Tag: narrow (page 1 of 3)

UFO Headline News Friday June 9th, 2017

In case you missed it here is the UFO Headline News for today

The post UFO Headline News Friday June 9th, 2017 appeared first on Inception Radio Network | UFO & Paranormal Talk Radio.

View Article Here Read More

The Class-Domination Theory of Power

by G. William DomhoffNOTE: WhoRulesAmerica.net is largely based on my book,Who Rules America?, first published in 1967 and now in its7th edition. This on-line document is presented as a summary of some of the main ideas in that book.Who has predominant power in the United States? The short answer, from 1776 to the present, is: Those who have the money -- or more specifically, who own income-producing land and businesses -- have the power. George Washington was one of the biggest landowner [...]

View Article Here Read More

What astronomers learned when Messenger space probe crashed into Mercury



Excerpt from statecolumn.com


On April 30, NASA concluded an historic voyage known as the Mercury Surface, Space Environment, Geochemistry and Ranging mission. The mission came to an end when the spacecraft carrying analytical instruments, Messenger, crashed into the planet’s surface after consuming all of its fuel.
The mission was far from a waste, however, as NASA rarely expects to see the majority of the spacecraft they launch ever again. According to Discovery, The probe sent back a spectacular photo of the surface of Mercury, using the craft’s Narrow Angle Camera in tandem with the Mercury Dual Imaging System. The photo shows a mile-wide view of the nearby planet’s surface in 2.1 meters per pixel resolution.
Right after the probe delivered the photo to NASA’s Deep Space Network, which is a collection of global radio antennae that tracks data on the agency’s robotic missions around the solar system, the signal was lost in what scientists assume was the craft’s final contact with the closest planet to the sun.
The four-year mission came to an end when the craft could no longer maintain its orbit around the solar system’s innermost planet due to lack of fuel. Mercury is just 36 miles from the sun, compared to Earth, which is 93 million miles away from the center of the solar system. Mercury is a peculiar world, with both frigid and extremely hot temperatures. Messenger also revealed that Mercury has a magnetic field similar to that of Earth’s, created by the motion of metallic fluids within the planet’s core.
The main challenge the Messenger mission faced was getting the space probe into orbit around Mercury. Due to the planet’s proximity to the sun, it was extremely difficult for flight engineers to avoid its gravitational pull. In addition to the challenge of catching Mercury’s comparatively weak gravitational force, high temperatures also made things tricky. Messenger was equipped with a sunshield designed to protect the spaceship cool on the side that faced the sun. NASA engineers also attempted to chart a long, elliptical orbit around Mercury, giving Messenger time to cool off as it rounded the backside of the planet.
Messenger made over 4,000 orbits around Mercury between 2011 and 2015, many more than the originally planned one-year mission would allow.
With the close-up shots of Mercury’s surface provided by Messenger, NASA scientists were able to detect trace signals of magnetic activity in Mercury’s crust. Using clues from the number of impact craters on the surface, scientists figured that Mercury’s magnetized regions could be as old as 3.7 billion years. Astronomers count the craters on a planet in order to estimate its age – the logic being that younger surfaces should have fewer impact sites than older surfaces.
The data sent back by Messenger has caused astronomers to reconsider their understanding of Mercury’s magnetic history. They now date the beginning of magnetism on Mercury to about 700 million years after the planet was formed. They cannot say for sure, however, if the magnetic field has been consistently active over this timeframe.
According to Messenger guest investigator Catherine Johnson, geophysicist at the University of British Columbia in Vancouver, that it was possible the magnetic field has been active under constant conditions, though she suspects it might also oscillate over time, like Earth’s. Information for the time period between 4 billion years ago and present day is sparse, though Johnson added that additional research is in the pipeline.
Johnson was pleased, however, with the insight offered into Mercury’s formation provided by these new magnetic clues. Magnetism on a planetary scale typically indicates a liquid metal interior. Since Mercury is so tiny, scientists originally believed that its center would be solid, due to the rate of cooling. The presence of liquid in the planet’s center suggests other materials’ presence, which would lower the freezing point. This suggests that a totally solid core would be unlikely.
Mercury’s magnetic field offers valuable insight into the formation of the planet, the solar system, and even the universe. Magnetism on Mercury indicates that it has a liquid iron core, according to Messenger lead scientist Sean Solomon of Columbia University.

