Tag: moving (page 3 of 16)

Monster Black Hole’s Mighty Belch Could Transform Our Entire Galaxy

This artist's illustration depicts the furious cosmic winds streaming out from a monster supermassive black hole as detected by NASA's NuSTAR space telescope and the European Space Agency's XMM-Newton X-ray observatory.
This artist's illustration depicts the furious cosmic winds streaming out from a monster supermassive black hole as detected by NASA's NuSTAR space telescope and the European Space Agency's XMM-Newton X-ray observatory.


Except from space.com

A ravenous, giant black hole has belched up a bubble of cosmic wind so powerful that it could change the fate of an entire galaxy, according to new observations.
Researchers using two X-ray telescopes have identified a cosmic wind blowing outward from the supermassive black hole at the center of galaxy PDS 456. Astronomers have seen these winds before, but the authors of the new research say this is the first observation of a wind moving away from the center in every direction, creating a spherical shape.
The wind could have big implications for the future of the galaxy: It will cut down on the black hole's food supply, and slow star formation in the rest of the galaxy, the researchers said. And it's possible that strong cosmic winds are a common part of galaxy evolution — they could be responsible for turning galaxies from bright, active youngsters to quiet middle-agers. 

Big eater

The supermassive black hole at the center of PDS 456 is currently gobbling up a substantial amount of food: A smorgasbord of gas and dust surrounds the black hole and is falling into the gravitational sinkhole.
As matter falls, it radiates light. The black hole at the center of PDS 456 is devouring so much matter, that the resulting radiation outshines every star in the galaxy. These kinds of bright young galaxies are known as quasars: a galaxy with an incredibly bright center, powered by a supermassive black hole with a big appetite.
New observations of PDS 456 have revealed a bubble of gas moving outward, away from the black hole. Using NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton, the authors of the new research imaged the galaxy on five separate occassions in 2013 and 2014. The researchers say they can show that the photons of light emitted by the in-falling matter are pushing on nearby gas, creating the wind.
Scientists have studied these cosmic winds before, but the authors of the new research say their work goes a step further.
"It tells us that the shape of the wind is not just a narrow beam pointed in our direction. It is really a wind that is flowing in every direction away from the black hole," said Emanuele Nardini, a postdoctoral researcher at Keele University in Staffordshire, England. "With a spherical wind, the amount of mass it carries out is much larger than just a narrow beam."
According to a statement from NASA, galaxy PDS 456 "sustains winds that carry more energy every second than is emitted by more than a trillion suns." Such powerful winds could change the entire landscape of PDS 456, the researchers say. First, the wind will blow through the disk of matter surrounding the black hole — this disk currently serves as the black hole's food supply. The cosmic wind created by the black hole's appetite could significantly reduce or destroy the disk. In other words, the black hole cannot have its cake and eat it, too. 

Bright young things

With no matter left to fall into the black hole, the radiation would cease as well. The brilliant center of the quasar will dim. By diminishing the black hole's food supply, they may turn quasars and other "active galaxies" like PDS 456 into quiescent galaxies like the Milky Way. Theorists have proposed that cosmic winds could explain why there are more young active galaxies than old active galaxies.
"We know that in almost every galaxy, a supermassive black hole resides in the center," said Nardini. "But, most of the galaxies we see today are quiescent, they are not active in any way. The fact that galaxies today are quiescent — we have to find an explanation for that in something that happened a long time ago."
In addition to quenching the radiation from an active black hole, these cosmic winds may slow down star formation in galaxies. The cosmic wind could blow through regions thick with gas and dust, where young stars form, and thin out the fertile stellar soil.
"If you have a black hole with this kind of wind, in millions of years [the winds] will be able to quench star formation and create a galaxy like our own," Nardini said. Stars will still form in the Milky Way, but not at the high rate of many young galaxies.
It's possible that these cosmic winds are a central reason why most galaxies go from being brightly burning active youngsters to quiet middle-agers.

