Tag: masses (page 1 of 5)

ARE YOU READY? ~ ARCHANGEL MICHAEL LM 04 2018 ✔

https://www.starquestmastery.com/single-post/2018/03/31/ARE-YOU-READY
https://www.starquestmastery.com
RonnaStar@earthlink.net

ARE YOU READY?
April 1, 2018

MESSAGES FROM ARCHANGEL MICHAEL * LM-4-2018

Beloved masters, it has been some time since we discussed the Cities of Light

View Article Here Read More

Solar System Status Update

The Oort cloud, which extends a few light years beyond the outer Solar System, is full of motherships of the Galactic Confederation, a large gathering of representatives of hundreds of thousands of positive races from throughout the Galaxy:https://en.w...

View Article Here Read More

American MK Ultra – Jay Dyer

Freeman is joined by co-host Jamie Hanshaw to interview Jay Dyer to discuss topics related to the occult connections in Hollywood and how intelligence agencies like MK Ultra have been using psychological techniques within pop-culture films, music, and advertising as they attempt to get complete social control over the masses… as everyone is lead to believe they are simply being entertained when in reality they are having their imaginations hijacked and engineered.See more at: http:// [...]

View Article Here Read More

Mind Control Programs Exposed – Your Thoughts Are Not Your Own

Vic Bishop, Staff WriterResearch into the structure and function of the human brain continues to accelerate. Collaborations, such as the Human Brain Project in Europe and the BRAIN initiative in the United States, are exploring making great advances in understanding the brain’s circuitry and computing principles.The supposed goals of these research initiatives are to understand the cause of and to improve treatment of brain disorders, to create neu [...]

View Article Here Read More

Leading Journals Agree That Big Pharma Manipulates Medical Research

Alex Pietrowski, Staff WriterCorruption in the medical industry can no longer be ignored. There’s no doubt that much of what is told to the masses, including medical schools and physicians, is simply untrue. Even Dr. Richard Horton, editor of the world’s most respected medical journal, The Lancet, agrees:“Much of the scientific literature, perhaps half, may simply be untrue. Afflicted by studies with small sample sizes, tiny effects, invalid exploratory analyses, an [...]

View Article Here Read More

Take an amazing spaceship journey to Omega Centauri


From Wikipedia.org: Omega Centauri (ω Cen), or NGC 5139, is a globular cluster in the constellation of Centaurus that was identified by Edmond Halley in 1677. Located at a distance of 15,800 light-years (4,850 pc), it is the largest globular cluster in the Milky Way galaxy at a diameter of roughly 150 light-years. It is estimated to contain approximately 10 million stars and a total mass equivalent to 4 million solar masses.
Omega Centauri is so distinctive from the other galactic globular clusters that it is thought to have an alternate origin as the core remnant of a disrupted dwarf galaxy.

Click to zoom

View Article Here Read More

Local Lick Observatory Astronomers Discover ‘Supersized Earths’ Surrounding Relatively Nearby Star


A telescope at Lick Observatory on Mount Hamilton. (CBS)
A telescope at Lick Observatory on Mount Hamilton. (CBS)


Excerpt from cbslocal.com


SAN JOSE (CBS SF) – Astronomers at the Lick Observatory atop Mount Hamilton have confirmed the existence of three planets described as “supersized Earths” orbiting a star 54 light years away.
Researchers from the University of California, University of Hawaii, the University of California Observatories and Tennessee State University have been working for years to confirm the planets were there.

The planets orbit a star called HD 7924. They orbit at a distance closer than Mercury orbits our sun (35.9 million miles), and complete their orbits in five, 15 and 24 days, respectively.
“The three planets are unlike anything in our solar system, with masses seven to eight times the mass of Earth and orbits very close to their host star,” UC Berkeley graduate student Lauren Weiss said in a written statement.

The researchers used a robotic telescope called the “Automated Planet Finder,” which searches for planets around nearby stars that could be suitable for life. Most distant planets discovered by astronomers so far are gas giants like Jupiter.

Astronomers first found evidence of planets surrounding HD 7924 six years ago. The planets are not visible to the naked eye.

View Article Here Read More

Young Jupiter wiped out solar system’s early inner planets, study says


Ganymede
(Photo : NASA/ESA) In early days of solar system, Jupiter destroyed everything that came in its way, researchers have found.