View Article Here Read More

See Saturn moon’s ‘soda ocean’ shooting to surface in sheets

 Excerpt from  cnet.comEnceladus may have a warm ocean beneath its icy surface, but it may also be shooting through that crust in big sheets, perhaps filled with sea monkeys.       We already know that Saturn's ...

View Article Here Read More

Astronomers find baby blue galaxy close to dawn of time

NASA, ESA, P. OESCH AND I. MOMCHEVA (YALE UNIVERSITY), AND THE 3D-HST AND HUDF09/XDF TEAMS
Astronomers have discovered a baby blue galaxy that is the furthest away in distance and time - 13.1 billion years - that they’ve ever seen. Photo: Pascal Oesch and Ivelina Momcheva, NASA, European Space Agency via AP


Excerpt from smh.com.au

A team of astronomers peering deep into the heavens have discovered the earliest, most distant galaxy yet, just 670 million years after the Big Bang.

Astronomers have discovered a baby blue galaxy that is the furthest away in distance and time - 13.1 billion years - that they’ve ever seen.
Close-up of the blue galaxy

The findings, described in Astrophysical Journal Letters, reveal a surprisingly active, bright galaxy near the very dawn of the cosmos that could shed light on what the universe, now 13.8 billion years old, was really like in its young, formative years.

"We're actually looking back through 95 per cent of all time to see this galaxy," said study co-author Garth Illingworth, an astronomer at the University of California, Santa Cruz.

"It's really a galaxy in its infancy ... when the universe was in its infancy."

Capturing an image from a far-off light source is like looking back in time. When we look at the sun, we're seeing a snapshot of what it looked like eight minutes ago.

The same principle applies for the light coming from the galaxy known as EGS-zs8-1. We are seeing this distant galaxy as it existed roughly 13.1 billion years ago.

EGS-zs8-1 is so far away that the light coming from it is exceedingly faint. And yet, compared with other distant galaxies, it is surprisingly active and bright, forming stars at roughly 80 times the rate the Milky Way does today.

This precocious little galaxy has built up the mass equivalent to about 8 billion suns, more than 15 per cent of the mass of the Milky Way, even though it appears to have been in existence for a mere fraction of the Milky Way's more than 13 billion years.

"If it was a galaxy near the Milky Way [today], it would be this vivid blue colour, just because it's forming so many stars," Illingworth said.

One of the many challenges with looking for such faint galaxies is that it's hard to tell if they're bright and far, or dim and near. Astronomers can usually figure out which it is by measuring how much that distant starlight gets stretched, "redshifted", from higher-energy light such as ultraviolet down to optical and then infrared wavelengths. The universe is expanding faster and faster, so the further away a galaxy is, the faster it's going, and the more stretched, or "redder", those wavelengths of light will be.

The astronomers studied the faint light from this galaxy using NASA's Hubble and Spitzer space telescopes. But EGS-zs8-1 seemed to be too bright to be coming from the vast distances that the Hubble data suggested.

To narrow in, they used the MOSFIRE infrared spectrograph at the Keck I telescope in Hawaii to search for a particularly reliable fingerprint of hydrogen in the starlight known as the Lyman-alpha line. This fingerprint lies in the ultraviolet part of the light spectrum, but has been shifted to redder, longer wavelengths over the vast distance between the galaxy and Earth.

It's a dependable line on which to base redshift (and distance) estimates, Illingworth said - and with that settled, the team could put constraints on the star mass, star formation rate and formation epoch of this galaxy.

The telltale Lyman-alpha line also reveals the process through which the universe's haze of neutral hydrogen cleared up, a period called the epoch of reionisation. As stars formed and galaxies grew, their ultraviolet radiation eventually ionised the hydrogen and ended the "dark ages" of the cosmos.

Early galaxies-such as EGS-zs8-1 - are "probably the source of ultraviolet radiation that ionised the whole universe", Illingworth said.