View Article Here Read More

Birth of the Nibiru Legend? Astronomers Say Alien Star System Buzzed Our Sun

Scholz's star - shown in this artist's impression - is currently 20 light-years away. But it once came much closerExcerpt from bbc.comAn alien star passed through our Solar System just 70,000 years ago, astronomers have discovered.  No othe...

View Article Here Read More

Dawn’s imagery of Ceres keeps getting better


These two views of Ceres were acquired by NASA's Dawn spacecraft on Feb. 12, 2015, from a distance of about 52,000 miles (83,000 kilometers) as the dwarf planet rotated. The images, which were taken about 10 hours apart, have been magnified from their original size. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
These two views of Ceres were acquired by NASA’s Dawn spacecraft on Feb. 12, 2015, from a distance of about 52,000 miles (83,000 kilometers) as the dwarf planet rotated. The images, which were taken about 10 hours apart, have been magnified from their original size. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA



Excerpt from spaceflightnow.com

Images from NASA’s Dawn spacecraft on approach to the dwarf planet Ceres show a world pockmarked by craters and mysterious bright spots, and scientists are eager for a better look in the weeks ahead.

The latest images were taken Feb. 12 at a distance of 52,000 miles, or 83,000 kilometers, from Ceres. NASA released the fresh views Tuesday.

Every picture taken of Ceres in the coming weeks will show greater detail, as Dawn is set to be captured by the Texas-sized world’s gravity March 6. The dwarf planet will pull Dawn into the first of a series of survey orbits 8,400 miles from Ceres around April 23.

The imagery so far reveals Ceres as a cratered world, and Dawn will make a global map of the dwarf planet during its time in orbit.
But several bright spots have captured the attention of scientists.
“As we slowly approach the stage, our eyes transfixed on Ceres and her planetary dance, we find she has beguiled us but left us none the wiser,” said Chris Russell, principal investigator of the Dawn mission, based at UCLA. “We expected to be surprised; we did not expect to be this puzzled.”

The suspense is compounded by Dawn’s slow rate of approach. The probe’s ion propulsion system is gradually nudging Dawn on a trajectory closer to Ceres, eventually moving the spacecraft close enough to be grasped by the 590-mile diameter dwarf planet’s gravity.

“I want to know what is causing the bright spots,” Russell wrote in an email to Spaceflight Now. “The increased resolution seems to have moved us no closer to answering this mystery. I am frustrated by the suspense. This is the one problem of ion propulsion: We are closing in on Ceres very slowly.”

The latest photos have a resolution have 4.9 miles, or 7.8 kilometers, per pixel, according to a NASA press release.

Dawn’s framing camera will take its next set of images Feb. 20 at a range of about 30,000 miles. After late February, the resolution of Dawn’s imagery will be reduced as the spacecraft passes Ceres and flies in front of it, before being pulled closer in early April for insertion into orbit.

Soon after arriving in April, the spacecraft’s instruments will look for the signature of water vapor plumes shooting into space from the surface of Ceres, which may be blanketed in a crust of ice.
Dawn will orbit closest to Ceres in December at an altitude of 232 miles.

Dawn’s mission planners say the spacecraft could operate around Ceres until late 2016.

Ceres is the second destination for NASA’s Dawn mission, which launched in September 2007 and visited asteroid Vesta in 2011 and 2012.

View Article Here Read More

Was this Star Nibiru? Scientists Discover Star Made Closest Approach to Our Solar System 70,000 Years Ago


Astronomers identify the closest known flyby of a star to our solar system Photo Credit: Flickr


Excerpt from americanlivewire.com

A low-mass red dwarf star passed through the outer Oort Cloud 70,000 years back in the closest approach made by any star into our system, discovers a team of researchers from various countries.

