Tag: named (page 2 of 7)

NASA submarine to Study Planet Saturn Moon Titan’s Sea





dailysciencejournal.com 

An animated and dramatic 3D video released by NASA has revealed the international space agency plans of exploring the depths of largest sea on the Titan, Kraken Mare.

NASA is planning to launch a submarine in the Kraken Mare Sea with an aim of studying the depth.

Titan is one of the 62 moons of the planet Saturn. Titan has its own and interesting atmosphere compared to other 61. 



Click to zoom


A spacecraft named Cassini has been trying to study the Titan’s atmosphere since 2004. Most of the area of the moon Titan is covered by large bodies of methane and ethane in liquid form.

The submarine will definitely help more compared to Cassini spacecraft to measure and map the shorelines or sea.

While releasing the video the scientists from NASA has stated that the submarine will definitely help in exploring the history of the moon’s climatic conditions and could provide major breakthroughs among the discoveries made till date.

View Article Here Read More

Citizen Scientists Find Green Blobs in Hubble Galaxy Shots





Excerpt from wired.com

In 2007, A Dutch schoolteacher named Hanny var Arkel discovered a weird green glob of gas in space. Sifting through pictures of galaxies online, as part of the citizen science project Galaxy Zoo, she saw a cloud, seemingly glowing, sitting next to a galaxy. Intrigued, astronomers set out to find more of these objects, dubbed Hanny’s Voorwerp (“Hanny’s object” in Dutch). Now, again with the help of citizen scientists, they’ve found 19 more of them, using the Hubble space telescope to snap the eight haunting pictures in the gallery above.



Since var Arkel found the first of these objects, hundreds more volunteers have swarmed to help identify parts of the universe in the Galaxy Zoo gallery. To find this new set, a couple hundred volunteers went through nearly 16,000 pictures online (seven people went through all of them), clicking yes/no/maybe as to whether they saw a weird green blob. Astronomers followed up on the galaxies they identified using ground-based telescopes, and confirmed 19 new galaxies surrounded by green gas.



What causes these wispy tendrils of gas to glow? Lurking at the center of each of these galaxies is a supermassive black hole, millions to billions times as massive as the sun, with gravity so strong that even light can’t escape them. As nearby gas and dust swirls into the black hole, like water circling a drain, that material heats up, producing lots of radiation—including powerful ultraviolet. Beaming out from the galaxy, that ultraviolet radiation strikes nearby clouds of gas, left over from past collisions between galaxies. And it makes the clouds glow an eerie green. “A lot of these bizarre forms we’re seeing in the images arise because these galaxies either interacted with a companion or show evidence they merged with a smaller galaxy,” says William Keel, an astronomer at the University of Alabama, Tuscaloosa.



The eight in this gallery, captured with Hubble, are especially weird. That’s because the quasar, the black-hole engine that’s supposed to be churning out the ultraviolet radiation, is dim—too dim, in fact, to be illuminating the green gas. Apparently, the once-bright quasar has faded. But because that UV light takes hundreds of thousands of years to travel, it can continue to illuminate the gas long after its light source has died away.  


Hubble finds phantom objects close to dead quasars

That glowing gas can tell astronomers a lot about the quasar that brought it to light. “What I’m so excited about is the fact that we can use them to do archaeology,” says Gabriela Canalizo, an astronomer at the University of California, Riverside, who wasn’t part of the new research. Because the streaks of gas are so vast, stretching up to tens of thousands of light years, the way they glow reveals the history of the radiation coming from the quasar. As the quasar fades, so will the gas’s glow, with the regions of gas closer to the quasar dimming first. By analyzing how the glow dwindles with distance from the quasar, astronomers can determine how fast the quasar is fading. “This was something we’ve never been able to do,” Canalizo says.

Measuring how fast the quasar fades allows astronomers to figure out exactly what’s causing it to turn off in the first place. “What makes them dim is running out of material to eat,” Canalizo says. That could happen if the quasar is generating enough radiation to blow away all the gas and dust surrounding the black hole—the same gas and dust that feeds it. Without a steady diet, the quasar is powerless to produce radiation. Only if more gas happens to make its way toward the black hole can the quasar turn on again. The glowing gas can provide details of this process, and if other mechanisms are at play.

With more powerful telescopes, astronomers will likely find many more. Hanny’s Verwoort, it turns out, may not be that weird after all.