Scientists have looked for the Lyman-alpha line in other distant galaxies and come up empty, which might mean that their light was still being blocked by a haze of neutral hydrogen that had not been ionised yet.

But it's hard to say with just isolated examples, Illingworth pointed out. If scientists can survey many galaxies from different points in the universe's very early history, they can have a better sense of how reionisation may have progressed.

"We're trying to understand how many galaxies do have this line - and that gives us some measure of when the universe itself was reionised," Illingworth said.

"One [galaxy] is interesting, but it's when you have 50 that you can really say something about what galaxies were really like then."
As astronomers push the limits of current telescopes and await the completion of NASA's James Webb Space Telescope, set for launch in 2018, scientists may soon find more of these galaxies even closer to the birth of the universe than this new record breaker.

"You don't get to be record holder very long in this business," Illingworth said, "which is good because ultimately we are trying to learn about the universe. So more is better."

View Article Here Read More

Nuclear Experimentation Year 70 – Playing With Madness

Ethan Indigo Smith, ContributorThe recent “news” on the nuclear situation in Iran brings to light the madhouse of cards on which the postmodern world is built. Or rather, it would bring the madness to light if the major media outlets of the world were not bought up and sold out to the military industrial complex, and therefore completely misinformed on the actions and dangers of the nuclear experimentation industry.The story is not just about [...]

View Article Here Read More

New spin on Saturn’s peculiar, err, spin

 Excerpt from spacedaily.comAccording to the new method, Saturn's day is 10 hours, 32 minutes and 44 seconds long. Tracking the rotation speed of solid planets, like the Earth and Mars, is a relatively simple task: Just measure the time it tak...

View Article Here Read More

This Alien Color Catalog May Help Us Spot Life on Other Planets






Excerpt from smithsonianmag.com


In the hunt for alien life, our first glimpse of extraterrestrials may be in the rainbow of colors seen coming from the surface of an exoplanet.

That's the deceptively simple idea behind a study led by Siddharth Hegde at the Max Planck Institute for Astronomy in Germany. Seen from light-years away, plants on Earth give our planet a distinctive hue in the near-infrared, a phenomenon called red edge. That's because the chlorophyll in plants absorbs most visible light waves but starts to become transparent to wavelengths on the redder end of the spectrum. An extraterrestrial looking at Earth through a telescope could match this reflected color with the presence of oxygen in our atmosphere and conclude there is life here.


exoplanets palette
Eight of the 137 microorganism samples used to measure biosignatures for the catalog of reflection signatures of Earth life forms. In each panel, the top is a regular photograph of the sample and the bottom is a micrograph, a version of the top image zoomed-in 400 times.



Plants, though, have only been around for 500 million years—a relative blip in our planet's 4.6-billion-year history. Microbes dominated the scene for some 2.5 billion years in the past, and some studies suggest they will rule the Earth again for much of its future. So Hegde and his team gathered 137 species of microorganisms that all have different pigments and that reflect light in specific ways. By building up a library of the microbes' reflectance spectra—the types of colors those microscopic critters reflect from a distance—scientists examining the light from habitable exoplanets can have a plethora of possible signals to search for, the team argues this week in the Proceedings of the National Academy of Sciences.

"No one had looked at the wide range of diverse life on Earth and asked how we could potentially spot such life on other planets, and include life from extreme environments on Earth that could be the 'norm' on other planets," Lisa Kaltenegger, a co-author on the study, says via email. "You can use it to model an Earth that is different and has different widespread biota and look how it would appear to our telescopes."

To make sure they got enough diversity, the researchers looked at temperate-dwelling microbes as well as creatures that live in extreme environments like deserts, mineral springs, hydrothermal vents or volcanically active areas.

While it might seem that alien life could take a huge variety of forms—for instance, something like the silicon-based Horta from Star Trek—it's possible to narrow things down if we restrict the search to life as we know it. First, any life-form that is carbon-based and uses water as a solvent isn't going to like the short wavelengths of light far in the ultraviolet, because this high-energy UV can damage organic molecules. At the other end of the spectrum, any molecule that alien plants (or their analogues) use to photosynthesize won't be picking up light that's too far into the infrared, because there's not enough energy at those longer wavelengths.

