Tag: ll (page 2 of 27)

Here’s Why Tesla’s Battery Is A Big Deal


Excerpt from forbes.com

It’s more about where the market and product are going than where they are today. Think about a complementary system of components:

  1. The big grid – always on, highly reliable power which is expensive during peak demand hours, i.e. when a family actually wants to use the power. But usually the electricity is cheap at night when no one wants to use it and those big baseload plants that are hard (or very hard in the case of nuclear) to slow down are still pumping out power. And sometimes that power is provided by strong night winds.
  2. Home solar – Don’t forget that Tesla’s CEO, Musk, is also Chairman of SolarCity which provides zero down leasing. Home solar is often poorly aligned to peak usage, with installers looking for maximum generation with south-facing solar panels rather than maximum generation during peak with south-west facing panels. Then there are the homes with roofs that are poorly aligned to the sun regardless, so imperfect generation is all that is possible. And that peak generation isn’t necessarily perfectly aligned with peak cost of grid electricity either, but merely overlaps with it.
  3. Home storage – Maximum generation alignment of home solar matters less when you can carry forward the unconsumed electricity from solar panels to your evening of cooking, washing dishes, washing clothes, and streaming Netflix on your 40″ tv. And cheap electricity you can store at night and consume when electricity is really expensive is valuable as well.
So these components exist, but to be fair, they existed before Tesla got into the home storage business and have for a long time. And Tesla’s offering costs about twice as much as more typical lead-acid batteries commonly used for the purpose. So why is this particular home storage battery getting so much attention?
  1. Hype – Don’t underestimate the marvel that is Musk’s ability to get attention. The man is a rock star of event unveiling.
  2. Net metering – Right now, there is a lot of conflict between utilities and home solar users and installation companies. Net metering is the requirement that home solar generators get paid for electricity that they produce and pump into the grid, and only pay for the electricity that they draw from the grid. Output vs input is the net. Home solar used to be an advantage to utilities — reduced peak demand — but has become a liability — reduced or even negative revenue from users of the grid. Basically, utilities still have to pay for the grid which home solar generators use, then they lose revenue or outright pay the home solar generator who is getting use of the grid for free. Since utilities pay for the grid out of electricity revenue, they are starting to demand that people with home solar who aren’t paying much for electricity start paying for grid usage to make up for it. This is getting mixed reviews, as you can understand, but in the USA especially is leading to a desire by many to be completely grid free, a dubious value proposition. Tesla’s hype fell into an emerging market opportunity of people who had solar on their roof, didn’t have batteries but are worried that they’ll be forced to pay more.
  3. Time-of-use billing – Combined with smart meters, time-of-use billing is becoming much more common in utilities in the developed world. This model is simple: reduce demand during peak periods by increasing the price, typically combined with incenting shift of demand to off-peak times by lowering the price. Flattening demand curves, especially peaks, is very advantageous for grid managers because they have to have capacity for the peak. This enables storage to time-shift consumption and save at least some money.
  4. Design – Previous storage units are collections of lead acid batteries, basically the same thing you have in your car, but scaled vertically and horizontally. They aren’t pretty, they are heavy, they take up floor space, they require maintenance, and they are pretty much a toxic addition to homes if breached or even if the tops are removed. Tesla’s model is sleek, hangs on a wall and is much more chemically inert with no liquids. It’s a benign home appliance as opposed to an industrial object (much as some people like the industrial aesthetic at home, it’s less common).
  5. The Gigafactory – What Tesla has going for it is that it is building the world’s largest battery factory, and likely expanding it now that the storage line has taken off so brilliantly. Pretty much everyone paying attention knows that Tesla is already producing batteries much more cheaply on a per KWH capacity at greater volume, and the Gigafactory is going to ramp that up. Battery storage has been dropping in price per KWH of capacity for a long time, but it’s closing in on a cusp point where it’s going to be worth it for average consumers to store at least some electricity.
What all of this adds up to is that home battery storage isn’t economical today, but it’s viable for a subset of the high-consuming market, it’s desirable for its green credentials, it’s desirable due to the hype factor and it will defray its costs. And that the home storage market tomorrow will be viable for a much larger percentage of the market with increasing systemic pressures and pricing that will make it more attractive. Tesla’s home storage battery is getting attention because they are staking a major claim to a market which is expected to increase dramatically.
Why is Tesla’s battery a big deal?: originally appeared on Quora:

Answer by Mike Barnard, Energy guy, on Quora

View Article Here Read More

12 Signs Your Dog Is Basically Your Furry Child





thedodo.com

1. Snack time is no longer a solo activity ...


2. ... And you always have a little reminder of when it's dinner time.