View Article Here Read More

10 Pictures of Europe’s Shameful “Human Zoos”

It was not too long ago that people from France, Belgium, Germany, and other countries came to visit humans who were locked up in cages. In these zoos, humans were on exhibit in front of a large audience, locked in with animals at a local zoo. Hundreds of thousands of people would visit these minorities who were on display like animals. The humans zoos were a large attraction, as 18 million came to visit the World Fair in 1889, held in Paris. Over four hundred Aboriginals [...]

View Article Here Read More

MRSA superbug killed by 1,100-year-old home remedy, researchers say


MRSA attacks a human cell. The bacteria shown is the strain MRSA 252, a leading cause of hospital-associated infections. (Rocky Mountain Laboratories, NIAID, NIH)


Excerpt from washingtonpost.com
By Justin Wm. Moyer 

Even in the age of AIDS, avian flu and Ebola, methicillin-resistant Staphylococcus aureus, better known as MRSA, is terrifying.

The superbug, which is resistant to conventional antibiotics because of their overuse, shrugs at even the deadliest weapons modern medicine offers. The Centers for Disease Control and Prevention estimated MRSA contributed to the deaths of more than 5,000 people in the United States in 2013. It even attacked the NFL, and some say it could eventually kill more people than cancer. And presidential commissions have advised that technological progress is the only way to fight MRSA.

But researchers in the United Kingdom now report that the superbug proved vulnerable to an ancient remedy. The ingredients? Just a bit of garlic, some onion or leek, copper, wine and oxgall — a florid name for cow’s bile.

This medicine sounds yucky, but it’s definitely better than the bug it may be able to kill.

“We were absolutely blown away by just how effective the combination of ingredients was,” Freya Harrison of the University of Nottingham, who worked on the research, told the BBC.

The oxgall remedy, billed as an eye salve, was found in a manuscript written in Old English from the 10th century called “Bald’s Leechbook” — a sort of pre-Magna Carta physician’s desk reference. Garlic and copper are commonly thought to have antibiotic or antimicrobial properties, but seeing such ingredients in a home remedy at Whole Foods is a far cry from researchers killing a superbug with it.

According to Christina Lee, an associate professor in Viking studies at Nottingham, the MRSA research was the product of conversations among academics of many stripes interested in infectious disease and how people fought it before antibiotics.

“We were talking about the specter of antibiotic resistance,” she told The Washington Post in a phone interview. The medical researchers involved in the discussions said to the medievalists: “In your period, you guys must have had something.”

Not every recipe in Bald’s Leechbook is a gem. Other advice, via a translation from the Eastern Algo-Saxonist: “Against a woman’s chatter; taste at night fasting a root of radish, that day the chatter cannot harm thee.” And: “In case a man be a lunatic; take skin of a mereswine or porpoise, work it into a whip, swinge the man therewith, soon he will be well. Amen.”

Though the Leechbook may include misses, it may help doctors find a solution to a problem that only seems to be getting worse.

If the oxgall remedy proves effective against MRSA outside of the lab — which researchers caution it may not — it would be a godsend. Case studies of MRSA’s impact from the CDC’s charmingly named Morbidity and Mortality Weekly Report seem medieval.

In July 1997, a 7-year-old black girl from urban Minnesota was admitted to a tertiary-care hospital with a temperature of 103 F.” Result: Death from pulmonary hemorrhage after five weeks of hospitalization.

In January 1998, a 16-month-old American Indian girl from rural North Dakota was taken to a local hospital in shock and with a temperature of 105.2 F.” Result: After respiratory failure and cardiac arrest, death within two hours of hospital admission.

In January 1999, a 13-year-old white girl from rural Minnesota was brought to a local hospital with fever, hemoptysis” — that’s coughing up blood — “and respiratory distress.” The result: Death from multiple organ failure after seven days in the hospital.

“We believe modern research into disease can benefit from past responses and knowledge, which is largely contained in non-scientific writings,” Lee told the Telegraph. “But the potential of these texts to contribute to addressing the challenges cannot be understood without the combined expertise of both the arts and science.”

Lee stressed that it was the combination of ingredients that proved effective against MRSA — which shows that people living in medieval times were not as barbaric as popularly thought. Even 1,000 years ago, when people got sick, other people tried to figure out how to help.

“We associate ‘medieval’ with dark, barbaric,” Lee said. “… It’s not. I’ve always believed in the pragmatic medieval ages.”
The research will be presented at the Annual Conference of the Society for General Microbiology in Birmingham. In an abstract for the conference, the team cautioned oxgall was no cure-all.