In addition, far-infrared light is hard to see through an Earth-like atmosphere because the gases block a lot of these waves, and whatever heat the planet emits will drown out any signal from surface life. That means the researchers restricted their library to the reflected colors we can see when looking at wavelengths in the visible part of the spectrum, the longest wavelength UV and short-wave infrared.

The library won't be much use if we can't see the planets' surfaces in the first place, and that's where the next generation of telescopes comes in, Kaltenegger says. The James Webb Space Telescope, scheduled for launch in 2018, should be able to see the spectra of relatively small exoplanet atmospheres and help scientists work out their chemical compositions, but it won't be able to see any reflected spectra from material at the surface. Luckily, there are other planned telescopes that should be able to do the job. The European Extremely Large Telescope, a 40-meter instrument in Chile, will be complete by 2022. And NASA's Wide Field Infrared Survey Telescope, which is funded and in its design stages, should be up and running by the mid-2020s.

Another issue is whether natural geologic or chemical processes could look like life and create a false signal. So far the pigments from life-forms look a lot different from those reflected by minerals, but the team hasn't examined all the possibilities either, says Kaltenegger. They hope to do more testing in the future as they build up the digital library, which is now online and free for anyone to explore at biosignatures.astro.cornell.edu.

View Article Here Read More

Are We An Alien Experiment?

Although its possible those responsible for our Earthen experiment may possess a far different form then we, I feel it more probable we were created in our family's image. Greg  Excerpt from rense.com  Even the most hardened skeptic mus...

View Article Here Read More

Monster Black Hole’s Mighty Belch Could Transform Our Entire Galaxy

This artist's illustration depicts the furious cosmic winds streaming out from a monster supermassive black hole as detected by NASA's NuSTAR space telescope and the European Space Agency's XMM-Newton X-ray observatory.
This artist's illustration depicts the furious cosmic winds streaming out from a monster supermassive black hole as detected by NASA's NuSTAR space telescope and the European Space Agency's XMM-Newton X-ray observatory.


Except from space.com

A ravenous, giant black hole has belched up a bubble of cosmic wind so powerful that it could change the fate of an entire galaxy, according to new observations.
Researchers using two X-ray telescopes have identified a cosmic wind blowing outward from the supermassive black hole at the center of galaxy PDS 456. Astronomers have seen these winds before, but the authors of the new research say this is the first observation of a wind moving away from the center in every direction, creating a spherical shape.
The wind could have big implications for the future of the galaxy: It will cut down on the black hole's food supply, and slow star formation in the rest of the galaxy, the researchers said. And it's possible that strong cosmic winds are a common part of galaxy evolution — they could be responsible for turning galaxies from bright, active youngsters to quiet middle-agers. 

Big eater

The supermassive black hole at the center of PDS 456 is currently gobbling up a substantial amount of food: A smorgasbord of gas and dust surrounds the black hole and is falling into the gravitational sinkhole.
As matter falls, it radiates light. The black hole at the center of PDS 456 is devouring so much matter, that the resulting radiation outshines every star in the galaxy. These kinds of bright young galaxies are known as quasars: a galaxy with an incredibly bright center, powered by a supermassive black hole with a big appetite.
New observations of PDS 456 have revealed a bubble of gas moving outward, away from the black hole. Using NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton, the authors of the new research imaged the galaxy on five separate occassions in 2013 and 2014. The researchers say they can show that the photons of light emitted by the in-falling matter are pushing on nearby gas, creating the wind.
Scientists have studied these cosmic winds before, but the authors of the new research say their work goes a step further.
"It tells us that the shape of the wind is not just a narrow beam pointed in our direction. It is really a wind that is flowing in every direction away from the black hole," said Emanuele Nardini, a postdoctoral researcher at Keele University in Staffordshire, England. "With a spherical wind, the amount of mass it carries out is much larger than just a narrow beam."
According to a statement from NASA, galaxy PDS 456 "sustains winds that carry more energy every second than is emitted by more than a trillion suns." Such powerful winds could change the entire landscape of PDS 456, the researchers say. First, the wind will blow through the disk of matter surrounding the black hole — this disk currently serves as the black hole's food supply. The cosmic wind created by the black hole's appetite could significantly reduce or destroy the disk. In other words, the black hole cannot have its cake and eat it, too. 