3. You always have a bed buddy — whether there's room for one or not.


4. The word "messy" is now taken to a whole new level in your household.


5. You have more pictures of your pup than you do of people.


6. Your house is full of toys that do not belong to you.


7. You never need to set an alarm — you'll definitely be woken up in the mornings.


8. You no longer have sole ownership of your possessions ...


9. ... Or your food.


10. You take more pride in their accomplishments than you do your own.


11. You'd do anything to keep them from getting scared.


12. And the most telling sign? Your pup is always the most surefire way to brighten your day.



View Article Here Read More

22 Terrifying and Magical Capabilities Someone Has When You Fall For Them

Excerpt from huffingtonpost.comLove is terrifying, and terror is love.How exceptional is falling in love? How breathtakingly incredible? How painful and enchanted it is to have your heart opened. It presents so many chances for overwhelming pain, an...

View Article Here Read More

Your brain will never turn into software on a supercomputer

Excerpt from io9.com Getting ready to upload your consciousness into a brain-emulating computer in a decade or two? You'll be waiting a lot longer than that. Princeton computer science researcher Timothy B. Lee doesn't think we'll ever upload our ...

View Article Here Read More

Astronomers Giddy Over What They Call A Cosmic ‘Dinosaur Egg’ About To Hatch



cosmic dinosaur egg
The Antennae galaxies, shown in visible light in a Hubble image (upper image), were studied with ALMA, revealing extensive clouds of molecular gas (center right image). One cloud (bottom image) is incredibly dense and massive, yet apparently star free, suggesting it is the first example of a prenatal globular cluster ever identified.


Excerpt from huffingtonpost.com

A dense cloud of gas 50 million light-years away has astronomers buzzing, and they're using all sorts of strange metaphors to get the rest of us to pay attention.

They've discovered what they think may be a globular cluster -- a big ball of up to one million stars -- on the verge of being born.

“This remarkable object looks like it was plucked straight out of the very early universe," Dr. Kelsey Johnson, an astronomer at the University of Virginia in Charlottesville and lead author on a paper about the research, said in a written statement. "To discover something that has all the characteristics of a globular cluster, yet has not begun making stars, is like finding a dinosaur egg that’s about to hatch.”

cosmic egg
ALMA image of dense cores of molecular gas in the Antennae galaxies. The round yellow object near the center may be the first prenatal example of a globular cluster ever identified. It is surrounded by a giant molecular cloud.


Johnson and her colleagues spotted the bizarre object, which they call the "Firecracker," using the Atacama Large Millimeter/submillimeter Array (ALMA) in the Atacama desert in Chile. It's located inside a pair of interacting galaxies known to scientists as NGC 4038/NGC 4039, or The Antennae Galaxies.

The Firecracker has a mass that's 50 times that of our sun, and is under an enormous amount of pressure -- roughly 10,000 times greater than the average pressure in interstellar space. According to the researchers, this makes it a good candidate for collapsing into a globular cluster within the next million years.

What do other scientists make of the discovery? Dr. Alison Peck, ALMA scientist at the National Radio Astronomy Observatory, who was not involved in the new research, called it "important" and said she was "really excited to hear about these results."
She told The Huffington Post in an email:
"One of the things that we all yearn to understand is how our surroundings formed, how our galaxy and our solar system came to be. To do this, since we can’t actually watch things change over time, (it just takes too long), we need to find similar objects at different stages of development and compare them. What Dr. Johnson’s team have found here is an analog of an object that we look for in the very early universe, but they’ve found it so close by that we’ll be able to make extremely detailed observations and find out much more about the physical conditions in this exciting region."
The research is set to be published in the Astrophysical Journal. 

View Article Here Read More

6 Ways to Overcome a Soul-Crushing Life Challenge




Excerpt from huffingtonpost.com

It was never in your life plan, certainly never predicted in your high school yearbook.
And yet, here you are. You've gone through a soul-sucking life experience and are suffering from the collateral consequences. Uncertainty, fear and disbelief rule the day. You keep waiting to wake up and find out this was all a bad dream.
The problem is that wishing, wanting and waiting don't help. Whether you're still in the midst of the storm or idling in the aftermath, the truth is that you have to reach down and make the decision that although you may have had no control over what happened to you, you do have control over how you respond and move forward. These six tips will help start you on that journey:
1. Don't Compare Your Blooper Reel to Other's Highlight Reel
At times it may seem like the grass is greener on the other side of the fence. Social media exacerbates this perception because people tend to show only their green patch of lawn and not their backyard full of weeds!

