Tag: means (page 4 of 25)

Could Google’s Project Fi be cable’s answer to wireless?

 Excerpt from cnet.com Google's Project Fi wireless service has the potential to turn the mobile industry on its head. But not in the way you might expect. Last week, Google announce...

View Article Here Read More

Quantum Entanglement Verified: Why Space Is Just The Construct That Gives The Illusion Of Separate Objects

“Space is just the construct that gives the illusion that there are separate objects” – Dr. Quantum (see video below)There is a phenomenon so strange, so fascinating, and so counter to what we believe to be the known scientific laws of the universe, that Einstein himself could not wrap his head around it. It’s called “quantum entanglement,” though Einstein referred to it as “spooky action at a distance.”An [...]

View Article Here Read More

6 Natural Solutions To Decontaminate Soil

Marco Torres, Prevent DiseaseWith a progressively educated population becoming more aware of the inherent dangers of the conventional food supply, urban farming has become hugely popular. However, more people are also becoming aware of contaminated soil and how heavy metals pose potential risks to their food crops. As backyard gardening continues to explode in popularity, we must ask how contaminated is our soil?Many municipalities in many countries are embracing urban agri [...]

View Article Here Read More

‘Hats Off’ To HATS-6b: Discovery of ‘puffy’ new planet brings scientists closer to finding new life in outer space

An artist's impression of the planet HATS-6b, orbiting the star, HATS-6. (Supplied: ANU) Excerpt from abc.net.au A "puffy" new planet orbiting a small, cool star has been discovered 500 light years away from Earth, by a team of scientists c...

View Article Here Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here Read More

This revolutionary discovery could help scientists see black holes for the first time


supermassive black hole
Artist's concept of the black hole.



Excerpt from finance.yahoo.com
Of all the bizarre quirks of nature, supermassive black holes are some of the most mysterious because they're completely invisible.
But that could soon change.
Black holes are deep wells in the fabric of space-time that eternally trap anything that dares too close, and supermassive black holes have the deepest wells of all. These hollows are generated by extremely dense objects thousands to billions of times more massive than our sun.
Not even light can escape black holes, which means they're invisible to any of the instruments astrophysicists currently use. Although they don't emit light, black holes will, under the right conditions, emit large amounts of gravitational waves — ripples in spacetime that propagate through the universe like ripples across a pond's surface.
And although no one has ever detected a gravitational wave, there are a handful of instruments around the world waiting to catch one.

Game-changing gravitational waves



.
black hole
This illustration shows two spiral galaxies - each with supermassive black holes at their center - as they are about to collide. 

Albert Einstein first predicted the existence of gravitational waves in 1916. According to his theory of general relativity, black holes will emit these waves when they accelerate to high speeds, which happens when two black holes encounter one another in the universe.  

As two galaxies collide, for example, the supermassive black holes at their centers will also collide. But first, they enter into a deadly cosmic dance where the smaller black hole spirals into the larger black hole, moving increasingly faster as it inches toward it's inevitable doom. As it accelerates, it emits gravitational waves.
Astrophysicists are out to observe these waves generated by two merging black holes with instruments like the Laser Interferometer Gravitational-Wave Observatory.
"The detection of gravitational waves would be a game changer for astronomers in the field," Clifford Will, a distinguished profess of physics at the University of Florida who studied under famed astrophysicist Kip Thorne told Business Insider. "We would be able to test aspects of general relativity that have not been tested."
Because these waves have never been detected, astrophysicists are still trying to figure out how to find them. To do this, they build computer simulations to predict what kinds of gravitational waves a black hole merger will produce. 

Learn by listening

In the simulation below, made by Steve Drasco at California Polytechnic State University (also known as Cal Poly), a black hole gets consumed by a supermassive black hole about 30,000 times as heavy.
You'll want to turn up the volume.
What you're seeing and hearing are two different things.
The black lines you're seeing are the orbits of the tiny black hole traced out as it falls into the supermassive black hole. What you're hearing are gravitational waves.
"The motion makes gravitational waves, and you are hearing the waves," Drasco wrote in a blog post describing his work.
Of course, there is no real sound in space, so if you somehow managed to encounter this rare cataclysmic event, you would not likely hear anything. However, what Drasco has done will help astrophysicists track down these illusive waves.

Just a little fine tuning 

Gravitational waves are similar to radio waves in that both have specific frequencies. On the radio, for example, the number corresponding to the station you're listening to represents the frequency at which that station transmits.


.
gwaves
3D visualization of gravitational waves produced by 2 orbiting black holes. Right now, astrophysicists only have an idea of what frequencies two merging black holes transmit because they’re rare and hard to find. In fact, the first ever detection of an event of this kind was only announced this month. 