Excerpt from latimes.com

Before Mercury, Venus, Earth and Mars occupied the inner solar system, there may have been a previous generation of planets that were bigger and more numerous – but were ultimately doomed by Jupiter, according to a new study.

If indeed the early solar system was crowded with so-called super-Earths, it would have looked a lot more like the planetary systems found elsewhere in the galaxy, scientists wrote Monday in the Proceedings of the National Academy of Sciences.


Inner planets
As NASA’s Kepler space telescope has found more than 1,000 planets in orbit around other stars, along with more than 4,000 other objects that are believed to be planets but haven’t yet been confirmed. Kepler finds these planets by watching their host stars and registering tiny drops in their brightness – a sign that they are being ever-so-slightly darkened by a planet crossing in front of them.

In addition, ground-based telescopes have detected hundreds of exoplanets by measuring the wiggles of distant stars. Those stars wiggle thanks to the gravitational pull of orbiting planets, and the Doppler effect makes it possible to estimate the size of these planets.

The more planetary systems astronomers discovered, the more our own solar system looked like an oddball. Exoplanets – at least the ones big enough for us to see – tended to be bigger than Earth, with tight orbits that took them much closer to their host stars. In multi-planet systems, these orbits tended to be much closer together than they are in our solar system. For instance, the star known as Kepler-11 has six planets closer to it than Venus is to the sun.

Why does our solar system look so different? Astrophysicists Konstantin Batygin of Caltech and Greg Laughlin of UC Santa Cruz summed it up in one word: Jupiter.

Here’s what could have happened, according to their models:

In Solar System 1.0, the region closest to the sun was occupied by numerous planets with masses several times bigger than that of Earth. There were also planetesimals, “planetary building blocks” that formed within the first million years after the birth of the sun, Batygin and Laughlin wrote.

This is how things might have stayed if the young Jupiter had stayed put at its initial orbit, between 3 and 10 astronomical units away from the sun. (An astronomical unit, or AU, is the distance between the Earth and the sun. Today, Jupiter’s orbit ranges between 5 and 5.5 AUs from the sun.)

But Jupiter was restless, according to a scenario known as the “Grand Tack.” In this version of events, Jupiter was swept up by the currents of gas that surrounded the young sun and drifted toward the center of the solar system.

Jupiter, however, was too big to travel solo. All manner of smaller objects would have been dragged along too. With so many bodies in motion, there would have been a lot of crashes.

The result was “a collisional cascade that grinds down the planetesimal population to smaller sizes,” the astrophysicists wrote. For the most part, these planetary crumbs were swept toward the sun and ultimately destroyed, like disintegrating satellites falling back to Earth.

The planetesimals wouldn’t have been Jupiter’s only victims. Assuming the early solar system resembled the planetary systems spied by Kepler and other telescopes, there would have been “a similar population of first-generation planets,” the pair wrote. “If such planets formed, however, they were destroyed.”

Jupiter probably got about as close to the sun as Mars is today before reversing course, pulled away by the gravity of the newly formed Saturn. That would have ended the chaos in the inner solar system, allowing Earth and the other rocky planets to form from the debris that remained.

“This scenario provides a natural explanation for why the inner Solar System bears scant resemblance to the ubiquitous multi-planet systems” discovered by Kepler and other survey efforts, Batygin and Laughlin wrote.

Although their models show that this is what might have happened, they don’t prove that it actually did. But there may be a way to get closer to the truth.

The scientists’ equations suggest that if a star is orbited by a cluster of close-in planets, there won’t be a larger, farther-out planet in the same system. As astronomers find more exoplanetary systems, they can see whether this prediction holds up.

Also, if far-away solar systems are experiencing a similar series of events, telescopes ought to be able to detect the extra heat thrown off by all of the planetesimal collisions, they added.

Sadly for those hoping to find life on other planets, the pair’s calculations also imply that most Earth-sized planets are lacking in water and other essential compounds that can exist in liquid or solid form. As a result, they would be “uninhabitable,” they wrote.

View Article Here Read More

Chances of Exoplanet Life ‘Impossible’? Or ‘100 percent’?