Wouldn't it be refreshing to see someone's perfect vacation pictures captioned: "Don't know how we're really going to pay for this; We're up to our ears in debt! The kids got carsick and puked in the rental car, and Jack and I haven't had sex for weeks! Wish you were here!"
The grass isn't always greener. Everyone has something in life they wish they could undo, redo or erase. They just don't post it on Facebook.
2. Realize That Sometimes You Have No Control Over What Happens to You
Like the saying goes, life is what happens to you when you are making other plans. I truly believe that things happen for you rather than to you to nudge you into growth. When something unexpected happens, ask yourself "What's the lesson here?"

3. Surrender to Your Situation
Surrendering doesn't mean giving in; it simply means you stop fighting the fact that the situation happened. Accept the fact that it occurred, that it sucks, and that yes, it probably was unfair and undeserved.

When you continually try to fight against a situation, it's like trying to swim against a rip current. You can fight it and end up exhausted and pulled out to sea, or you can accept that it is done, swim parallel to it and overcome it. You cannot change what has already occurred but you can change how you respond to it. This is the tipping point to taking your power back.
4. Understand That Your Coping Mechanisms May Be Holding You Hostage
It is natural to feel disbelief, anger and sadness, and to want to blame others for what you are going through. These coping mechanisms are designed to help you deal with the situation at hand. They are also a defense mechanism, a way to push back on the reality of the situation.

The problem is, when you get stuck defending, denying, and blaming, you form an endless loop of negative thoughts that won't stop spinning in your head. The part of your brain that is controlling the loop is your ego. When you learn to harness your ego, you can transform the way you think and move past these self-destructive thoughts.
5. Harness Your Ego
Your ego is part of your consciousness, and it competes with your higher self, or spirit, for control of your thoughts. Your ego is fear-based and your higher self is love-based. The two cannot coexist because the higher self simply does not recognize fear. Think of the ego as the darkness and the higher self as the light switch; once the light goes on darkness cannot exist.

The ego thrives on fear and separation in order to control your thoughts. It causes you to think you need to be better because you're not good enough or are lacking in some way. The egoic brain creates this fear of inferiority and you react by putting others down as a way to raise your sense of self-worth up.
You can recognize your ego at work when you are critical or judgmental of others, when you take on the role of victim, or when you blame others rather than looking inward. When you feel self-important, when you feel the need to be right, and when anger, jealousy, and self-importance take center stage, that's your ego, and it isn't helping you. It creates a false sense of self.
Once you are aware that your ego is talking, you have begun the process of winning the mind chatter war in your head. Your awareness helps you realize that you no longer have to react to the fear it is creating. Your thoughts are not you but are of the ego. Remember that your ego and your higher self cannot co-exist; When you recognize the ego it has to take a back seat to your higher self. You then can move above these thoughts and shift your perspective from negative thoughts to ones that serve you positively.
6. Create Calm and Gratitude
The ego loves for you to focus on your past, on what you lost. What if you shift the way you look at your situation and focus on what you gained as a result?

What did you learn as a result of the trial? Are you more compassionate, less judgmental? Is your house calmer or cleaner? Did you start taking better care of yourself emotionally or physically? Are you finally putting yourself first?
Focusing on what you are grateful for instead of what you lost is a mindset that creates a calmer, happier you. And that is something to be grateful for!
Tired of feeling like you'll never be happy again? Mary Holloway empowers women to reach down and find their inner warrior. Mary is a sought after speaker, resilience coach, and most importantly, a survivor of soul crushing life experiences. She is the founder of Resilience Café and the creator of the Boom Bounce Wow Resilience Method. Mary believes that every woman has an incredible warrior within her that can help her take back her life and emerge better, stronger, happier, and surprisingly thankful for the experience. She knows that women can choose not to be defined by their situation but rather by how they respond to it.
Follow Mary at ResilienceCafe.com...

View Article Here Read More

How Your Mind Affects Your Body

Excerpt from huffingtonpost.comWe are at last beginning to show that there is an intimate and dynamic relationship between what is going on with our feelings and thoughts and what happens in the body. A Time magazine special showed that happiness, h...

View Article Here Read More

13 Things Anyone Who Loves A Highly Sensitive Person Should Know

Excerpt from huffingtonpost.com When I was in kindergarten, a boy in my class tossed my favorite book over our elementary school fence. I remember crying profusely, not because I was sad to see it go, but because I was so furious that he was s...

View Article Here Read More

Best friends: 22 photos of babies meeting pets for the first time

From today.com  After a long week, there's nothing better than a healthy dose of cuteness.  Inspired by the sweet moment when TODAY anchor Savannah Guthrie's baby,...