Bright young things

With no matter left to fall into the black hole, the radiation would cease as well. The brilliant center of the quasar will dim. By diminishing the black hole's food supply, they may turn quasars and other "active galaxies" like PDS 456 into quiescent galaxies like the Milky Way. Theorists have proposed that cosmic winds could explain why there are more young active galaxies than old active galaxies.
"We know that in almost every galaxy, a supermassive black hole resides in the center," said Nardini. "But, most of the galaxies we see today are quiescent, they are not active in any way. The fact that galaxies today are quiescent — we have to find an explanation for that in something that happened a long time ago."
In addition to quenching the radiation from an active black hole, these cosmic winds may slow down star formation in galaxies. The cosmic wind could blow through regions thick with gas and dust, where young stars form, and thin out the fertile stellar soil.
"If you have a black hole with this kind of wind, in millions of years [the winds] will be able to quench star formation and create a galaxy like our own," Nardini said. Stars will still form in the Milky Way, but not at the high rate of many young galaxies.
It's possible that these cosmic winds are a central reason why most galaxies go from being brightly burning active youngsters to quiet middle-agers.

View Article Here Read More

Mars One mission cuts candidate pool down to 100 aspiring colonists

Excerpt from mashable.comOnly 100 people are still competing for four seats on a one-way trip to Mars advertised by Dutch nonprofit Mars One.In its latest round of cuts, the foundation cut its applicant pool from 660 to 100 finalists on Tuesday. More ...

View Article Here Read More

Researchers discover fossils of tiny mammals that frolicked among dinosaurs

The little tree-climber, Agilodocodon scansorius


Excerpt from 
sciencerecorder.com



Two new fossil discoveries push the timeline back on the appearance of burrowing and tree-climbing mammals. Fossils of the shrew-sized creatures found in China date to the age of the dinosaurs and show that mammals of that period were already highly specialized, well-performing animals. One of the rodent-like animals was likely a long-clawed tree-dweller, while the other was shovel-pawed tunnel-digger.

 
The little tree-climber, Agilodocodon scansorius, is the earliest arboreal mammal ever discovered. A report published this week in Science Magazine highlights its traits suited for its habitat, including long claws, spade-like front teeth for gnawing into bark, and flexible elbows and ankles. It is believed to have weighed up to 40 grams, a bit less than a typical hotdog without condiments, and lived about 165 million years ago in what is Mongolia today.

“When we got into the study of Agilodocodon, we realized that the outline for the horny sheath of the claws is preserved,” Zhe-Xi Luo, professor of organismal biology and anatomy at the University of Chicago, said in an interview. “Those soft tissues are not preserved in the vast majority of mammals. It has a very long, curved narrow claw — one feature to show that it is a good climber.” 


Image: Artist's rendition Docofossor brachydactylus
Docofossor brachydactylus


In a report published in the same issue of Science, the other mammal, called Docofossor brachydactylus, is described to have stood no more than 9 centimeters tall and weighed only 17 grams, about the size of a juvenile mouse. Docfossor is the earliest underground-dwelling mammal ever found and shares similarities with the African golden mole, having short, wide digits suitable for digging. The little digger is estimated to have lived some 160 million years ago in what is today Ganggou Fossil Site in China’s Hebei province.

Both fossils are of creatures that belong to the order Docodonta. The discoveries are the first to provide full skeletons of this order, which had previously been characterized by evidence from fossils of teeth, jaws, and bits of skull.

View Article Here Read More

Will new ruling finally free Lolita after 40 years in captivity at Miami Seaquarium?



Excerpt from seattletimes.com

A decision to list the captive orca Lolita for federal protection is expected to set the stage for a lawsuit from advocates seeking the whale’s release.