Lying in the constellation Monoceros and known as Scholtz’s star, it is a part of a binary system and has 8% the mass of the sun. Its companion, a brown dwarf, is said to have 6%.
The lowest end of the stellar spectrum, brown dwarfs are larger than gas giants but not as much so as to sustain hydrogen fusion for a larger period of time.

Due to its faint appearance, Scholtz’s star was discovered only a year ago by astronomer Ralf Dieter-Scholz in Potsdam, Germany, through the use of NASA’s WISE (Wide Field Infrared Survey Explorer), which mapped the entire sky in infrared during the years 2010 and 2011.

At the same time, the radial velocity of the star depicted that it was moving away from the solar system much faster than expected.
These motions led the researchers to conclude that either the star is headed toward our system, or moving away from it.

After analyzing the data, Mamajek concluded, “…The radial velocity measurements were consistent with it running away from the Sun’s vicinity–and we realized it must have had a close flyby in the past.”

Through the use of computer models, it was seen that the star passed about 5 trillion miles from our solar system around 70,000 years ago.

Mamajek and his team are 98 percent certain Scholtz’s star traveled through the outer Oort Cloud.

Although Scholtz’s star is 10th magnitude, too dim to be seen with the naked eye, it is magnetically active, which can cause it to flare at times and become significantly brighter. If this happened during its close approach to our solar system, prehistoric humans might have actually seen it.

The researchers published their findings in Astrophysical Journal Letters.

View Article Here Read More

Every Black Hole Contains a New Universe


At the center of spiral galaxy M81 is a supermassive black hole about 70 million times more massive than our sun.



Excerpt from insidescience.org
A physicist presents a solution to present-day cosmic mysteries.



By: 
Nikodem Poplawski, Inside Science Minds Guest Columnist



(ISM) -- Our universe may exist inside a black hole. This may sound strange, but it could actually be the best explanation of how the universe began, and what we observe today. It's a theory that has been explored over the past few decades by a small group of physicists including myself. 
Successful as it is, there are notable unsolved questions with the standard big bang theory, which suggests that the universe began as a seemingly impossible "singularity," an infinitely small point containing an infinitely high concentration of matter, expanding in size to what we observe today. The theory of inflation, a super-fast expansion of space proposed in recent decades, fills in many important details, such as why slight lumps in the concentration of matter in the early universe coalesced into large celestial bodies such as galaxies and clusters of galaxies.
But these theories leave major questions unresolved. For example: What started the big bang? What caused inflation to end? What is the source of the mysterious dark energy that is apparently causing the universe to speed up its expansion?
The idea that our universe is entirely contained within a black hole provides answers to these problems and many more. It eliminates the notion of physically impossible singularities in our universe. And it draws upon two central theories in physics.
Nikodem Poplawski displays a "tornado in a tube." The top bottle symbolizes a black hole, the connected necks represent a wormhole and the lower bottle symbolizes the growing universe on the just-formed other side of the wormhole. Credit: Indiana University
In this picture, spins in particles interact with spacetime and endow it with a property called "torsion." To understand torsion, imagine spacetime not as a two-dimensional canvas, but as a flexible, one-dimensional rod. Bending the rod corresponds to curving spacetime, and twisting the rod corresponds to spacetime torsion. If a rod is thin, you can bend it, but it's hard to see if it's twisted or not.

The first is general relativity, the modern theory of gravity. It describes the universe at the largest scales. Any event in the universe occurs as a point in space and time, or spacetime. A massive object such as the Sun distorts or "curves" spacetime, like a bowling ball sitting on a canvas. The Sun's gravitational dent alters the motion of Earth and the other planets orbiting it. The sun's pull of the planets appears to us as the force of gravity.

