Tag: magnitude (page 1 of 4)

Chapter 15: Celebrating The Birth Of The Holy Instant – The Two Uses Of Time – Episode I #COR-01a

The Celebration of Rebirth Series. Readings: TEXT: CHAPTER 15: The Two Uses Of Time [para 1-2, 14], TEXT: CHAPTER 15: Littleness Versus Magnitude [para 1-2, 6-12], TEXT: CHAPTER 15: The Holy Instant And The Laws Of God [para 2-4, 7-8], TEXT: CHAPTER 15...

View Article Here Read More

Greg Giles ~ The Hidden Agenda of the Galactic Federation Show ~ Part 1

  War in Ukraine   A quick word on Conspiracies: (Thanks to threeworldwars.com) There are three ways of exposing a Conspiracy: 1. One is for any of the participants in the conspiracy to break...

View Article Here Read More

Cover Up – Mainstream Reporting on Fukushima a Joke

Terence Newton, Staff WriterIt has been over four years since the 9.0 magnitude Tōhoku earthquake and ensuing catastrophic tsunami leveled the Pacific coast of Japan, setting off a nuclear meltdown at the Fukushima Daichi power plant. Radiation has been pouring into the ocean, into the earth below, and into the air for over 1500 days now and there is still zero sense of urgency on the part of the government and world leaders to seriously address this blooming catastrop [...]

View Article Here Read More

Think the Anti-GMO Movement is Unscientific? Think Again

Sayer Ji, Green Med Info“Anyone that says, ‘Oh, we know that this is perfectly safe,’ I say is either unbelievably stupid, or deliberately lying. The reality is, we don’t know. The experiments simply haven’t been done, and now we have become the guinea pigs.”  ~ David Suzuki, geneticistNow that the mainstream media is catching on to the public sentiment against GMO food, or at least against unlabeled GMO food, to the tune o [...]

View Article Here Read More

Ascension Earth 2015-05-09 17:40:00




 MAY 9, 2015: USGS map shows the location of the 4.5 quake (large blue dot in Ka'u) among the many smaller quakes that occurred on the Big Island over the last two weeks.

MAY 9, 2015: USGS map shows the location of the 4.5 quake (large blue dot in Ka'u) among the many smaller quakes that occurred on the Big Island over the last two weeks. - See more at: http://www.bigislandvideonews.com/2015/05/09/4-5-earthquake-shakes-big-island/#sthash.SS9H2Oiy.dpuf

