Tag: lead (page 3 of 24)

US Government Admits Americans Have Been Overdosed on Fluoride

Dr. MercolaThe US government has finally admitted they’ve overdosed Americans on fluoride and, for first time since 1962, are lowering its recommended level of fluoride in drinking water.1,2,3About 40 percent of American teens have dental fluorosis,4 a condition referring to changes in the appearance of tooth enamel—from chalky-looking lines and splotches to dark staining and pitting—caused by long-term ingestion of fluoride during the time teeth are forming.In some areas, fluoro [...]

View Article Here Read More

Hubble Finds Giant Halo Around the Andromeda Galaxy





 Excerpt from hubblesite.org

Scientists using NASA's Hubble Space Telescope have discovered that the immense halo of gas enveloping the Andromeda galaxy, our nearest massive galactic neighbor, is about six times larger and 1,000 times more massive than previously measured. The dark, nearly invisible halo stretches about a million light-years from its host galaxy, halfway to our own Milky Way galaxy. This finding promises to tell astronomers more about the evolution and structure of majestic giant spirals, one of the most common types of galaxies in the universe.

"Halos are the gaseous atmospheres of galaxies. The properties of these gaseous halos control the rate at which stars form in galaxies according to models of galaxy formation," explained the lead investigator, Nicolas Lehner of the University of Notre Dame, Indiana. The gargantuan halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself, in the form of a hot, diffuse gas. If it could be viewed with the naked eye, the halo would be 100 times the diameter of the full Moon in the sky. This is equivalent to the patch of sky covered by two basketballs held at arm's length.

The Andromeda galaxy, also known as M31, lies 2.5 million light-years away and looks like a faint spindle, about 6 times the diameter of the full Moon. It is considered a near-twin to the Milky Way galaxy.

Because the gas in Andromeda's halo is dark, the team looked at bright background objects through the gas and observed how the light changed. This is a bit like looking at a glowing light at the bottom of a pool at night. The ideal background "lights" for such a study are quasars, which are very distant bright cores of active galaxies powered by black holes. The team used 18 quasars residing far behind Andromeda to probe how material is distributed well beyond the visible disk of the galaxy. Their findings were published in the May 10, 2015, edition of The Astrophysical Journal.

Earlier research from Hubble's Cosmic Origins Spectrograph (COS)-Halos program studied 44 distant galaxies and found halos like Andromeda's, but never before has such a massive halo been seen in a neighboring galaxy. Because the previously studied galaxies were much farther away, they appeared much smaller on the sky. Only one quasar could be detected behind each faraway galaxy, providing only one light anchor point to map their halo size and structure. With its close proximity to Earth and its correspondingly large footprint on the sky, Andromeda provides a far more extensive sampling of a lot of background quasars.
"As the light from the quasars travels toward Hubble, the halo's gas will absorb some of that light and make the quasar appear a little darker in just a very small wavelength range," explains co-investigator J. Christopher Howk, also of Notre Dame. "By measuring the dip in brightness in that range, we can tell how much halo gas from M31 there is between us and that quasar."

The scientists used Hubble's unique capability to study the ultraviolet light from the quasars. Ultraviolet light is absorbed by Earth's atmosphere, which makes it difficult to observe with a ground-based telescope. The team drew from about 5 years' worth of observations stored in the Hubble data archive to conduct this research. Many previous Hubble campaigns have used quasars to study gas much farther away than — but in the general direction of — Andromeda, so a treasure trove of data already existed.

But where did the giant halo come from? Large-scale simulations of galaxies suggest that the halo formed at the same time as the rest of Andromeda. The team also determined that it is enriched in elements much heavier than hydrogen and helium, and the only way to get these heavy elements is from exploding stars called supernovae. The supernovae erupt in Andromeda's star-filled disk and violently blow these heavier elements far out into space. Over Andromeda's lifetime, nearly half of all the heavy elements made by its stars have been expelled far beyond the galaxy's 200,000-light-year-diameter stellar disk.

What does this mean for our own galaxy? Because we live inside the Milky Way, scientists cannot determine whether or not such an equally massive and extended halo exists around our galaxy. It's a case of not being able to see the forest for the trees. If the Milky Way does possess a similarly huge halo, the two galaxies' halos may be nearly touching already and quiescently merging long before the two massive galaxies collide. Hubble observations indicate that the Andromeda and Milky Way galaxies will merge to form a giant elliptical galaxy beginning about 4 billion years from now.

View Article Here Read More

The Class-Domination Theory of Power

by G. William DomhoffNOTE: WhoRulesAmerica.net is largely based on my book,Who Rules America?, first published in 1967 and now in its7th edition. This on-line document is presented as a summary of some of the main ideas in that book.Who has predominant power in the United States? The short answer, from 1776 to the present, is: Those who have the money -- or more specifically, who own income-producing land and businesses -- have the power. George Washington was one of the biggest landowner [...]

View Article Here Read More

Astronomers Giddy Over What They Call A Cosmic ‘Dinosaur Egg’ About To Hatch



cosmic dinosaur egg
The Antennae galaxies, shown in visible light in a Hubble image (upper image), were studied with ALMA, revealing extensive clouds of molecular gas (center right image). One cloud (bottom image) is incredibly dense and massive, yet apparently star free, suggesting it is the first example of a prenatal globular cluster ever identified.