The second is quantum mechanics, which describes the universe at the smallest scales, such as the level of the atom. However, quantum mechanics and general relativity are currently separate theories; physicists have been striving to combine the two successfully into a single theory of "quantum gravity" to adequately describe important phenomena, including the behavior of subatomic particles in black holes.
A 1960s adaptation of general relativity, called the Einstein-Cartan-Sciama-Kibble theory of gravity, takes into account effects from quantum mechanics. It not only provides a step towards quantum gravity but also leads to an alternative picture of the universe. This variation of general relativity incorporates an important quantum property known as spin. Particles such as atoms and electrons possess spin, or the internal angular momentum that is analogous to a skater spinning on ice.

Spacetime torsion would only be significant, let alone noticeable, in the early universe or in black holes. In these extreme environments, spacetime torsion would manifest itself as a repulsive force that counters the attractive gravitational force coming from spacetime curvature. As in the standard version of general relativity, very massive stars end up collapsing into black holes: regions of space from which nothing, not even light, can escape.
Here is how torsion would play out in the beginning moments of our universe. Initially, the gravitational attraction from curved space would overcome torsion's repulsive forces, serving to collapse matter into smaller regions of space. But eventually torsion would become very strong and prevent matter from compressing into a point of infinite density; matter would reach a state of extremely large but finite density. As energy can be converted into mass, the immensely high gravitational energy in this extremely dense state would cause an intense production of particles, greatly increasing the mass inside the black hole.
The increasing numbers of particles with spin would result in higher levels of spacetime torsion. The repulsive torsion would stop the collapse and would create a "big bounce" like a compressed beach ball that snaps outward. The rapid recoil after such a big bounce could be what has led to our expanding universe. The result of this recoil matches observations of the universe's shape, geometry, and distribution of mass.
In turn, the torsion mechanism suggests an astonishing scenario: every black hole would produce a new, baby universe inside. If that is true, then the first matter in our universe came from somewhere else. So our own universe could be the interior of a black hole existing in another universe. Just as we cannot see what is going on inside black holes in the cosmos, any observers in the parent universe could not see what is going on in ours.
The motion of matter through the black hole's boundary, called an "event horizon," would only happen in one direction, providing a direction of time that we perceive as moving forward. The arrow of time in our universe would therefore be inherited, through torsion, from the parent universe.
Torsion could also explain the observed imbalance between matter and antimatter in the universe. Because of torsion, matter would decay into familiar electrons and quarks, and antimatter would decay into "dark matter," a mysterious invisible form of matter that appears to account for a majority of matter in the universe.
Finally, torsion could be the source of "dark energy," a mysterious form of energy that permeates all of space and increases the rate of expansion of the universe. Geometry with torsion naturally produces a "cosmological constant," a sort of added-on outward force which is the simplest way to explain dark energy. Thus, the observed accelerating expansion of the universe may end up being the strongest evidence for torsion.
Torsion therefore provides a theoretical foundation for a scenario in which the interior of every black hole becomes a new universe. It also appears as a remedy to several major problems of current theory of gravity and cosmology. Physicists still need to combine the Einstein-Cartan-Sciama-Kibble theory fully with quantum mechanics into a quantum theory of gravity. While resolving some major questions, it raises new ones of its own. For example, what do we know about the parent universe and the black hole inside which our own universe resides? How many layers of parent universes would we have? How can we test that our universe lives in a black hole?
The last question can potentially be investigated: since all stars and thus black holes rotate, our universe would have inherited the parent black hole’s axis of rotation as a "preferred direction." There is some recently reported evidence from surveys of over 15,000 galaxies that in one hemisphere of the universe more spiral galaxies are "left-handed", or rotating clockwise, while in the other hemisphere more are "right-handed", or rotating counterclockwise. In any case, I believe that including torsion in geometry of spacetime is a right step towards a successful theory of cosmology.

View Article Here Read More

NASA releases first ever moving images of dark side of the Moon ~ Video





From wiki

The far side of the Moon, or 'dark side of the moon', is the hemisphere of the Moon that always faces away from Earth. The far side's terrain is rugged, with a multitude of impact craters and relatively few flat lunar maria. It has one of the largest craters in the Solar System, the South Pole–Aitken basin.