Kepler’s Exoplanets: A map of the locations of exoplanets, of various masses, in the Kepler field of view. 1,235 candidates are plotted (NASA/Wendy Stenzel)


 news.discovery.com 

Just in case you haven’t heard, our galaxy appears to be teeming with small worlds, many of which are Earth-sized candidate exoplanets and dozens appear to be orbiting their parent stars in their “habitable zones.”

Before Wednesday’s Kepler announcement, we knew of just over 500 exoplanets orbiting stars in the Milky Way. Now the space telescope has added another 1,235 candidates to the tally — what a difference 24 hours makes.

Although this is very exciting, the key thing to remember is that we are talking about exoplanet candidates, which means Kepler has detected 1,235 exoplanet signals, but more work needs to be done (i.e. more observing time) to refine their orbits, masses and, critically, to find out whether they actually exist.

But, statistically speaking, a pattern is forming. Kepler has opened our eyes to the fact our galaxy is brimming with small worlds — some candidates approaching Mars-sized dimensions!

Earth-Brand™ Life

Before Kepler, plenty of Jupiter-sized worlds could be seen, but with its precision eye for spotting the tiniest of fluctuations of star brightness (as a small exoplanet passes between Kepler and the star), the space telescope has found that smaller exoplanets outnumber the larger gas giants.

Needless to say, all this talk of “Earth-sized” worlds (and the much-hyped “Earth-like” misnomer) has added fuel to the extraterrestrial life question: If there’s a preponderance of small exoplanets — some of which orbit within the “sweet-spot” of the habitable zones of their parent stars — could life as we know it (or Earth-Brand™ Life as I like to call it) also be thriving there?
Before I answer that question, let’s turn back the clock to Sept. 29, 2010, when, in the wake of the discovery of the exoplanet Gliese 581 g, Steven Vogt, professor of astronomy and astrophysics at University of California Santa Cruz, told Discovery News: “Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that the chances for life on [Gliese 581 g] are 100 percent. I have almost no doubt about it.”

Impossible? Or 100 Percent?

As it turns out, Gliese 581 g may not actually exist — an excellent example of the progress of science scrutinizing a candidate exoplanet in complex data sets as my Discovery News colleague Nicole Gugliucci discusses in “Gliese 581g and the Nature of Science” — but why was Vogt so certain that there was life on Gliese 581 g? Was he “wrong” to air this opinion?

Going to the opposite end of the spectrum, Howard Smith, an astrophysicist at Harvard University, made the headlines earlier this year when he announced, rather pessimistically, that aliens will unlikely exist on the extrasolar planets we are currently detecting.
“We have found that most other planets and solar systems are wildly different from our own. They are very hostile to life as we know it,” Smith told the UK’s Telegraph.

Smith made comparisons between our own solar system with the interesting HD 10180 system, located 127 light-years away. HD 10180 was famous for a short time as being the biggest star system beyond our own, containing five exoplanets (it has since been trumped by Kepler-11, a star system containing six exoplanets as showcased in Wednesday’s Kepler announcement).

One of HD 10180′s worlds is thought to be around 1.4 Earth-masses, making it the smallest detected exoplanet before yesterday. Alas, as Smith notes, that is where the similarities end; the “Earth-sized” world orbiting HD 10180 is too close to its star, meaning it is a roasted exoplanet where any atmosphere is blasted into space by the star’s powerful radiation and stellar winds.
The Harvard scientist even dismissed the future Kepler announcement, pointing out that upcoming reports of habitable exoplanets would be few and far between. “Extrasolar systems are far more diverse than we expected, and that means very few are likely to support life,” he said.

Both Right and Wrong

So what can we learn about the disparity between Vogt and Smith’s opinions about the potential for life on exoplanets, regardless of how “Earth-like” they may seem?

Critically, both points of view concern Earth-Brand™ Life (i.e. us and the life we know and understand). As we have no experience of any other kind of life (although the recent eruption of interest over arsenic-based life is hotly debated), it is only Earth-like life we can realistically discuss.

We could do a Stephen Hawking and say that all kinds of life is possible anywhere in the cosmos, but this is pure speculation. Science only has life on Earth to work with, so (practically speaking) it’s pointless to say a strange kind of alien lifeform could live on an exoplanet where the surface is molten rock and constantly bathed in extreme stellar radiation.

If we take Hawking’s word for it, Vogt was completely justified for being so certain about life existing on Gliese 581 g. What’s more, there’s no way we could prove he’s wrong!