 bigislandvideonews.com


Magnitude-4.5 earthquake shakes Big Island of Hawaii; people around isle report light shakingNAʻALEHU – A magnitude-4.5 earthquake located in the Kaʻū District shook the Island of Hawaii on Saturday, May 9, at 2:18 a.m., HST.  The quake was centered 5 miles north of Naʻalehu at a depth of 6 miles, according to Wes Thelen, the Seismic Network Manager for the USGS Hawaiian Volcano Observatory. There were three aftershocks (magnitudes 1.6, 1.5, 1.4) of the earthquake were recorded as of 3:30 a.m., HST. Scientists say additional aftershocks are possible and could be felt.  Over 70 reports claimed to feel the earthquake within an hour of the event. Light shaking has been reported across the island. At these shaking intensities (Intensity IV), damage to buildings or structures is not expected, scientists said.      Over the past 30 years, the area north of Nāʻālehu has experienced 6 earthquakes, including today’s event, with magnitudes greater than 4.0 and at depths of 5–13 km (3.1–8.1 mi). This area of Kaʻū is a seismically active region where a magnitude-6.2 earthquake occurred in 1919. Areas adjacent to this morning’s event experienced earthquakes of magnitudes 6.0, 7.1, and 7.9 in 1868.      The depth, location, and recorded seismic waves of today’s earthquake suggest a source on the large fault plane between the old ocean floor and overlying volcanic crust, a common source for earthquakes in this area. USGS Hawaiian Volcano Observatory   The earthquake caused no detectable changes in Kīlauea Volcano’s ongoing eruptions, on Mauna Loa, or at other active volcanoes on the Island of Hawaiʻi, says USGS. A magnitude-3.1 earthquake that occurred in Kīlauea Caldera about one minute before the magnitude-4.5 earthquake was unrelated to the Naʻalehu event.  The Big Island has been experiencing elevated seismicity beneath Kīlauea’s summit and upper East and Southwest Rift Zones the past few weeks.
NAʻALEHU – A magnitude-4.5 earthquake located in the Kaʻū District shook the Island of Hawaii on Saturday, May 9, at 2:18 a.m., HST.
The quake was centered 5 miles north of Naʻalehu at a depth of 6 miles, according to Wes Thelen, the Seismic Network Manager for the USGS Hawaiian Volcano Observatory. There were three aftershocks (magnitudes 1.6, 1.5, 1.4) of the earthquake were recorded as of 3:30 a.m., HST. Scientists say additional aftershocks are possible and could be felt.
Over 70 reports claimed to feel the earthquake within an hour of the event. Light shaking has been reported across the island. At these shaking intensities (Intensity IV), damage to buildings or structures is not expected, scientists said.
Over the past 30 years, the area north of Nāʻālehu has experienced 6 earthquakes, including today’s event, with magnitudes greater than 4.0 and at depths of 5–13 km (3.1–8.1 mi). This area of Kaʻū is a seismically active region where a magnitude-6.2 earthquake occurred in 1919. Areas adjacent to this morning’s event experienced earthquakes of magnitudes 6.0, 7.1, and 7.9 in 1868.
The depth, location, and recorded seismic waves of today’s earthquake suggest a source on the large fault plane between the old ocean floor and overlying volcanic crust, a common source for earthquakes in this area. USGS Hawaiian Volcano Observatory
The earthquake caused no detectable changes in Kīlauea Volcano’s ongoing eruptions, on Mauna Loa, or at other active volcanoes on the Island of Hawaiʻi, says USGS. A magnitude-3.1 earthquake that occurred in Kīlauea Caldera about one minute before the magnitude-4.5 earthquake was unrelated to the Naʻalehu event.
The Big Island has been experiencing elevated seismicity beneath Kīlauea’s summit and upper East and Southwest Rift Zones the past few weeks.
- See more at: http://www.bigislandvideonews.com/2015/05/09/4-5-earthquake-shakes-big-island/#sthash.SS9H2Oiy.dpuf

View Article Here Read More

The sun unleashes its biggest flare of the year




Excerpt from dailytimes.com.pk

The sun has unleashed its most powerful flare of the year causing radio blackouts throughout the Pacific region.

The enormous X-class solar flare peaked at 6:11pm ET yesterday from a sunspot called Active Region 2339 (AR2339).

Solar flares are powerful bursts of radiation that, when intense enough, can disturb the atmosphere in the layer where GPS and communications signals travel - and scientists say they could get more powerful in the future.

This latest flare is classified as an X2.7. X-class denotes the most intense flares, while the number provides more information about its strength.

Despite the recent radio blackouts, scientists say the flare is unlikely to cause any further major issues here on Earth.

‘Given the impulsive nature of this event, as well as the source location on the eastern limb of the sun, we are not expecting a radiation storm at Earth,’ scientists with the U.S. Space Weather Prediction Center (SWPC) in Boulder, Colorado.

‘We will be on the lookout for new imagery from the Nasa Soho [Solar and Heliospheric Observatory] mission to determine if there was an associated coronal mass ejection (CME) with this event,’ they added.

‘Given the same logic above, however, we do not expect there to be one that would impact Earth.’

Yesterday Kazunari Shibata, an astrophysicist from Kyoto University in Japan, said the sun has the potential to unleash a flare of such a magnitude that it would be larger than anything humans have ever seen.

At the Space Weather Workshop in Colorado, Shibata said ‘superflares,’ that contain energy 1,000 times larger than what we have seen could be on their way.

He said there is evidence of this happening every 800 to 5,000 years on Earth,

Scientists say such a solar ‘super-storm’ would pose a ‘catastrophic’ and ‘long-lasting’ threat to life on Earth.

A superflare would induce huge surges of electrical currents in the ground and in overhead transmission lines, causing widespread power outages and severely damaging critical electrical components.

The largest ever solar super-storm on record occurred in 1859 and is known as the Carrington Event, named after the English astronomer Richard Carrington who spotted the preceding solar flare.