About 18 percent of the far side is occasionally visible from Earth due to libration. The remaining 82 percent remained unobserved until 1959, when the Soviet Union's Luna 3 space probe photographed it. The Russian Academy of Sciences published the first atlas of the far side in 1960. In 1968, the Apollo 8 mission's astronauts were the first humans to view this region directly when they orbited the Moon. To date, no one has explored the far side of the Moon on the ground.





Click to zoom

View Article Here Read More

Jupiter Wins the Starring Role in February’s Planet Parade

Excerpt from nbc.com Planets are on parade in February's night sky. Giant Jupiter will dazzle all nig...

View Article Here Read More

6 Supermaterials That Could Change Our World


Graphene

Excerpt from gizmodo.com

Graphene isn't the only game-changing material to come out of a lab. From aerogels nearly as light as air to metamaterials that manipulate light, here are six supermaterials that have the potential to transform the world of the future.

Self-healing Materials — Bioinspired Plastics

6 Supermaterials That Could Change Our World 
Self-healing plastic. Image credit: UIUC


The human body is very good at fixing itself. The built environment is not. Scott White at the University of Illinois at Urbana Champlain has been engineering bioinspired plastics that can self-heal. Last year, White's lab created a new polymer that oozes to repair a visible hole. The polymer is embedded with a vascular system of liquids that when broken and combined, clot just like blood. While other materials have been able to heal microscopic cracks, this new one repaired a hole 4 millimeter wide with cracks radiating all around it. Not big deal for a human skin, but a pretty big deal for plastic.

Engineers have also been envisioning concrete, asphalt, and metal that can heal themselves. (Imagine a city with no more potholes!) The rub, of course, lies in making them cheap enough to actually use, which is why the first applications for self-healing materials are most likely to be in space or in remote areas on Earth. 

Thermoelectric Materials — Heat Scavengers

6 Supermaterials That Could Change Our World 
Power blocks with thermoelectric material sued inside Alphabet Energy 's generator. Image credit: Alphabet Energy


If you've ever had a laptop burn up in your lap or touched the hot hood of car, then you've felt evidence of waste. Waste heat is the inevitable effect of running any that device that uses power. One estimate puts the amount of waste heat as two-thirds of all energy used. But what if there was a way to capture all that wasted energy? The answer to that "what if" is thermoelectric materials, which makes electricity from a temperature gradient.

Last year, California-based Alphabet Energy introduced a thermoelectric generator that plugs right into the exhaust pipe of ordinary generator, turning waste heat back into useful electricity. Alphabet Energy's generator uses a relatively cheap and naturally occurring thermoelectric material called tetrahedrite. Alphabet Energy says tetrahedrite can reach 5 to 10 percent efficiency.
Back in the lab, scientists have also been tinkering with another promising and possibly even more efficient thermoelectric material called skutterudite, which is a type of mineral that contains cobalt. Thermoelectric materials have already had niche applications—like on spacecraft—but skutterudite could get cheap and efficient enough to be wrapped around the exhaust pipes of cars or fridges or any other power-hogging machine you can think of. [Nature, MIT Technology Review, New Scientist]

Perovskites — Cheap Solar Cells

6 Supermaterials That Could Change Our World 
Solar cells made of perovskites. Image credit: University of Oxford


The biggest hurdle in moving toward renewable energy is, as these things always are, money. Solar power is getting ever cheaper, but making a plant's worth of solar cells from crystalline silicon is still an expensive, energy-intensive process. There's an alternative material that has the solar world buzzing though, and that's perovskites. 

Perovskites were first discovered over a century ago, but scientists are only just realizing its potential. In 2009, solar cells made from perovskites had a solar energy conversion efficiency of a measly 3.8 percent. In 2014, the number had leapt to 19.3 percent. That may not seem like much compared to traditional crystalline silicon cells with efficiencies hovering around 20 percent, but there's two other crucial points to consider: 1) perovskites have made such leaps and bounds in efficiency in just a few years that scientist think it can get even better and 2) perovskites are much, much cheaper. 