Seattle Times staff reporter



A Puget Sound orca held for decades at Miami’s Seaquarium will gain the protection of the federal Endangered Species Act, a move expected to set the stage for a lawsuit from advocates seeking the whale’s release.

The National Oceanic and Atmospheric Administration (NOAA) announced Wednesday the decision to list Lolita as part of the southern resident killer whales of Puget Sound, which already are considered endangered under the federal act. 

Whale activists, who petitioned for this status, have long campaigned for Lolita’s return to Puget Sound. They hope the listing will provide a stronger legal case to release Lolita than did a previous lawsuit that centered on alleged violations of the federal Animal Welfare Act.

“This gives leverage under a much stronger law,” said Howard Garrett of the Whidbey Island based Orca Network, which hopes a San Juan Island cove will one day serve as the site for Lolita to re-enter the wild.

NOAA Fisheries officials on Wednesday described their decision in narrow terms, which set no broader precedents. It does not address whether Lolita should be released from the Seaquarium.
“This is a listing decision,” said Will Stelle, the NOAA Fisheries regional administrator for the West Coast. “It is not a decision to free Lolita.” 

Aquarium officials have repeatedly said they have no intention of releasing the orca. 

“Lolita has been part of the Miami Seaquarium family for 44 years,” said Andrew Hertz, Seaquarium general manager, in a statement. 

“Lolita is healthy and thriving in her home where she shares habitat with Pacific white-sided dolphins. There is no scientific evidence that ... Lolita could survive in a sea pen or the open waters of the Pacific Northwest, and we are not willing to treat her life as an experiment.”

Orcas, also known as killer whales, are found in many of the world’s oceans. The southern resident population, which spends several months each year in Puget Sound, is the only group listed in the U.S. under the Endangered Species. 

The three pods in the population were reduced by captures by marine parks between 1965 and 1975, NOAA says. Among them was a roundup in Penn Cove where seven whales were captured, including Lolita. 

The southern resident pods now number fewer than 80. Possible causes for the decline are reduced prey, pollutants that could cause reproductive problems and oil spills, according to NOAA Fisheries.
Under the Endangered Species Act, it is illegal to cause a “take” of a protected orca, which includes harming or harassing them.
Wednesday, NOAA officials said holding an animal captive, in and of itself, does not constitute a take. 

Orca activists are expected to argue in their lawsuit that Lolita's cramped conditions result in a prohibited take.

There is “rising public scorn for the whole idea of performing orcas,” said Garrett, who hopes Seaquarium will decide to release Lolita without a court order. 

But NOAA officials still have concerns about releasing captive whales, and any plan to move or release Lolita would require “rigorous scientific review,” the agency said in a statement.
The concerns include the possibility of disease transmission, the ability of a newly released orca to find food and behavior patterns from captivity that could impact wild whales.

NOAA said previous attempts to release captive orcas and dolphins have often been unsuccessful and some have ended in death.

Garrett said the plan for Lolita calls for her to be taken to a netted area of the cove, which could be enlarged later. She would be accompanied by familiar trainers who could “trust and reassure her every bit of the way,” he said. 

The controversy over releasing captive whales has been heightened by the experience of Keiko, a captive orca that starred in the 1993 movie “Free Willy,” about a boy who pushed for the release of a whale.

In 1998, Keiko was brought back to his native waters off Iceland to reintroduce him to life in the wild. That effort ended in 2003 when he died in a Norwegian fjord. 

Garrett, who visited Keiko in Iceland in 1999, said he was impressed by the reintroduction effort, and that there was plenty of evidence that Keiko was able to catch fish on his own.

“The naysayers predicted that as soon as he got into the (Icelandic) waters he would die, and wild orcas would kill him,” Garrett said. “He proved that 180-degrees wrong. He loved it.”

Mark Simmons, who for two years served as director of animal husbandry for the Keiko-release effort, has a different view. He says Keiko never was able to forage for fish on his own, and that he continued to seek out human contact at every opportunity. 

Simmons wrote a book called “Killing Keiko,” that accuses the release effort of leading to a long slow death for the orca, which he says lacked food and then succumbed to an infection.

“It’s not really the fact that Keiko died, but how he died,” Garrett said Wednesday.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