But if you set the very tight limits on where we could find Earth-like life, we are suddenly left with very few exoplanet candidates that fit the bill. Also, just because an Earth-sized planet might be found in the habitable zone of its star, doesn’t mean it’s actually habitable. There are many more factors to consider. So, in this case, Smith’s pessimism is well placed.

Regardless, exoplanet science is in its infancy and the uncertainty with the “is there life?” question is a symptom of being on the “raggedy edge of science,” as Nicole would say. We simply do not know what it takes to make a world habitable for any kind of life (apart from Earth), but it is all too tempting to speculate as to whether a race of extraterrestrials, living on one of Kepler’s worlds, is pondering these same questions.

View Article Here Read More

Hubble’s ‘Einstein Cross’ Marks the Space-Warping Spot


Image: Einstein Cross revealed
Flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo.


Excerpt from nbcnews.com
By Alan Boyle


One hundred years after Albert Einstein published his theory of general relativity, the Hubble Space Telescope has provided a demonstration of the theory at work: a picture of a distant galaxy so massive that its gravitational field is bending the light from an even more distant supernova. 

The image, released Thursday, shows how the flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo. 

"It really threw me for a loop when I spotted the four images surrounding the galaxy," Patrick Kelly, an astronomer from the University of California at Berkeley, said in a news release. "It was a complete surprise." 

Maybe it shouldn't have been. The configuration is known as an Einstein Cross. It's a well-known but rarely seen effect of gravitational lensing, which is in line with Einstein's assertion that a massive object warps the fabric of space-time — and thus warps the path taken by light rays around the object. 

In this case, the light rays are coming from a stellar explosion that's directly behind the galaxy, but 4.3 million light-years more distant. Computer models suggest that the four-pointed cross will eventually fade away, to be followed within the next five years by the reappearance of the supernova's flash as a single image. 

Kelly is part of a research collaboration known as the Grism Lens Amplified Survey from Space, or GLASS. The collaboration is working with the Frontier Field Supernova team, or FrontierSN, to analyze the exploding star. He's also the lead author of a paper on the phenomenon that's being published this week by the journal Science as part of a package marking the 100th anniversary of Einstein's general relativity theory. 

The researchers suggest that a high-resolution analysis of the gravitational lensing effect can lead to better measurements of cosmic distances and galactic masses, including the contribution from dark matter. The Hubble team says the faraway supernova has been named "Refsdal" in honor of Norwegian astronomer Sjur Refsdal, who proposed using time-delayed images from a lensed supernova to study the expansion of the universe. 

"Astronomers have been looking to find one ever since," UCLA astronomer Tommaso Treu, the GLASS project's principal investigator, said in Thursday's news release. "The long wait is over!" 

The Einstein Cross is the subject of a Google+ Hangout at 3 p.m. ET Thursday, presented by the Hubble science team. You can watch the event now or later via YouTube. Check out a preprint version of the Science report.

View Article Here Read More

Monster Black Hole Is the Largest and Brightest Ever Found



Largest and Brightest Black Hole
An artist's illustration of a monster supermassive black hole at the heart of a quasar in the distant universe. Scientists say the newfound black hole SDSS J010013.02+280225.8 is the largest and brightest ever found.

Excerpt from space.com

Astronomers have discovered the largest and most luminous black hole ever seen — an ancient monster with a mass about 12 billion times that of the sun — that dates back to when the universe was less than 1 billion years old.

It remains a mystery how black holes could have grown so huge in such a relatively brief time after the dawn of the universe, researchers say.

Supermassive black holes are thought to lurk in the hearts of most, if not all, large galaxies. The largest black holes found so far in the nearby universe have masses more than 10 billion times that of the sun. In comparison, the black hole at the center of the Milky Way is thought to have a mass only 4 million to 5 million times that of the sun. 


Although not even light can escape the powerful gravitational pulls of black holes — hence, their name — black holes are often bright. That's because they're surrounded by features known as accretion disks, which are made up of gas and dust that heat up and give off light as it swirl into the black holes. Astronomers suspect that quasars, the brightest objects in the universe, contain supermassive black holes that release extraordinarily large amounts of light as they rip apart stars.
So far, astronomers have discovered 40 quasars — each with a black hole about 1 billion times the mass of the sun — dating back to when the universe was less than 1 billion years old. Now, scientists report the discovery of a supermassive black hole 12 billion times the mass of the sun about 12.8 billion light-years from Earth that dates back to when the universe was only about 875 million years old.