Therefore, astrophysicists are basically toying with their instruments like you sometimes toy with your radio to find the right station, except they don’t know what station will give them the signal they’re looking for.
What Drasco has done in his simulation is estimate the frequency at which an event like this would produce and then see how that frequency changes, so astrophysicists have a better idea of how to fine tune their instruments to search for these waves.
Detecting gravitational waves would revolutionize the field of astronomy because it would give observers an entirely new way to see the universe. Armed with this new tool, they will be able to test general relativity in ways never before made possible.

View Article Here Read More

8 Myths About Emotions That Are Holding Us Back

Excerpt from huffingtonpost.comAs a society, we don't talk much about emotions. Conversations tend to focus more on what we're doing or what we're thinking. In fact, most people find it easier to start sentences with, "I think..." instead of "I feel...

View Article Here Read More

Seattle Company Raises Minimum Wage to $70,000 a Year For All Employees!






Excerpt from nytimes.com

The idea began percolating, said Dan Price, the founder of Gravity Payments, after he read an article on happiness. It showed that, for people who earn less than about $70,000, extra money makes a big difference in their lives.

His idea bubbled into reality on Monday afternoon, when Mr. Price surprised his 120-person staff by announcing that he planned over the next three years to raise the salary of even the lowest-paid clerk, customer service representative and salesman to a minimum of $70,000.

“Is anyone else freaking out right now?” Mr. Price asked after the clapping and whooping died down into a few moments of stunned silence. “I’m kind of freaking out.”

If it’s a publicity stunt, it’s a costly one. Mr. Price, who started the Seattle-based credit-card payment processing firm in 2004 at the age of 19, said he would pay for the wage increases by cutting his own salary from nearly $1 million to $70,000 and using 75 to 80 percent of the company’s anticipated $2.2 million in profit this year.

Employees reacting to the news. The average salary at Gravity Payments had been $48,000 year. Credit Matthew Ryan Williams for The New York Times

The paychecks of about 70 employees will grow, with 30 ultimately doubling their salaries, according to Ryan Pirkle, a company spokesman. The average salary at Gravity is $48,000 year.

Mr. Price’s small, privately owned company is by no means a bellwether, but his unusual proposal does speak to an economic issue that has captured national attention: The disparity between the soaring pay of chief executives and that of their employees.

The United States has one of the world’s largest pay gaps, with chief executives earning nearly 300 times what the average worker makes, according to some economists’ estimates. That is much higher than the 20-to-1 ratio recommended by Gilded Age magnates like J. Pierpont Morgan and the 20th century management visionary Peter Drucker.

“The market rate for me as a C.E.O. compared to a regular person is ridiculous, it’s absurd,” said Mr. Price, who said his main extravagances were snowboarding and picking up the bar bill. He drives a 12-year-old Audi, which he received in a barter for service from the local dealer.

“As much as I’m a capitalist, there is nothing in the market that is making me do it,” he said, referring to paying wages that make it possible for his employees to go after the American dream, buy a house and pay for their children’s education.

Under a financial overhaul passed by Congress in 2010, the Securities and Exchange Commission was supposed to require all publicly held companies to disclose the ratio of C.E.O. pay to the median pay of all other employees, but it has so far failed to put it in effect. Corporate executives have vigorously opposed the idea, complaining it would be cumbersome and costly to implement.

Mr. Price started the company, which processed $6.5 billion in transactions for more than 12,000 businesses last year, in his dorm room at Seattle Pacific University with seed money from his older brother. The idea struck him a few years earlier when he was playing in a rock band at a local coffee shop. The owner started having trouble with the company that was processing credit card payments and felt ground down by the large fees charged.

When Mr. Price looked into it for her, he realized he could do it more cheaply and efficiently with better customer service.

The entrepreneurial spirit was omnipresent where he grew up in rural southwestern Idaho, where his family lived 30 miles from the closest grocery store and he was home-schooled until the age of 12. When one of Mr. Price’s four brothers started a make-your-own baseball card business, 9-year-old Dan went on a local radio station to make a pitch: “Hi. I’m Dan Price. I’d like to tell you about my brother’s business, Personality Plus.”

His father, Ron Price, is a consultant and motivational speaker who has written his own book on business leadership.

Dan Price came close to closing up shop himself in 2008 when the recession sent two of his biggest clients into bankruptcy, eliminating 20 percent of his revenue in the space of two weeks. He said the firm managed to struggle through without layoffs or raising prices. His staff, most of them young, stuck with him.

Aryn Higgins at work at Gravity Payments in Seattle. She and her co-workers are going to receive significant pay raises. Credit Matthew Ryan Williams for The New York Times

Mr. Price said he wasn’t seeking to score political points with his plan. From his friends, he heard stories of how tough it was to make ends meet even on salaries that were still well-above the federal minimum of $7.25 an hour.