Perovskites are a class of materials defined by a particular crystalline structure. They can contain any number of elements, usually lead and tin for perovskites used in solar cells. These raw materials are cheap compared to crystalline silicon, and they can be sprayed onto glass rather than meticulously assembled in clean rooms. Oxford Photovoltaics is one of the leading companies trying to commercialize perovskites, which as wonderful as they have been in the lab, still do need to hold up in the real world. [WSJ, IEEE Spectrum, Chemical & Engineering News, Nature Materials]

Aerogels — Superlight and Strong

6 Supermaterials That Could Change Our World 
Image credit: NASA

Aerogels look like they should not be real. Although ghostly and ethereal, they can easily withstand the heat of a blowtorch and the weight of a car. The material is almost what exactly the name implies: gels where where the liquid has been replaced entirely by air. But you can see why it's also been called "frozen smoke" or "blue smoke." The actual matrix of an aerogel can be made of any number of substances, including silica, metal oxides, and, yes, also graphene. But the fact that aerogel is actually mostly made of air means that it's an excellent insulator (see: blowtorch). Its structure also makes it incredibly strong (see: car).

Aerogels do have one fatal flaw though: brittleness, especially when made from silica. But NASA scientists have been experimenting with flexible aerogels made of polymers to use insulators for spacecraft burning through the atmosphere. Mixing other compounds into even silica-based aerogels could make them more flexible. Add that to aerogel's lightness, strength, and insulating qualities, and that's one incredible material. [New Scientist, Gizmodo]

Metamaterials — Light Manipulators

If you've heard of metamaterials, you likely heard about it in a sentence that also mentioned "Harry Potter" and "invisibility cloak." And indeed, metamaterials, whose nanostructures are design to scatter light in specific ways, could possibly one day be used to render objects invisible—though it still probably wouldn't be as magical as Harry Potter's invisibility cloak. 

What's more interesting about metamaterials is that they don't just redirect visible light. Depending on how and what a particular metamaterial is made of, it can also scatter microwaves, radiowaves, or the little-known T-rays, which are between microwaves and infrared light on the electromagnetic spectrum. Any piece of electromagnetic spectrum could be manipulated by metamaterials. 

That could be, for example, new T-ray scanners in medicine or security or a compact radio antennae made of metamaterials whose properties change on the fly. Metamaterials are at the promising but frustrating cusp where the theoretical possibilities are endless, but commercialization is still a long, hard road. [Nature, Discover Magazine]

Stanene — 100 percent efficient conductor

6 Supermaterials That Could Change Our World 
The molecular structure of stanene. Image credit: SLAC


Like the much better known graphene, stanene is also made of a single layer of atoms. But instead of carbon, stanene is made of tin, and this makes all the difference in allowing stanene to possibly do what even wondermaterial extraordinaire graphene cannot: conduct electricity with 100 percent efficiency.

Stanene was first theorized in 2013 by Stanford professor Shoucheng Zhang, whose lab specializes in, along other things, predicting the electronic properties of materials like stanene. According to their models, stanene is a topological insulator, which means its edges are a conductor and its inside is an insulator. (Think of a chocolate-covered ice cream bar. Chocolate conductor, ice cream insulator.) 

This means stanene could conduct electricity with zero resistance even, crucially, at room temperature. Stanene's properties have yet to been tested experimentally—making a single-atom sheet tin is no easy task—but several of Zhang's predictions about other topological insulators have proven correct.