This massive CME released about 1022 kJ of energy - the equivalent to 10 billion Hiroshima bombs exploding at the same time - and hurled around a trillion kilos of charged particles towards the Earth at speeds of up to 3000 km/s.

However, its impact on the human population was relatively benign as our electronic infrastructure at the time amounted to no more than about 124,000 miles (200,000 km) of telegraph lines.

Nasa has also released incredible footage showing the sun unleashing a huge lick of plasma that increased the star’s visible hemisphere by almost half.

The solar filament, which exploded on April 28 and 29, was suspended above the sun due to strong magnetic fields that pushed outwards.

Solar astronomers around the world had their eyes on this unusually large filament and kept track as it erupted.

Nasa’s animation involves images taken from the orbiting Solar and Heliospheric Observatory using its Large Angle Spectrometric Coronagraph.

The diameter of the animation is about 30 million miles (45 million km) at the distance of the sun, or half of the diameter of the orbit of Mercury.

The white circle in the centre of the round disk represents the size of the sun, which is being blocked by the telescope in order to see the fainter material around it.

View Article Here Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here Read More

Rosetta Coming Closer to Comet 67P ~ Philae Lander Still Snoozing Away


Rosetta photo of Comet 67P/C-G.
March 9 Rosetta was 45 miles from Comet 67P/C-G when it photographed the comet’s head ringed with a halo of gas and dust. These jets extend from active areas of the comet’s surface and will become much more prominent over the next few months as the comet approaches the sun.


Excerpt from dailytimesgazette.com

Astronomers have been on a mission to tail a slow moving comet in the outer space. Their mission started early last 2014, and they are getting better observations than they thought they would.
The comet, Comet 67P, would take 12.4 hours to complete one rotation in the circular path it’s moving in. Controllers of Rosetta are noticing that the icy ball approximately a second every day before it completes a rotation. The flight director of Rosetta – Andrea Accomazzo, said that, “The gas jets coming out of the comet, are acting like thrusters and are slowing down the comet.”
During the Royal Aeronautical Society in London earlier this week, the European Space Agency officially revealed some juicy details on how their team learned to maneuver Rosetta to fly precisely around the massive astral body. Comet 67P is said to weigh 10-billion tons with 4-km size in width.

The controllers and navigators use the landmark-method on the comet to understand its rotation. The team is moving around the outer space relying only on the information provided by the model. Both the model and information guides them in accurately projecting the trajectory of the satellite in the best position.

As they were trying out the model, the ESA team noticed that the landmarks were not following the usual track at the expected time.
During September 2014, the team were determined and very convinced that comet’s rotation period lengthen by 33 milliseconds per day. At present, the comet is approaching the Sun. As it does, it releases great volumes of gas and dust as a result of the so-called Spin-Down effect; further lengthening the rotation period to a second per day.

Accomazzo clarified that Comet 67P is not going to slow down in a slow motion. But its current speed allows them achieve the great magnitude of accuracy in navigating the spacecraft around the comet.

Rosetta made significant observations of the comet last December and January as it moves like an orbit within 30 km distance from the comet. However, this movement is no longer going to happen because Rosetta has retreated from the comet as the gas and dust are being released.

But it does them well as Accomazzo said that, “The aerodynamic effects are now more and more important. The jets are getting stronger and stronger… To give you an idea, these gases come out of the comet for a few kilometers and are moving at 800 meters per second. We definitely have to take this into account. We are a big spacecraft with 64 square meter s of solar panels. We’re like a big sail.”

The trackers were confused during the recent weeks because they have mistaken the dust particles for stars. It was due to the fact that the dusts in the atmosphere were moving around the comet.

Now, Rosetta is using its propulsion system to move in a hyperbolic orbital rotation around Comet 67P. It approaches the comet no closer than 60 to 70 km. With the slowdown of the comet, the ESA team is planning to fly closer.

They were estimating a flight as close as 20 km to get a better look at the surface of the comet and find their lost landing probe, Philae. They lost contact with the robotic probe since November 12 due to lost battery power only days after it successfully landed on the comet.