“They were walking me through the math of making 40 grand a year,” he said, then describing a surprise rent increase or nagging credit card debt.

“I hear that every single week,” he added. “That just eats at me inside.”

Mr. Price said he wanted to do something to address the issue of inequality, although his proposal “made me really nervous” because he wanted to do it without raising prices for his customers or cutting back on service.

Of all the social issues that he felt he was in a position to do something about as a business leader, “that one seemed like a more worthy issue to go after.”

He said he planned to keep his own salary low until the company earned back the profit it had before the new wage scale went into effect.

Hayley Vogt, a 24-year-old communications coordinator at Gravity who earns $45,000, said, “I’m completely blown away right now.” She said she has worried about covering rent increases and a recent emergency room bill.

“Everyone is talking about this $15 minimum wage in Seattle and it’s nice to work someplace where someone is actually doing something about it and not just talking about it,” she said.

The happiness research behind Mr. Price’s announcement on Monday came from Angus Deaton and Daniel Kahneman, a Nobel Prize-winning psychologist. They found that what they called emotional well-being — defined as “the emotional quality of an individual’s everyday experience, the frequency and intensity of experiences of joy, stress, sadness, anger, and affection that make one’s life pleasant or unpleasant” — rises with income, but only to a point. And that point turns out to be about $75,000 a year.

Of course, money above that level brings pleasures — there’s no denying the delights of a Caribbean cruise or a pair of diamond earrings — but no further gains on the emotional well-being scale.
As Mr. Kahneman has explained it, income above the threshold doesn’t buy happiness, but a lack of money can deprive you of it.
Phillip Akhavan, 29, earns $43,000 working on the company’s merchant relations team. “My jaw just dropped,” he said. “This is going to make a difference to everyone around me.”

At that moment, no Princeton researchers were needed to figure out he was feeling very happy.

View Article Here Read More

Is In-Flight Refueling Coming to Commercial Airlines?




Excerpt from space.com

This article was originally published on The Conversation. The publication contributed this article to Space.com's Expert Voices: Op-Ed & Insights.

There’s real pressure on the aviation industry to introduce faster, cheaper and greener aircraft, while maintaining the high safety standards demanded of airlines worldwide.

Airlines carry more than three billion passengers each year, which presents an enormous challenge not only for aircraft manufacturers but for the civil aviation infrastructure that makes this extraordinary annual mass-migration possible. Many international airports are close to or already at capacity. The International Air Transport Association (IATA) has estimated that, without intervention, many global airports – including major hubs such as London Heathrow, Amsterdam Schiphol, Beijing and Dubai – will have run out of runway or terminal capacity by 2020. 


The obvious approach to tackling this problem is to extend and enlarge airport runways and terminals – such as the long-proposed third runway at London Heathrow. However there may be other less conventional alternatives, such as introducing in-flight refuelling for civil aircraft on key long-haul routes. Our project, Research on a Cruiser-Enabled Air Transport Environment (Recreate), began in 2011 to evaluate whether this was something that could prove a viable, and far cheaper, solution.

If in-flight refuelling seems implausible, it’s worth remembering that it was first trialed in the 1920s, and the military has continued to develop the technology ever since. The appeal is partly to reduce the aircraft’s weight on take-off, allowing it to carry additional payload, and partly to extend its flight range. Notably, during the Falklands War in 1982 RAF Vulcan bombers used in-flight refuelling to stage what was at the time the longest bombing mission ever, flying 8,000 miles non-stop from Ascension Island in the South Atlantic to the Falklands and back.

Reducing take-off weight could offer many benefits for civilian aircraft too. Without the need to carry so much fuel the aircraft can be smaller, which means less noise on take-off and landing and shorter runways. This opens up the network of smaller regional airports as new potential sites for long-haul routes, relieving pressure on the major hubs that are straining at the seams.

There are environmental benefits too, as a smaller, lighter aircraft requires less fuel to reach its destination. Our initial estimates from air traffic simulations demonstrate that it’s possible to reduce fuel burn by up to 11% over today’s technology by simply replacing existing global long-haul flight routes with specifically designed 250-seater aircraft with a range of 6,000nm after one refuelling – roughly the distance from London to Hong Kong. This saving could potentially grow to 23% with further efficiencies, all while carrying the same number of passengers the same distance as is possible with the current aircraft fleet, and despite the additional fuel burn of the tanker aircraft.

Tornado fighter jets in-flight refuel
Imagine if these Tornado fighter jets were 250-seater passenger aircraft and you’ve got the idea.

