoculars, it's time to take them for a spin. This year intrepid stargazers will have plenty of good opportunities to use new gear.

On March 20, for example, the sun will go through a total solar eclipse. You can check out the celestial sight using the right sun-blocking filters for binoculars, but NEVER look at the sun directly, even during a solar eclipse. It's important to find the proper filters in order to observe the rare cosmic show. 

Observers can also take a look at the craggy face of the moon during a lunar eclipse on April 4. Stargazers using binoculars should be able to pick out some details not usually seen by the naked eye when looking at Earth's natural satellite.

Skywatchers should also peek out from behind the binoculars for a chance to see a series of annual meteor showers throughout the year.

View Article Here Read More

A Physicist’s Explanation of Why the Soul May Exist







By Tara Maclsaac
Excerpt from
theepochtimes.com
 Henry Stapp is a theoretical physicist at the University of California's Lawrence Berkeley Laboratory, specializing in the mathematical and logical foundations of quantum mechanics. - See more at: http://www.nourfoundation.com/speakers/henry-p-stapp-phd.html#sthash.ZJS7Zrm3.dpuf
Dr. Henry Stapp is a theoretical physicist at the University of California's Lawrence Berkeley Laboratory, specializing in the mathematical and logical foundations of quantum mechanics. - See more at: http://www.nourfoundation.com/speakers/henry-p-stapp-phd.html#sthash.ZJS7Zrm3.dpuf



Henry P. Stapp is a theoretical physicist at the University of California–Berkeley who worked with some of the founding fathers of quantum mechanics. He does not seek to prove that the soul exists, but he does say that the existence of the soul fits within the laws of physics.

He does not seek to prove that the soul exists, but he does say that the existence of the soul fits within the laws of physics.

It is not true to say belief in the soul is unscientific, according to Stapp. Here the word “soul” refers to a personality independent of the brain or the rest of the human body that can survive beyond death.  In his paper, “Compatibility of Contemporary Physical Theory With Personality Survival,” he wrote: “Strong doubts about personality survival based solely on the belief that postmortem survival is incompatible with the laws of physics are unfounded.”
He works with the Copenhagen interpretation of quantum mechanics—more or less the interpretation used by some of the founders of quantum mechanics, Niels Bohr and Werner Heisenberg. Even Bohr and Heisenberg had some disagreements on how quantum mechanics works, and understandings of the theory since that time have also been diverse. Stapp’s paper on the Copenhagen interpretation has been influential. It was written in the 1970s and Heisenberg wrote an appendix for it. 

Stapp noted of his own concepts: “There has been no hint in my previous descriptions (or conception) of this orthodox quantum mechanics of any notion of personality survival.”

Why Quantum Theory Could Hint at Life After Death

Stapp explains that the founders of quantum theory required scientists to essentially cut the world into two parts. Above the cut, classical mathematics could describe the physical processes empirically experienced. Below the cut, quantum mathematics describes a realm “which does not entail complete physical determinism.”

Of this realm below the cut, Stapp wrote: “One generally finds that the evolved state of the system below the cut cannot be matched to any conceivable classical description of the properties visible to observers.”

So how do scientists observe the invisible? They choose particular properties of the quantum system and set up apparatus to view their effects on the physical processes “above the cut.”

The key is the experimenter’s choice. When working with the quantum system, the observer’s choice has been shown to physically impact what manifests and can be observed above the cut. 

Stapp cited Bohr’s analogy for this interaction between a scientist and his experiment results: “[It's like] a blind man with a cane: when the cane is held loosely, the boundary between the person and the external world is the divide between hand and cane; but when held tightly the cane becomes part of the probing self: the person feels that he himself extends to the tip of the cane.”

The physical and mental are connected in a dynamic way. In terms of the relationship between mind and brain, it seems the observer can hold in place a chosen brain activity that would otherwise be fleeting. This is a choice similar to the choice a scientist makes when deciding which properties of the quantum system to study. 