“Antibacterial activity of a substance in laboratory trials does not necessarily mean the historical remedy it was taken from actually worked in toto,” they wrote.

Lee said researchers hope to turn to other remedies in Bald’s Leechbook — including purported cures for headaches and ulcers — to see what other wisdom the ancients have to offer.

“At a time when you don’t have microscope, medicine would have included things we find rather odd,” she said. “In 200 years, people will judge us.”

View Article Here Read More

Top Secret Government Programs That Your Not Supposed To Know About

Originally Posted at in5d.com The following is the alleged result of the actions of one or more scientists creating a covert, unauthorized notebook documenting their involvement with an Above Top Secret government program. Government publications and information obtained by the use of public tax monies cannot be subject to copyright. This document is released into the public domain for all citizens of the United States of America. THE ‘MAJIC PROJECTS’ SIGMA is the project whic [...]

View Article Here Read More

Amazing Images of Comet 67P/Churyumov-Gerasimenko

Rosetta photo of Comet 67P/C-G.
Comet 67P/C-G is about as large as Central Park of Manhattan Island, New York

Excerpt from nytimes.com

By JONATHAN CORUM 


The European Space Agency’s Rosetta spacecraft caught up with Comet 67P/Churyumov-Gerasimenko last August, then dropped a lander onto the comet in November. Now Rosetta will follow the rubber-duck-shaped comet as it swings closer to the sun.
Scale in miles
Scale in km
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 9 Rosetta was 45 miles from Comet 67P/C-G when it photographed the comet’s head ringed with a halo of gas and dust. These jets extend from active areas of the comet’s surface and will become much more prominent over the next few months as the comet approaches the sun.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 6 The comet’s head is angled down in this image of crisscrossing sunlit jets taken from 53 miles away.
Comet’s location when Rosetta was launched Rosetta launched in March 2004
Earth
Sun
Mars
Rendezvous
with Comet
67P/C-G
Orbit of
Jupiter
Rosetta today

Where is Rosetta? The Rosetta spacecraft took 10 years to match speed and direction with Comet 67P/C-G. The chase ended last August, and Rosetta will now follow the comet in its elliptical orbit as it moves closer to the sun. The spacecraft is no longer orbiting the comet because of increasing dust, but it is planning a series of close flybys.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 6 Rosetta was 52 miles away when it looked up at the comet’s flat underbelly. The smooth plain at center covered with large boulders is named Imhotep.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 28 Rosetta captured a profile of the comet surrounded by curving jets of gas and dust from active regions. The spacecraft was 64 miles away.

Rosetta photo of Comet 67P/C-G.

Feb. 25–27 One day on Comet 67P/C-G is about 12 hours, the time it takes the comet to spin on its axis. The jets of gas and dust surrounding the comet are thought to curve from a combination of the comet’s rotation and the uneven gravity of its two-lobed structure.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 20 The comet’s sunlit underbelly casts a shadow obscuring the neck that joins the two lobes. Rosetta took this image from 74 miles away.
Rosetta photo of Comet 67P/C-G.
1 MILE

Feb. 18 Pale jets of gas and dust surround Comet 67P/C-G, seen from 123 miles away. Bright marks in the background are a mix of stars, camera noise and streaks from small particles ejected from the comet.
Rosetta photo of Comet 67P/C-G.
1/4 MILE
Panorama by The New York Times

Feb. 14 On Valentine’s Day, Rosetta made its first close flyby of the comet, passing within four miles of the surface. Here the spacecraft looks down on the large depression at the top of the comet’s head.

Rosetta photo of Comet 67P/C-G.
500 FEET

Feb. 14 An image of the comet’s underbelly taken six miles above the surface during the Valentine’s Day flyby. The smooth plain in the foreground is called Imhotep.

Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 9 The comet is upside down in this image from 65 miles away, and a fan-shaped jet of dust streams from the comet’s neck region.

Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 6 Jets of gas and dust extend from the comet’s neck and other sunlit areas in this image taken from 77 miles away.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Feb. 3 This close-up image of the comet’s neck was taken from 18 miles away, and was the last image taken from orbit around Comet 67P/C-G. Rosetta will continue to follow the comet, but will leave its gravity-bound orbit because of increasing dust and instead begin a series of flybys.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 31 The comet’s head, neck and back are sunlit in this image taken from 17 miles away. A prominent jet of gas and dust extends from an active region of the surface near the comet’s neck.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 16 The tail of the comet’s larger lobe points up, revealing a smooth plain named Imhotep at left. Rosetta was 18 miles away when it took this image.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 3 The smooth plain named Imhotep, at center right, lies on the comet’s flat underbelly, seen here from a distance of about 18 miles.

Rosetta photo of Comet 67P/C-G.
1/4 MILE
Cheops
IMHOTEP

Dec. 14, 2014 The large triangular boulder on the flat Imhotep plain is named Cheops, after the Egyptian pyramid. The spacecraft was about 12 miles from the comet when it took this image.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Dec. 10 Sunlight falls between the body and head of the comet, lighting up a large group of boulders in the smooth Hapi region of the comet’s neck. To the right of the boulders, the cliffs of Hathor form the underside of the comet’s head. Rosetta took this image from a distance of 12 miles.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Dec. 2 The round depression in the middle of the comet’s head is filled with shadow in this image taken 12 miles above the comet.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Nov. 22 An overexposed image of Comet 67P/C-G from 19 miles away shows faint jets of gas and dust extending from the sunlit side of the comet.

Philae photo from the surface of Comet 67P/C-G.

Nov. 12 Rosetta’s washing-machine sized lander Philae successfully touched down on the comet’s head. But anchoring harpoons failed and Philae bounced twice before going missing in the shadow of a cliff or crater (above). Without sunlight Philae quickly lost power, but might revive as the comet gets closer to the sun. On March 12, Rosetta resumed listening for radio signals from the missing lander.

Rosetta photo of Comet 67P/C-G.

Photo illustration by The New York Times

How big is the comet? The body of Comet 67P/C-G is about as long as Central Park. For images of Rosetta’s rendezvous and the Philae landing, see Landing on a Comet, 317 Million Miles From Home.

Sources: European Space Agency and the Rosetta mission. Images by ESA/Rosetta, except where noted. Some images are composite panoramas created by ESA, and most images were processed by ESA to bring out details of the comet’s activity.

View Article Here Read More

Minnesota Twins Provide Intriguing Evidence of Incarnate Road Map


The Jim's.jpg
Minnesota Twins (not the baseball team) James & James, whose similar stories defy chance and coincidence.

Excerpt from people.com 
May 7th, 1979

One of science's so far uncrackable mysteries is the comparative impact of heredity vs. environment. An obvious experimental method would be to raise identical twins separately, but that could hardly be done with humans. So for the last 10 years University of Minnesota psychologist Thomas Bouchard, 41, has been studying twins under less than ideal, lab-controlled conditions—until, eureka, he ran into the stuff of social scientists' dreams. Identical twin males, who had been separated by adoption at three weeks, suddenly rediscovered each other in Ohio at age 39.

Within two weeks after reading about them in the press, Dr. Bouchard had the twins in his Minneapolis lab for tests. At the outset of his investigation the psychologist said, "I think there are going to be all kinds of differences that will surprise even the twins." But what was immediately apparent were eerie similarities that left even Bouchard "flabbergasted."

Curiously, both had been christened James by their adoptive parents, the Jess Lewises of Lima and the Ernest Springers of Piqua, 40 miles away. As schoolboys, both enjoyed math and carpentry—but hated spelling. Both pursued similar adult occupations: Lewis is a security guard at a steel mill, and Springer was a deputy sheriff (though he is now a clerk for a power company). Both married women named Linda, only to divorce and remarry—each a woman named Betty. Both have sons: James Alan Lewis and James Allan Springer.

The two men shared one other fact in common. As Jim Springer put it, "I always felt an emptiness." Neither the Springers nor the Lewises ever met the 15-year-old (unwed) mother of their sons, and both couples were told that their adoptive child had a twin who died at birth. Then one day, when Jim Lewis was 16 months old, his mother visited the Miami County courthouse to settle the adoption paperwork, and an official remarked offhandedly, "They named the other little boy 'Jim' too."

For 37 years that hint tugged at Mrs. Lewis, who occasionally urged her son to find out if it was true. Finally, last Thanksgiving, he agreed to search—though he says he doesn't know why. Jim Lewis wrote the probate court, which had a record of the adoption, and contacted the Springer parents in Piqua. "I came home one day," Lewis recounts, "and had this message to call 'Jim Springer.' " When he phoned Springer, Lewis blurted out: "Are you my brother?" "Yup," Springer replied. Four days later, last Feb. 9, Lewis drove to meet his twin for an emotional reunion.