This black hole — technically known as SDSS J010013.02+280225.8, or J0100+2802 for short — is not only the most massive quasar ever seen in the early universe but also the most luminous. It is about 429 trillion times brighter than the sun and seven times brighter than the most distant quasar known.

The light from very distant quasars can take billions of years to reach Earth. As such, astronomers can see quasars as they were when the universe was young.

This black hole dates back to a little more than 6 percent of the universe's current age of 13.8 billion years.

"This is quite surprising because it presents serious challenges to theories of black hole growth in the early universe," said lead study author Xue-Bing Wu, an astrophysicist at Peking University in Beijing.

Accretion discs limit the speed of modern black holes' growth. First, as gas and dust in the disks get close to black holes, traffic jams slow down any other material that's falling into them. Second, as matter collides in these traffic jams, it heats up, emitting radiation that drives gas and dust away from the black holes.

Newfound Quasar SDSS J0100+2802
The newfound quasar SDSS J0100+2802 has the most massive black hole and the highest luminosity among all known distant quasars, as shown in this comparison chart of the black hole's mass and brightness.


Scientists still do not have a satisfactory theory to explain how these supermassive objects formed in the early universe, Wu said.

"It requires either very special ways to quickly grow the black hole or a huge seed black hole," Wu told Space.com. For instance, a recent study suggested that because the early universe was much smaller than it is today, gas was often denser, obscuring a substantial amount of the radiation given off by accretion disks and thus helping matter fall into black holes.

The researchers noted that the light from this black hole could help provide clues about the dark corners of the distant cosmos. As the quasar's light shines toward Earth, it passes through intergalactic gas that colors the light. By deducing how this intergalactic gas influenced the spectrum of light from the quasar, scientists can deduce which elements make up this gas. This knowledge, in turn, can provide insight into the star-formation processes that were at work shortly after the Big Bang that produced these elements.

"This quasar is the most luminous one in the early universe, which, like a lighthouse, will provide us chances to use it as a unique tool to study the cosmic structure of the dark, distant universe," Wu said.
The scientists detailed their findings in the Feb. 26 issue of the journal Nature.

View Article Here Read More

White Dwarf Stars to Collide in Catastrophic Supernova

Henize 2-428 nebula
Pictured: An artist's impression of the center of the Henize 2-428 planetary nebula, containing two white dwarf stars. (Photo : ESO/L. CALÇADA)


Excerpt from natureworldnews.com

Reported in the journal Nature, the European Southern Observatory's (ESO) Very Large Telescope (VLT) in Chile was originally studying how some stars produce strangely shaped, asymmetric nebula. They focused on Henize 2-428 and found something they did not expect - not just one star, but two.

"Further observations made with telescopes in the Canary Islands allowed us to determine the orbit of the two stars and deduce both the masses of the two stars and their separation. This was when the biggest surprise was revealed," co-author Romano Corradi, a researcher at the Instituto de Astrofísica de Canarias, said in a press release.

The next shocker was that the two stars were white dwarfs - tiny, extremely dense stars with a total mass about 1.8 times that of the Sun. The fact that there are two stars supports the theory that double central stars may explain the odd shapes of some of these nebulae.

They've also found that the stars orbit every 4 hours and due to the emission of gravitational waves, they are slowly spiraling into one another. Within the next 700 million years, these stars will merge and under the stress of their combined mass, explode in a giant supernova.

"Until now, the formation of supernovae Type Ia by the merging of two white dwarfs was purely theoretical," said co-author David Jones, an ESO Fellow at the time the data were obtained. "The pair of stars in Henize 2-428 is the real thing!"

"It's an extremely enigmatic system," added lead researcher Santander-García. "It will have important repercussions for the study of supernovae Type Ia, which are widely used to measure astronomical distances and were key to the discovery that the expansion of the Universe is accelerating due to dark energy."

View Article Here Read More

New data that fundamental physics constants underlie life-enabling universe

Excerpt from spacedaily.com For nearly half a century, theoretical physicists have made a series of discoveries that certain constants in fundamental physics seem extraordinarily fine-tuned to allow for the emergence of a life-enabling universe.Thi...

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