View Article Here Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here Read More

This revolutionary discovery could help scientists see black holes for the first time


supermassive black hole
Artist's concept of the black hole.



Excerpt from finance.yahoo.com
Of all the bizarre quirks of nature, supermassive black holes are some of the most mysterious because they're completely invisible.
But that could soon change.
Black holes are deep wells in the fabric of space-time that eternally trap anything that dares too close, and supermassive black holes have the deepest wells of all. These hollows are generated by extremely dense objects thousands to billions of times more massive than our sun.
Not even light can escape black holes, which means they're invisible to any of the instruments astrophysicists currently use. Although they don't emit light, black holes will, under the right conditions, emit large amounts of gravitational waves — ripples in spacetime that propagate through the universe like ripples across a pond's surface.
And although no one has ever detected a gravitational wave, there are a handful of instruments around the world waiting to catch one.

Game-changing gravitational waves



.
black hole
This illustration shows two spiral galaxies - each with supermassive black holes at their center - as they are about to collide. 

Albert Einstein first predicted the existence of gravitational waves in 1916. According to his theory of general relativity, black holes will emit these waves when they accelerate to high speeds, which happens when two black holes encounter one another in the universe.  

As two galaxies collide, for example, the supermassive black holes at their centers will also collide. But first, they enter into a deadly cosmic dance where the smaller black hole spirals into the larger black hole, moving increasingly faster as it inches toward it's inevitable doom. As it accelerates, it emits gravitational waves.
Astrophysicists are out to observe these waves generated by two merging black holes with instruments like the Laser Interferometer Gravitational-Wave Observatory.
"The detection of gravitational waves would be a game changer for astronomers in the field," Clifford Will, a distinguished profess of physics at the University of Florida who studied under famed astrophysicist Kip Thorne told Business Insider. "We would be able to test aspects of general relativity that have not been tested."
Because these waves have never been detected, astrophysicists are still trying to figure out how to find them. To do this, they build computer simulations to predict what kinds of gravitational waves a black hole merger will produce. 

Learn by listening

In the simulation below, made by Steve Drasco at California Polytechnic State University (also known as Cal Poly), a black hole gets consumed by a supermassive black hole about 30,000 times as heavy.
You'll want to turn up the volume.
What you're seeing and hearing are two different things.
The black lines you're seeing are the orbits of the tiny black hole traced out as it falls into the supermassive black hole. What you're hearing are gravitational waves.
"The motion makes gravitational waves, and you are hearing the waves," Drasco wrote in a blog post describing his work.
Of course, there is no real sound in space, so if you somehow managed to encounter this rare cataclysmic event, you would not likely hear anything. However, what Drasco has done will help astrophysicists track down these illusive waves.

Just a little fine tuning 

Gravitational waves are similar to radio waves in that both have specific frequencies. On the radio, for example, the number corresponding to the station you're listening to represents the frequency at which that station transmits.


.
gwaves
3D visualization of gravitational waves produced by 2 orbiting black holes. Right now, astrophysicists only have an idea of what frequencies two merging black holes transmit because they’re rare and hard to find. In fact, the first ever detection of an event of this kind was only announced this month. 

Therefore, astrophysicists are basically toying with their instruments like you sometimes toy with your radio to find the right station, except they don’t know what station will give them the signal they’re looking for.
What Drasco has done in his simulation is estimate the frequency at which an event like this would produce and then see how that frequency changes, so astrophysicists have a better idea of how to fine tune their instruments to search for these waves.
Detecting gravitational waves would revolutionize the field of astronomy because it would give observers an entirely new way to see the universe. Armed with this new tool, they will be able to test general relativity in ways never before made possible.

View Article Here Read More

8 Myths About Emotions That Are Holding Us Back

Excerpt from huffingtonpost.comAs a society, we don't talk much about emotions. Conversations tend to focus more on what we're doing or what we're thinking. In fact, most people find it easier to start sentences with, "I think..." instead of "I feel...

View Article Here Read More

Guiding Our Search for Life on Other Earths


The James Webb Telescope


Excerpt from space.com

A telescope will soon allow astronomers to probe the atmosphere of Earthlike exoplanets for signs of life. To prepare, astronomer Lisa Kaltenegger and her team are modeling the atmospheric fingerprints for hundreds of potential alien worlds. Here's how:
The James Webb Space Telescope, set to launch in 2018, will usher a new era in our search for life beyond Earth. With its 6.5-meter mirror, the long-awaited successor to Hubble will be large enough to detect potential biosignatures in the atmosphere of Earthlike planets orbiting nearby stars.
And we may soon find a treasure-trove of such worlds. The forthcoming exoplanet hunter TESS (Transiting Exoplanet Survey Satellite), set to launch in 2017, will scout the entire sky for planetary systems close to ours. (The current Kepler mission focuses on more distant stars, between 600 and 3,000 light-years from Earth.) 