The slowdown gives them an opportunity to search for Philae. As it moves closer to the Sun, lighting conditions are definitely better than their previous runs. The controllers are now calling onto Philae using radio shout outs.

Philae is solar powered so the team hopes that enough solar energy falls on the panels awaking the probe. But one problem still persist, “The problem is that even if Philae hears Rosetta, it has to have enough charge to turn on its radio transmitter.”

The flight director is quite doubtful if Philae will be awakening. Andrea suggested, “I put it at 50-50, but I will be the happiest person in the world if it happens,”

Their mission achieved great progress and observation of a comet. The team is wishing for better things as the 67P slow down leaving them with more advantage

View Article Here Read More

Rare & severe geomagnetic storm enables Aurora Borealis to be seen from U.S. tonight

Excerpt from mashable.com Thanks to a rare, severe geomagnetic storm, the Northern Lights may be visible on Tuesday night in areas far to the south of its typical home in the Arctic.  The northern tier of the U.S., from Washington State to Michiga...

View Article Here Read More

Skywatch: Venus and Jupiter continue to accentuate the night heavens


Venus (right) & Jupiter


Excerpt from washingtonpost.com
By Blaine Friedlander Jr. 
In winter’s waning weeks, Venus and Jupiter continue to accentuate the night heavens, we change our clocks forward and we grab spring with no intention of letting go.

Check the west-southwestern heavens at dusk to spy the vivacious Venus and the dim Mars. In late February, the two planets met for a sweet cosmic waltz, but in March, they appear to separate. Venus approaches negative fourth magnitude (very bright) while Mars makes do at magnitude 1.3 (dim, hard to find in urban light pollution). With a clear sky, Mars looks like a red pinpoint. 

A young, waxing crescent moon visits Mars on the evening of March 21, and on the next evening the crescent flirts with Venus.
Robust Jupiter ascends the evening’s eastern sky. Find this gas giant at a -2.5 magnitude, very bright, in the constellation Cancer. The lion in the constellation Leo appears to stare at the planet. By the Ides of March, find it south around 10:30 p.m. 

The waxing gibbous moon drops by the dazzling Jupiter on March 2, days before the moon itself becomes full on March 5. 

Catch the ringed Saturn rising after midnight in the east-southeast now, hanging out near a gang of constellations, Scorpius, Ophiuchus and Libra. It’s a zero magnitude object, bright enough that it can be seen under urban skies. The waning moon loiters near Saturn before dawn on March 12. On that morning, the reddish star below them is Antares.
We adjust our clocks to Daylight Saving Time at 2 a.m. March 8. Spring forward, moving the clock ahead one hour. 

Winter is almost over. Spring is weeks away. The vernal equinox brings spring’s official arrival on March 20 at 6:45 p.m. 

Also on March 20 — the day a new moon — the North Atlantic and the Arctic waters get a short total eclipse. We won’t see it here, but Slooh.com will carry it live. Totality will start seconds after 5:44 a.m. and end at 5:47 a.m., according to Geoff Chester of the U.S. Naval Observatory. 

View Article Here Read More

Was this Star Nibiru? Scientists Discover Star Made Closest Approach to Our Solar System 70,000 Years Ago


Astronomers identify the closest known flyby of a star to our solar system Photo Credit: Flickr


Excerpt from americanlivewire.com

A low-mass red dwarf star passed through the outer Oort Cloud 70,000 years back in the closest approach made by any star into our system, discovers a team of researchers from various countries.

Lying in the constellation Monoceros and known as Scholtz’s star, it is a part of a binary system and has 8% the mass of the sun. Its companion, a brown dwarf, is said to have 6%.
The lowest end of the stellar spectrum, brown dwarfs are larger than gas giants but not as much so as to sustain hydrogen fusion for a larger period of time.

Due to its faint appearance, Scholtz’s star was discovered only a year ago by astronomer Ralf Dieter-Scholz in Potsdam, Germany, through the use of NASA’s WISE (Wide Field Infrared Survey Explorer), which mapped the entire sky in infrared during the years 2010 and 2011.

At the same time, the radial velocity of the star depicted that it was moving away from the solar system much faster than expected.
These motions led the researchers to conclude that either the star is headed toward our system, or moving away from it.