However, this is not the whole picture – in-flight refuelling will require the aerial equivalent of petrol stations in order to deliver keep passenger aircraft in the sky. With so much traffic it simply wouldn’t be possible to refuel any aircraft any time, anywhere it was needed. The location of these refuelling zones, coupled with the flight distance between the origin and destination airports can greatly affect the potential benefits achievable, possibly pulling flights away from their shortest route, and even making refuelling on some routes impossible – if for example the deviation to the nearest refuelling zone meant burning as much fuel as would have been saved.

Safety and automation

As with all new concepts – particularly those that involve bringing one aircraft packed with people and another full of fuel into close proximity during flight – it’s quite right to ask whether this is safe. To try and answer this question, the Dutch National Aerospace Laboratory and German Aerospace Centre used their flight simulators to test the automated in-flight refuelling flight control system developed as part of the Recreate project.

One simulator replicated the manoeuvre from the point of view of the tanker equipped with an in-flight refuelling boom, the other simulated the aircraft being refuelled mid-flight. Critical test situations such as engine failure, high air turbulence and gusts of wind were simulated with real flight crews to assess the potential danger to the operation. The results were encouraging, demonstrating that the manoeuvre doesn’t place an excessive workload on the pilots, and that the concept is viable from a human as well as a technical perspective.

So far we’ve demonstrated the potential aerial refuelling holds for civilian aviation, but putting it into practice would still pose challenges. Refuelling hubs would need to be established worldwide, shared between airlines. There would need to be fundamental changes to airline pilot training, alongside a wider public acceptance of this departure from traditional flight operations.

However, it does demonstrate that, in addition to all the high-tech work going into designing new aircraft, new materials, new engines and new fuels, the technology we already have offers solutions to the long-term problems of ferrying billions of passengers by air around the world.

View Article Here Read More

For the first time, scientists find complex organic molecules in an infant star system



Artist impression of the protoplanetary disk surrounding the young star MWC 480. ALMA has detected the complex organic molecule methyl cyanide in the outer reaches of the disk in the region where comets are believed to form. This is another indication that complex organic chemistry, and potentially the conditions necessary for life, is universal. (B. Saxton/NRAO/AUI/NSF)



Excerpt from washingtonpost.com

We're not special. Or our complex organic molecules aren't, anyway. And that's good news in the hunt for extraterrestrial life.

In a new study published Wednesday in Nature, astronomers found the first signs of the complex, carbon-based molecules that make life possible on Earth in a protoplanetary disk; the region where cosmic building blocks gather to create planets in a brand-new star system. The cyanides found there are essential to life as we know it: without them, there would be no proteins.

"We know when our own solar system was very young, it was rich in water and complex organics. We know that from observing comets," explained study author Karin Öberg, an assistant professor of astronomy at Harvard. Comets have kept the molecules of our solar system's early days locked up tight ever since, which is why scientists are so eager to study them for clues about Earth's formation. These comets show us that certain organic molecules were common in our solar system's pre-planetary days.

But this is the first time we've seen evidence of such molecules ready to seed another star system with planets that could support life.
"We're finding that we're not that special," Öberg said. "Other young solar systems in the making are also rich in the same volatiles, and in similar proportions."

And in this case, she said, being not-special is a great thing: If other solar systems formed just the way ours did, we can hope that they formed some kind of life, too.

Öberg and her colleagues found the molecules using the Atacama Large Millimeter/submillimeter Array (ALMA), a radio telescope with some pretty sweet resolution. They spotted the complex organics as much as 15 billion kilometers from the star itself, which they believe is right smack dab in the middle of the system's comet-forming region. That means the organics could get locked away in comets, just as the ones in our solar system were, and go out to seed future planets with them (as some believe was the case with Earth).

"It was kind of a chance discovery, because we weren't targeting this specific molecule," Öberg said. So she and her team need to go back and look more systematically. She also hopes they'll be able to find more systems to look at. The star they've observed -- MWC 480, located some 455 light-years away in the Taurus star-forming region -- is twice the mass of the sun, so they also hope to find some that are more similar to our host star.

 "We of course want to know whether this is a really common thing or if we just lucked out on this one," Öberg said.

View Article Here Read More

Black Holes, the Large Hadron Collider, & Finding Parallel Universes

Excerpt from huffingtonpost.comI am a huge science enthusiast and an unabashed science fiction fan. There are tons of really cool stories out there that fire the imagination and even inspire young people to go into science. (I know they did me.) ...

View Article Here Read More

You don’t get rich writing a lot of checks? or, living evidence of a soul’s incarnate blueprint ~ Greg Giles

Evidence suggests its easier for the wealthy to take candy from a babyAlthough the following video presentation, entitled, 5 Reasons Being Rich Can Make You A Bad Person, does not explore possibilities beyond our current physical reality, I feel the st...

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