The quantum explanation of how the mind and brain can be separate or different, yet connected by the laws of physics “is a welcome revelation,” wrote Stapp. “It solves a problem that has plagued both science and philosophy for centuries—the imagined science-mandated need either to equate mind with brain, or to make the brain dynamically independent of the mind.”

View Article Here Read More

Must-See Geminid Meteor Shower Peaks This Weekend: An Observer’s Guide



2014 Geminid Meteor Shower Sky Map


Excerpt from
space.com

The spectacular Geminid Meteor shower hits peak activity this weekend. Though competing with some unfortunate moonlight, the shower still should make for a must-see astronomical event.

While moonlight will somewhat hinder this year's Geminid meteor shower, intrepid observers with good weather and low light pollution should still be able to catch a good meteor show Saturday (Dec. 13) night.

"If you have not seen a mighty Geminid fireball arcing gracefully across an expanse of sky, then you have not seen a meteor," note astronomers David Levy and Stephen Edberg. 


Even if you can't see the meteor display from your part of the world, you can watch them online. The online Slooh Community Observatory will host a live webacst of the Geminid meteor display on Saturday night beginning at 8 p.m. EST (0100 Dec. 14 GMT).You can also watch the Slooh webcast directly:http://live.slooh.com/. NASA meteor expert Bill Cooke will also host a live Geminids webchat on Saturday night from 11 p.m. to 3 a.m. EST (0400 to 0800 GMT), as well as a live webcast.
You can watch the webcasts of the Geminid shower live on Space.com, starting at 8 p.m. EST, courtesy of Slooh and NASA. The Italy-based Virtual Telescope Project will also host a Geminds webcast, beginning at 9 p.m. EST (0200 GMT).

Although the bright moon will be high in the sky by 11:30 p.m. local time Saturday (Dec. 13) (during the shower's peak), skywatchers can still catch a potentially incredible show before the moon creeps above the horizon, washing out the sky. Stargazers might be able to see an average of one or two Geminid meteors per minute Saturday before the moon rises.

By around 9 p.m., the constellation Gemini — the part of the sky where the meteors seem to emanate from — will have climbed more than one-third of the way up from the horizon. Meteor sightings should begin to really increase noticeably thereafter. By around 2 a.m., the last-quarter moon will be low in the east-southeast, but Gemini will stand high overhead. So you might still see a good number of meteors in spite of the moon's presence.

A brilliant shower

The Geminids are, for those willing to brave the chill of a December night, a very fine winter shower, and usually the most satisfying of all the annual showers. They can even surpass the brilliant August Perseid meteor shower.

Studies of past displays show that the Geminid shower is rich both in slow, bright, graceful meteors and fireballs, as well as in faint meteors, with relatively fewer objects of medium brightness. Many Geminids appear yellowish in hue; some even appear to form jagged or divided paths.     

These meteors travel at a medium speed and appear to emanate, specifically, from near the bright star Castor, in the constellation of Gemini, the Twins, hence the name "Geminid." In apparent size, that's less than half the width of the moon. As such, this is a rather sharply defined radiant as most meteor showers go. It suggests the stream is "young," perhaps only several thousand years old.

Generally speaking, depending on your location, Castor begins to come up above the east-northeast horizon right around the time evening twilight comes to an end. As the Gemini constellation begins to climb the eastern sky just after darkness falls, there is a fair chance of perhaps catching sight of some "Earth-grazing" meteors. Earthgrazers are long, bright shooting stars that streak overhead from a point near to even just below the horizon. Such meteors are so distinctive because they follow long paths nearly parallel to the Earth's atmosphere. 

Because Geminid meteoroids are several times denser than the comet dust that supply most meteor showers and because of the relatively slow speed with which the Geminids encounter Earth (22 miles or 35 kilometers per second), these meteors appear to linger a bit longer in view than most. As compared to an Orionid or Leonid meteor that can whiz across your line of sight in less than a second, a Geminid meteor moves only about half as fast. Personally, their movement reminds me of field mice scooting from one part of the sky to another.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