Dr. Bouchard offered expenses and a small honorarium to get them to Minneapolis for a week of extensive physical and psychological tests. He wanted to begin as soon as possible to preclude their reminiscing together too long and thus "contaminating" the evidence. Though not the first such separated twins—the records show 19 previous sets in the U.S. among some 75 worldwide—Lewis and Springer were believed to have been apart by far the longest.

The detailed results of Bouchard's textbook case will be revealed to the twins themselves, but to protect their privacy will be buried among other data in the professor's book on differential psychology now in progress. There has been one development that may leave the twins still puzzling over heredity and environment. On Feb. 28 Jim Lewis, having divorced his second wife, Betty, married a woman named Sandy Jacobs. Betty and Jim Springer were present, with Jim serving as his newfound brother's best man.

View Article Here Read More

Exoplanet Bonanza Boosts Count by 1,200

Excerpt from news.discovery.comDozens of candidate worlds reside within the "habitable zones" of their parent stars. THE GIST - NASA's Kepler telescope has found more than 1,200 extrasolar planet candidates. - Smaller worlds, like Earth,...

View Article Here Read More

Far Flung Star Cluster Found at Milky Way’s Edge

Astronomers in Brazil have discovered a cluster of stars forming at the edge of the Milky Way, according to a press release from the Royal Astronomical Society.




Excerpt from  news.discovery.com


This is unusual because it was believed that stars generally take form closer to the center of our spiral-shaped galaxy, rather than from its swirling, spiral arms, which are thousands of light-years away. These two clusters of stars — named Camargo 438 and 439 — were seen in a cloud at the galaxy’s outskirts.

Denilso Camargo, an astronomer at the Federal University of Rio Grande do Sul in Porto Alegre, Brazil, led a team that analyzed data from NASA’s orbiting Wide-Field Infrared Survey Explorer (WISE) observatory. They zeroed in on dense clumps of gas in so-called giant molecular clouds(GMCs) that are known to generate stars. GMCs are mainly located in the inner part of the galactic disc.

The new star clusters lie about 16,000 light-years away from the main disk of the Milky Way galaxy. How did they form there? The scientists aren’t yet sure but Camargo theorizes that one of two scenarios could have led to the stars’ formation.

In the first scenario, called the “chimney model,” supernovas could have flung the gas and dust that formed the cloud out of the Milky Way. Another explanation is the material could have drifted in from outside the galaxy.


“Our work shows that the space around the Galaxy is a lot less empty that we thought,” said Camargo. “The new clusters of stars are truly exotic.”

Camargo’s team published their results in the journal Monthly

View Article Here Read More

Warp in spacetime lets astronomers watch the same star explode four times



Excerpt from csmonitor.com

Thanks to a phenomenon known as gravitational lensing, the Hubble Space Telescope has captured four images of the same supernova explosion.

For the first time, a cosmic magnifying glass has allowed scientists to see the same star explosion four times, possibly offering a revealing glimpse into these explosive stellar deaths and the nature of the accelerating universe.

Astronomers using the Hubble Space Telescope have captured four images of a supernova explosion in deep space thanks to a galaxy located between Earth and the massive star explosion. You can see how Hubble saw the supernova in this NASA video. The galaxy cluster warped the fabric of space and time around it — like a bowling ball placed on a bed sheet — allowing scientists to see the supernova in four images.

"It was predicted 50 years ago that a supernova could be gravitationally lensed like this, but it's taken a long time for someone to find an example," lead study author Patrick Kelly, an astronomer at the University of California, Berkeley told Space.com. "It's fun to have been able to find the first one." 

The supernova, which was discovered on Nov. 11, 2014, is located about 9.3 billion light-years away from Earth, near the edge of the observable universe. The researchers have named the distant supernova SN Refsdal in honor of the late Norwegian astrophysicist Sjur Refsdal, a pioneer of gravitational lensing studies. Due to gravitational lensing, "the supernova appears 20 times brighter than its normal brightness," study co-author Jens Hjorth, head of the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen, said in a statement.
The lensing galaxy, which is about 5 billion light-years from Earth, is part of a large cluster of galaxies known MACS J1149.6+2223. In 2009, astronomers discovered that this cluster was the source of the largest known image of a spiral galaxy ever seen through a gravitational lens.