If the predictions about stanene bear out, it could revolutionize the microchips inside all your devices. Namely, the chips could get a lot more powerful. Silicon chips are limited by the heat created by electrons zipping around—work 'em too fast and they'll simply get too hot. Stanene, which conducts electricity 100 percent efficiency, would have no such problem. [SLAC, Physical Review Letters, Scientific American]

View Article Here Read More

New Religion and Science Study Reveals ‘Post-Seculars’ Reject Evolution





Excerpt from huffingtonpost.com

(RNS) Meet the “Post-Seculars” — the one in five Americans who no one seems to have noticed before in endless rounds of debates pitting science vs. religion.

They’re more strongly religious than most “Traditionals” (43 percent of Americans) and more scientifically knowledgeable than “Moderns” (36 percent) who stand on science alone, according to two sociologists’ findings in a new study.

“We were surprised to find this pretty big group (21 percent) who are pretty knowledgeable and appreciative about science and technology but who are also very religious and who reject certain scientific theories,” said Timothy O’Brien, co-author of the research study, released Thursday (Jan. 29) in the American Sociological Review.

Put another way, there’s a sizable chunk of Americans out there who are both religious and scientifically minded but who break with both packs when faith and science collide.

Post-Seculars pick and choose among science and religion views to create their own “personally compelling way of understanding the world,” said O’Brien, assistant professor at University of Evansville in Indiana.

O’Brien and co-author Shiri Noy, an assistant professor of sociology at University of Wyoming, examined responses from 2,901 people to 18 questions on knowledge of and attitudes toward science, and four religion-related questions in the General Social Surveys conducted in 2006, 2008 and 2010.

Many findings fit the usual way the science-religion divide is viewed:

— Moderns, who stand on reason, scored high on scientific knowledge and scored lowest on religion questions regarding biblical authority and the strength of their religious ties.

— Traditionals, who lean toward religion, scored lower on science facts and were least likely to agree that “the benefits of scientific research outweigh the harmful results.”

However, the data turned up a third perspective – people who defied the familiar breakdown. The authors dubbed them “Post-Secular” to jump past a popular theory that Americans are moving way from religion to become more secular, O’Brien said.

Post-Seculars — about half of whom identify as conservative Protestants — know facts such as how lasers work, what antibiotics do and the way genetics affect inherited illnesses.

But when it comes to three main areas where science and Christian-centric religious views conflict — on human evolution, the Big Bang origin of the universe and the age of the Earth — Post-Seculars break away from the pack with very significantly different views from Traditionals and Moderns.

Areas where the factions are clear:

graphic

The universe began with a huge explosion:
Traditional: 21 percent
Modern: 68 percent
Post Secular: 6 percent

Human beings developed from earlier species of animals:
Traditional: 33 percent
Modern: 88 percent
Post-Secular: 3 percent

The continents have been moving for millions of years and will move in the future:
Traditional: 66 percent
Modern: 98 percent
Post-Secular: 80 percent

“Post-Seculars are smart. They know what scientists think. They just don’t agree on some key issues, and that has impact on their political views,” said O’Brien.

When the authors looked at views on the authority of the Bible and how strongly people said they were affiliated with their religion, Post-Seculars put the most faith in Scripture and were much more inclined to say they were strongly religious. And where science and faith conflict on hot-button issues, they side with the religious perspective.

For example, Moderns are the most supportive of embryonic stem cell research and abortion rights for women, but Post-Seculars, who are nonetheless largely positive about science and society, are more skeptical in both areas, O’Brien said.

Candidates running in the 2016 elections might take note.

Where people fall in these three groups can predict their attitudes on political issues where science and religion both have claims, O’Brien said, even after accounting for the usual suspects — social class, political ideology or church attendance.

View Article Here Read More

Study Suggests Baby Chicks Can Count! ~ Video





Excerpt from nbcnews.com
By Tia Ghose, LiveScience



It's not just humans who can count: Newly published research suggests chicks seem to have a number sense, too. 

Scientists found that chicks seem to count upward, moving from left to right. They put smaller numbers on the left, and larger numbers on the right — the same mental representation of the number line that humans use. 