After analyzing the data, Mamajek concluded, “…The radial velocity measurements were consistent with it running away from the Sun’s vicinity–and we realized it must have had a close flyby in the past.”

Through the use of computer models, it was seen that the star passed about 5 trillion miles from our solar system around 70,000 years ago.

Mamajek and his team are 98 percent certain Scholtz’s star traveled through the outer Oort Cloud.

Although Scholtz’s star is 10th magnitude, too dim to be seen with the naked eye, it is magnetically active, which can cause it to flare at times and become significantly brighter. If this happened during its close approach to our solar system, prehistoric humans might have actually seen it.

The researchers published their findings in Astrophysical Journal Letters.

View Article Here Read More

ALMA uncovers stellar nurseries in the Sculptor Galaxy, 11.5 million light years from home



ALMA uncovers stellar nurseries in the Sculptor Galaxy, 11.5 million light years from home
The Sculptor Galaxy


Excerpt from sciencerecorder.com

Starburst galaxies are named for their ability to convert gasses rapidly into new stars, at an accelerated speed that can sometimes be 1,000 times more rapid than your average spiral galaxy, such as the Milky Way. Why the disparity? In order to further investigate the reason that some galaxies seem to “burst” into being, whereas others take the better part of a few billion years, an international team of astronomers analyzed a cluster of star-forming gas clouds in the heart of NGC 253 – the Sculptor Galaxy, with the aid of the Atacama Large Millimeter/submillimeter Array (ALMA). The Sculptor Galaxy is among starburst galaxies closest to the Milky Way.

“All stars form in dense clouds of dust and gas,” said Adam Leroy, in an interview with Astronomy magazine. Leroy is an astronomer at Ohio State University in Columbus. “Until now, however, scientists struggled to see exactly what was going on inside starburst galaxies that distinguished them from other star-forming regions.”

Therefore, Leroy and his colleagues turn to the ALMA which is capable of examining star changing structures even in systems as distant as Sculptor. Already, they have successfully charted distribution and movement of various molecules within several clouds located at the Sculptor Galaxy’s core.


Because NGC 253, which is disk-shaped, is in the stages of a very intense starburst and located approximately 11.5 million light-years from home, it is the perfect target for study. ALMA picks it up with remarkable precision and resolution, so much so that the team was able to isolate and identify ten different stellar ‘nurseries,’ in which stars were in the process of forming. To appreciate the magnitude of this feat, it would have been impossible with previous telescopes, which blurred the regions together into one glow. 

“There is a class of galaxies and parts of galaxies, we call them starbursts, where we know that gas is just plain better at forming stars,” said Leroy. “To understand why, we took one of the nearest such regions and pulled it apart — layer by layer — to see what makes the gas in these places so much more efficient at star formation.”


More importantly, they recognized the distribution of several 40 millimeter-wavelength “signatures,” that given off by various molecules at the center of Sculptor Galaxy, signaling that a number of conditions were responsible for the development of these stars. This accounts for the diversity of the states of different stars corresponding to where they are found in star-forming clouds. One important compound, all too familiar and unwelcome on Earth, carbon monoxide (CO), correlates with massive envelopes of gases that are less dense within the stellar nurseries. Others, such as hydrogen cyanide (HCN), were present in the more dense reaches of active star formation. The rarer the molecules, for example, H13CN and H13CO+, suggest regions that are even denser.


Indeed, when the data was compared, researchers found that the gas clouds of the Sculptor Galaxy were ten times denser than those found in spiral galaxies, suggesting that because the clouds are so tightly packed, they can form star clusters much more rapidly than the Milky Way. At the same time, they give us further insight as to how stars are born, showing us the physical changes along the way, allowing astronomers a working model to compare with our own galaxy. 


“These differences have wide-ranging implications for how galaxies grow and evolve,” concluded Leroy. “What we would ultimately like to know is whether a starburst like Sculptor produces not just more stars, but different types of stars than a galaxy like the Milky Way. ALMA is bringing us much closer to that goal.”

View Article Here Read More

Jupiter Wins the Starring Role in February’s Planet Parade

Excerpt from nbc.com Planets are on parade in February's night sky. Giant Jupiter will dazzle all nig...

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