The four images of the supernova each appeared separately over the course of a few weeks. This is because light can take various paths around and through a gravitational lens, arriving at Earth at different times.

Using gravity as a lens

Gravity is created when matter warps the fabric of reality. The greater the mass of an object, the more space-time curves around that object and the stronger its gravitational pull, the discovery enshrined in Einstein's theory of general relativity, which celebrates its centennial this year.

As a result, gravity can also bend light like a lens, meaning objects see n behind powerful gravitational fields, such as those of massive galaxies, are magnified. Gravitational lensing was first discovered in 1979, and today gravitational lenses can help astronomers see features otherwise too distant and faint to detect with even the largest telescopes.

"These gravitational lenses are like a natural magnifying glass. It's like having a much bigger telescope," Kelly said in a statement. "We can get magnifications of up to 100 times by looking through these galaxy clusters."

When light is far from a gravitationally lensing mass, or if the gravitationally lensing mass is not especially large, only "weak lensing" occurs, barely distorting the light. However, when the light comes from almost exactly behind the gravitationally lensing mass, "strong lensing" can happen. 

When a strongly lensed object occupies a large patch of space — for instance, if it's a galaxy — it can get smeared into an "Einstein ring" surrounding a gravitationally lensing mass. However, strong lensing of small, pointlike items — for instance, super-bright objects known as quasars — often produces multiple images surrounding the gravitationally lensing mass, resulting in a so-called "Einstein cross."

The observations of SN Refsdal mark the first time astronomers on Earth have witnessed strong lensing of a  supernova, with four images of an exploding star arrayed as an Einstein cross.

An expanding universe

These new findings could help scientists measure the accelerating rate at which the universe is expanding, researchers say.

A computer model of the lensing cluster suggests the scientists missed chances to see the lensed supernova 50 and 10 years ago. However, the model also suggests more images of the explosion will repeat again within the next 10 years.

The timing of when all these images of the supernova arrive depends on the gravitational pull of the matter generating the gravitational lens. So, by measuring those times, the researchers hope to map how visible normal matter and invisible dark matter is distributed in the lensing galaxy.

Dark matter is currently one of the greatest mysteries in science, a poorly understood substance thought to make up five-sixths of all matter in the universe. A better understanding of how dark matter is behaving in this gravitationally lensing cluster might help shed light on the material's nature, Kelly said.

Analyzing when the images arrive could also help scientists pinpoint the rate at which the universe is expanding. Although there are already several ways to measure the cosmic expansion rate, "there has been a lot of heated debate between different methods, so it'd be interesting to see how this new technique might affect the area," Kelly said. "It's always nice to have completely independent measurements of the same quantity."

The scientists detailed their findings in the March 6 issue of the journal Science.

View Article Here Read More

Hubble’s ‘Einstein Cross’ Marks the Space-Warping Spot


Image: Einstein Cross revealed
Flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo.


Excerpt from nbcnews.com
By Alan Boyle


One hundred years after Albert Einstein published his theory of general relativity, the Hubble Space Telescope has provided a demonstration of the theory at work: a picture of a distant galaxy so massive that its gravitational field is bending the light from an even more distant supernova. 

The image, released Thursday, shows how the flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo. 

"It really threw me for a loop when I spotted the four images surrounding the galaxy," Patrick Kelly, an astronomer from the University of California at Berkeley, said in a news release. "It was a complete surprise." 

Maybe it shouldn't have been. The configuration is known as an Einstein Cross. It's a well-known but rarely seen effect of gravitational lensing, which is in line with Einstein's assertion that a massive object warps the fabric of space-time — and thus warps the path taken by light rays around the object. 

In this case, the light rays are coming from a stellar explosion that's directly behind the galaxy, but 4.3 million light-years more distant. Computer models suggest that the four-pointed cross will eventually fade away, to be followed within the next five years by the reappearance of the supernova's flash as a single image. 

Kelly is part of a research collaboration known as the Grism Lens Amplified Survey from Space, or GLASS. The collaboration is working with the Frontier Field Supernova team, or FrontierSN, to analyze the exploding star. He's also the lead author of a paper on the phenomenon that's being published this week by the journal Science as part of a package marking the 100th anniversary of Einstein's general relativity theory. 