"Our results suggest a rethinking of the relationship between numerical abilities and verbal language, providing further evidence that language and culture are not necessary for the development of a mathematical cognition," said study lead author Rosa Rugani, a psychologist at the University of Padova in Italy.

The left-to-right way of thinking about ascending numbers seems to be embedded in people's mental representations of numbers, but it's not clear exactly why. Is it an artifact of some long-lost accident of history, or is it a fundamental aspect of the way the brain processes numbers? 

To help answer those questions, Rugani and her colleagues trained 3-day-old chicks to travel around a screen panel with five dots on it to get to a food treat behind it. This made the five-dot panel an anchor number that the chicks could use for comparison with other numbers. 

After the chicks learned that the five-dot panel meant food, the researchers removed that panel and then placed the chicks in front of two panels, one to the left and the other to the right, that each had two dots. The chicks tended to go to the left panel, suggesting that they mentally represent numbers smaller than five as being to the left of five. 

When the researchers put the chicks in front of two panels that each had eight dots, the chicks walked to the panel on the right. This suggests the chicks mentally represent numbers larger than five as being to the right of five, the researchers said. 

In a second experiment, the researchers repeated the whole process, but started with a panel that had 20 dots instead of five. They then added two other panels that had either eight or 32 dots. Sure enough, the baby chicks tended to go to the left when the screens had just eight dots, and to the right when they had 32 dots, according to the findings published in this week's issue of the journal Science. 

"I would not at all be surprised that the number spatial mapping is also found in other animals, and in newborn infants," Rugani said.



Click to zoom

View Article Here Read More

Scientists Slow Down The Speed Of Light in Lab


Photon race rendering
Two photons, or particles of light approach a finish line used to determine if light can travel at different speeds through the air. Illustration courtesy University of Glasgow

Excerpt from popsci.com


Light passes through air at about 299,000,000 meters per second, an accepted constant that hasn’t been challenged—until now. By manipulating a single particle of light as it passed through free space, researchers have found a way to slow down the speed of light through air.

Scientists have known for a while how fast light passes through different mediums, such as water or glass, and how to slow that speed down. But researchers at the University of Glasgow and Heriot-Watt University decided to take this concept further and see if the speed of light could be changed as it passes through gases.
To make that happen, the team decided to look at individual light particles, or photons. “Measuring with single photons is the cleanest experiment you can get,” Jacquiline Romero, one of the study’s lead authors and a physics professor at the University of Glasgow, tells Popular Science. The group wanted to explicitly establish that different photons have different velocities depending on their placement within a light beam's structure. Depending on where a photon is in a light beam, it has either a slower or faster relative speed. It's similar to a group of runners: Even as the group stays together, the one at the front has to constantly be moving faster than the ones at the side or in the back. Daniel Giovannini, another study lead author from the University of Glasgow, says that researchers have known this for a while, but the team wanted to know just how slow the photons in the 'back of the pack' are moving.

The experiment set out to measure the arrival times of single photons, Romero says. To do that, the researchers passed one photon through a filter, which changed the photon's structure. They then compared the velocity of this photon to an unstructured photon. The researchers were able to decrease the velocity of the structured photon through air by 0.001 percent, which seems quite small, but the amount was not accidental. “We had to try it out and convince ourselves that it can be done and that it’s real,” Giovannini says. He and Romero say they anticipate the results will be divisive, between people who think the conclusion is obvious and those who think it’s a groundbreaking experiment.

The study was published January 23 in Science Express.

View Article Here Read More

Time to see Comet Lovejoy fly past Pleiades before it leaves for 8,000 years

Comet C/2014 Q2 (Lovejoy) is visible to sky watchers using binoculars on clear nights in January 2015. (Jet Propulsion Laboratory)California sky watchers may be able to see two celestial bodies zooming past Earth in the next few days with just a pair...

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