Astronomer Lisa Kaltenegger




While TESS will allow for the brief detection of new planets, the larger James Webb will follow up on select candidates and provide clues about their atmospheric composition. But the work will be difficult and require a lot of telescope time.
"We're expecting to find thousands of new planets with TESS, so we'll need to select our best targets for follow-up study with the Webb telescope," says Lisa Kaltenegger, an astronomer at Cornell University and co-investigator on the TESS team.
To prepare, Kaltenegger and her team at Cornell's Institute for Pale Blue Dots are building a database of atmospheric fingerprints for hundreds of potential alien worlds. The models will then be used as "ID cards" to guide the study of exoplanet atmospheres with the Webb and other future large telescopes.
Kaltenegger described her approach in a talk for the NASA Astrobiology Institute's Director Seminar Series last December.
"For the first time in human history, we have the technology to find and characterize other worlds," she says. "And there's a lot to learn."

Detecting life from space  

In its 1990 flyby of Earth, the Galileo spacecraft took a spectrum of sunlight filtered through our planet's atmosphere. In a 1993 paper in the journal Nature, astronomer Carl Sagan analyzed that data and found a large amount of oxygen together with methane — a telltale sign of life on Earth. These observations established a control experiment for the search of extraterrestrial life by modern spacecraft.
"The spectrum of a planet is like a chemical fingerprint," Kaltenegger says. "This gives us the key to explore alien worlds light years away."
Current telescopes have picked up the spectra of giant, Jupiter-like exoplanets. But the telescopes are not large enough to do so for smaller, Earth-like worlds. The James Webb telescope will be our first shot at studying the atmospheres of these potentially habitable worlds.
Some forthcoming ground-based telescopes — including the Giant Magellan Telescope (GMT), planned for completion in 2020, and the European Extremely Large Telescope (E-ELT), scheduled for first light in 2024 — may also be able to contribute to that task. [The Largest Telescopes on Earth: How They Compare]
And with the expected discovery by TESS of thousands of nearby exoplanets, the James Webb and other large telescopes will have plenty of potential targets to study. Another forthcoming planet hunter, the Planetary Transits and Oscillations of stars (PLATO), a planned European Space Agency mission scheduled for launch around 2022-2024, will contribute even more candidates.
However, observation time for follow-up studies will be costly and limited.
"It will take hundreds of hours of observation to see atmospheric signatures with the Webb telescope," Kaltenegger says. "So we'll have to pick our targets carefully."

Giant Magellan Telescope
Set to see its first light in 2021, The Giant Magellan Telescope will be the world’s largest telescope.

Getting a head start

To guide that process, Kaltenegger and her team are putting together a database of atmospheric fingerprints of potential alien worlds. "The models are tools that can teach us how to observe and help us prioritize targets," she says.
To start, they have modeled the chemical fingerprint of Earth over geological time. Our planet's atmosphere has evolved over time, with different life forms producing and consuming various gases. These models may give astronomers some insight into a planet's evolutionary stage.
Other models take into consideration the effects of a host of factors on the chemical signatures — including water, clouds, atmospheric thickness, geological cycles, brightness of the parent star, and even the presence of different extremophiles.
"It's important to do this wide range of modeling right now," Kaltenegger said, "so we're not too startled if we detect something unexpected. A wide parameter space can allow us to figure out if we might have a combination of these environments."
She added: "It can also help us refine our modeling as fast as possible, and decide if more measurements are needed while the telescope is still in space. It's basically a stepping-stone, so we don't have to wait until we get our first measurements to understand what we are seeing. Still, we'll likely find things we never thought about in the first place."
 

A new research center

The spectral database is one of the main projects undertaken at the Institute for Pale Blue Dots, a new interdisciplinary research center founded in 2014 by Kaltenegger. The official inauguration will be held on May 9, 2015.
"The crux of the institute is the characterization of rocky, Earth-like planets in the habitable zone of nearby stars," Kaltenergger said. "It's a very interdisciplinary effort with people from astronomy, geology, atmospheric modeling, and hopefully biology."
She added: "One of the goal is to better understand what makes a planet a life-friendly habitat, and how we can detect that from light years away. We're on the verge of discovering other pale blue dots. And with Sagan's legacy, Cornell University is a really great home for an institute like that."

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