The researchers suggest that a high-resolution analysis of the gravitational lensing effect can lead to better measurements of cosmic distances and galactic masses, including the contribution from dark matter. The Hubble team says the faraway supernova has been named "Refsdal" in honor of Norwegian astronomer Sjur Refsdal, who proposed using time-delayed images from a lensed supernova to study the expansion of the universe. 

"Astronomers have been looking to find one ever since," UCLA astronomer Tommaso Treu, the GLASS project's principal investigator, said in Thursday's news release. "The long wait is over!" 

The Einstein Cross is the subject of a Google+ Hangout at 3 p.m. ET Thursday, presented by the Hubble science team. You can watch the event now or later via YouTube. Check out a preprint version of the Science report.

View Article Here Read More

Could Saturn’s moon Titan host an alternate type of life?


Titan


Excerpt from mashable.com

In a world first, chemical engineers have taken a different look at a question astronomers and biologists have been pondering for decades: Does Saturn moon Titan host life?

Of course, Titan is way too hostile for life as we know it to eke out an existence — it is a frigid world awash with liquid methane and ethane and a noxious atmosphere devoid of any liquid water. But say if there is a different kind of biology, a life as we don't know it, thriving on the organic chemistry that is abundant on Titan's surface?

Normally, astrobiologists combine what we know about Earth's biosphere and astronomers zoom in on other stars containing exoplanets in the hope that some of those alien world have some similarities to Earth. By looking for small rocky exoplanets orbiting inside their star's habitable zones, we are basically looking for a "second Earth" where liquid water is at least possible. Where there's liquid water on Earth, there's inevitably life, so scientists seeking out alien life 'follow the water' in the hope of finding life with a similar terrestrial template on other planets.

Titan, however, does not fall into this category, it is about as un-Earth-like as you can get. So, chemical molecular dynamics expert Paulette Clancy and James Stevenson, a graduate student in chemical engineering, from Cornell University, Ithaca, New York, have looked at Titan in a different light and created a theoretical model of a methane-based, oxygen-free life form that could thrive in that environment.

There is no known template for this kind of life on Earth, but the researchers have studied what chemicals are in abundance on Titan and worked out how a very different kind of life could be sparked.

As a collaborator on the NASA/ESA Cassini-Huygens mission, Lunine, professor in the Physical Sciences in the College of Arts and Sciences’ Department of Astronomy, has been fascinated with the possibility of methane-based life existing on Titan for some time, so he joined forces with Clancy and Stevenson to see what this hypothetical life form might look like.

In their research published in the journal Science Advances on Feb. 27, Clancy and Stevenson focused on building a cell membrane "composed of small organic nitrogen compounds and capable of functioning in liquid methane temperatures of 292 degrees below zero (Fahrenheit; or 94 Kelvin)," writes a Cornell press release. On Earth, water-based molecules form phospholipid bilayer membranes that give cells structure, housing organic materials inside while remaining permeable. On Titan, liquid water isn't available to build these cell membranes.

"We're not biologists, and we're not astronomers, but we had the right tools," said Clancy, lead researcher of the study. "Perhaps it helped, because we didn't come in with any preconceptions about what should be in a membrane and what shouldn't. We just worked with the compounds that we knew were there and asked, 'If this was your palette, what can you make out of that?'"

The researchers were able to model the ideal cell that can do all the things that life can do (i.e. support metabolism and reproduction), but constructed it from nitrogen, carbon and hydrogen-based molecules that are known to exist in Titan's liquid methane seas. This chemical configuration gives this theoretical alien cell stability and flexibility in a similar manner to Earth life cells.
"The engineers named their theorized cell membrane an 'azotosome,' 'azote' being the French word for nitrogen. 'Liposome' comes from the Greek 'lipos' and 'soma' to mean 'lipid body;' by analogy, 'azotosome' means 'nitrogen body.'" — Cornell
"Ours is the first concrete blueprint of life not as we know it," said lead author Stevenson, who also said that he was inspired, in part, by Isaac Asimov, who wrote the 1962 essay "Not as We Know It" about non-water-based life.

Having identified a possible type of cell membrane chemistry that functions in the Titan environment as a cell on Earth might, the next step is to model how such a hypothetical type of biology would function on Titan. In the long run, we might also be able to model what kinds of observable indicators we should look for that might reveal that alien biology's presence.

That way, should a mission be eventually sent to Titan's seas, sampling the chemical compounds in the soup of organics may reveal a biology of a very alien nature.
Scientists have been trying to know if life could exist on Titan, the largest moon of Saturn. According to scientists, there are possibilities that life could survive amidst methane-based lakes of Titan. After conducting many studies, they have found signs of life on Titan, but the scientists also said that life will not be like life on earth.
As per some scientific reports, Titan is the only object other than earth which has clear evidence of stable bodies of surface liquid. Like earth, the moon has mountains, islands, lakes and storms, but it doesn’t have oxygen, which is a major element to support life. It means that only oxygen-free and methane-based can exist on Titan.
According to lead researcher Paulette Clancy, “We didn’t come in with any preconceptions about what should be in a membrane and what shouldn’t. We just worked with the compounds that, we knew were there and asked, ‘If this was your palette, what can you make out of that”.
Clancy said although they are not biologists or astronomers, they had the right tools to find life on Saturn’s largest moon. Adding to that, the researchers didn’t know what should be in a membrane and what should be not. They worked with compounds and found that life can exist on Titan, but would be very different from earth’s life, Clancy added.
According to reports, the researchers had used a molecular dynamics method to know about Titan. They screened for suitable candidate compounds from methane for self-assembly into membrane-like structures. As per the researchers, the most promising compound they discovered was an acrylonitrile azotosome, which is present in the atmosphere of Titan.
As per the researchers, acrylonitrile has shown good stability and flexibility similar to that of phospholipid membranes on Earth. It means that the Saturn largest has atmosphere and conditions to support life in a different way than earth.
- See more at: http://perfscience.com/content/2141391-life-titan-would-be-different-earth#sthash.2Kqc3Ewf.dpuf

View Article Here Read More

Do we really want to know if we’re not alone in the universe?



Frank Drake, the founder of Search for Extraterrestrial Intelligence (SETI), at his home in Aptos, Calif. (Ramin Rahimian for The Washington Post)


Excerpt from washingtonpost.com

It was near Green Bank, W.Va., in 1960 that a young radio astronomer named Frank Drake conducted the first extensive search for alien civilizations in deep space. He aimed the 85-foot dish of a radio telescope at two nearby, sun-like stars, tuning to a frequency he thought an alien civilization might use for interstellar communication.

But the stars had nothing to say.

So began SETI, the Search for Extraterrestrial Intelligence, a form of astronomical inquiry that has captured the imaginations of people around the planet but has so far failed to detect a single “hello.” Pick your explanation: They’re not there; they’re too far away; they’re insular and aloof; they’re zoned out on computer games; they’re watching us in mild bemusement and wondering when we’ll grow up.

Now some SETI researchers are pushing a more aggressive agenda: Instead of just listening, we would transmit messages, targeting newly discovered planets orbiting distant stars. Through “active SETI,” we’d boldly announce our presence and try to get the conversation started.

Naturally, this is controversial, because of . . . well, the Klingons. The bad aliens.

 NASA discovers first Earth-size planet in habitable zone of another star

"NASA's Kepler Space Telescope has discovered the first validated Earth-size planet orbiting in the habitable zone of a distant star, an area where liquid water might exist on its surface. The planet, Kepler-186f, is ten percent larger in size than Earth and orbits its parent star, Kepler-186, every 130 days. The star, located about 500 light-years from Earth, is classified as an M1 dwarf and is half the size and mass of our sun." (NASA Ames Research Center)
“ETI’s reaction to a message from Earth cannot presently be known,” states a petition signed by 28 scientists, researchers and thought leaders, among them SpaceX founder Elon Musk. “We know nothing of ETI’s intentions and capabilities, and it is impossible to predict whether ETI will be benign or hostile.”

This objection is moot, however, according to the proponents of active SETI. They argue that even if there are unfriendlies out there, they already know about us. That’s because “I Love Lucy” and other TV and radio broadcasts are radiating from Earth at the speed of light. Aliens with advanced instruments could also detect our navigational radar beacons and would see that we’ve illuminated our cities.

“We have already sent signals into space that will alert the aliens to our presence with the transmissions and street lighting of the last 70 years,” Seth Shostak, an astronomer at the SETI Institute in California and a supporter of the more aggressive approach, has written. “These emissions cannot be recalled.”

That’s true only to a point, say the critics of active SETI. They argue that unintentional planetary leakage, such as “I Love Lucy,” is omnidirectional and faint, and much harder to detect than an intentional, narrowly focused signal transmitted at a known planet.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