Excerpt from huffingtonpost.com

A dense cloud of gas 50 million light-years away has astronomers buzzing, and they're using all sorts of strange metaphors to get the rest of us to pay attention.

They've discovered what they think may be a globular cluster -- a big ball of up to one million stars -- on the verge of being born.

“This remarkable object looks like it was plucked straight out of the very early universe," Dr. Kelsey Johnson, an astronomer at the University of Virginia in Charlottesville and lead author on a paper about the research, said in a written statement. "To discover something that has all the characteristics of a globular cluster, yet has not begun making stars, is like finding a dinosaur egg that’s about to hatch.”

cosmic egg
ALMA image of dense cores of molecular gas in the Antennae galaxies. The round yellow object near the center may be the first prenatal example of a globular cluster ever identified. It is surrounded by a giant molecular cloud.


Johnson and her colleagues spotted the bizarre object, which they call the "Firecracker," using the Atacama Large Millimeter/submillimeter Array (ALMA) in the Atacama desert in Chile. It's located inside a pair of interacting galaxies known to scientists as NGC 4038/NGC 4039, or The Antennae Galaxies.

The Firecracker has a mass that's 50 times that of our sun, and is under an enormous amount of pressure -- roughly 10,000 times greater than the average pressure in interstellar space. According to the researchers, this makes it a good candidate for collapsing into a globular cluster within the next million years.

What do other scientists make of the discovery? Dr. Alison Peck, ALMA scientist at the National Radio Astronomy Observatory, who was not involved in the new research, called it "important" and said she was "really excited to hear about these results."
She told The Huffington Post in an email:
"One of the things that we all yearn to understand is how our surroundings formed, how our galaxy and our solar system came to be. To do this, since we can’t actually watch things change over time, (it just takes too long), we need to find similar objects at different stages of development and compare them. What Dr. Johnson’s team have found here is an analog of an object that we look for in the very early universe, but they’ve found it so close by that we’ll be able to make extremely detailed observations and find out much more about the physical conditions in this exciting region."
The research is set to be published in the Astrophysical Journal. 

View Article Here Read More

Mercury’s Mysterious Magnetic Past Goes Back 4 Billion Years

 Excerpt from sci-tech-today.com Examining rocks on Mercury's surface, scientists using data from NASA's Messenger spacecraft have revealed that the planet probably had a much stronger magnetic field nearly 4 billion years ago.  The fi...

View Article Here Read More

What astronomers learned when Messenger space probe crashed into Mercury



Excerpt from statecolumn.com


On April 30, NASA concluded an historic voyage known as the Mercury Surface, Space Environment, Geochemistry and Ranging mission. The mission came to an end when the spacecraft carrying analytical instruments, Messenger, crashed into the planet’s surface after consuming all of its fuel.
The mission was far from a waste, however, as NASA rarely expects to see the majority of the spacecraft they launch ever again. According to Discovery, The probe sent back a spectacular photo of the surface of Mercury, using the craft’s Narrow Angle Camera in tandem with the Mercury Dual Imaging System. The photo shows a mile-wide view of the nearby planet’s surface in 2.1 meters per pixel resolution.
Right after the probe delivered the photo to NASA’s Deep Space Network, which is a collection of global radio antennae that tracks data on the agency’s robotic missions around the solar system, the signal was lost in what scientists assume was the craft’s final contact with the closest planet to the sun.
The four-year mission came to an end when the craft could no longer maintain its orbit around the solar system’s innermost planet due to lack of fuel. Mercury is just 36 miles from the sun, compared to Earth, which is 93 million miles away from the center of the solar system. Mercury is a peculiar world, with both frigid and extremely hot temperatures. Messenger also revealed that Mercury has a magnetic field similar to that of Earth’s, created by the motion of metallic fluids within the planet’s core.
The main challenge the Messenger mission faced was getting the space probe into orbit around Mercury. Due to the planet’s proximity to the sun, it was extremely difficult for flight engineers to avoid its gravitational pull. In addition to the challenge of catching Mercury’s comparatively weak gravitational force, high temperatures also made things tricky. Messenger was equipped with a sunshield designed to protect the spaceship cool on the side that faced the sun. NASA engineers also attempted to chart a long, elliptical orbit around Mercury, giving Messenger time to cool off as it rounded the backside of the planet.
Messenger made over 4,000 orbits around Mercury between 2011 and 2015, many more than the originally planned one-year mission would allow.
With the close-up shots of Mercury’s surface provided by Messenger, NASA scientists were able to detect trace signals of magnetic activity in Mercury’s crust. Using clues from the number of impact craters on the surface, scientists figured that Mercury’s magnetized regions could be as old as 3.7 billion years. Astronomers count the craters on a planet in order to estimate its age – the logic being that younger surfaces should have fewer impact sites than older surfaces.
The data sent back by Messenger has caused astronomers to reconsider their understanding of Mercury’s magnetic history. They now date the beginning of magnetism on Mercury to about 700 million years after the planet was formed. They cannot say for sure, however, if the magnetic field has been consistently active over this timeframe.
According to Messenger guest investigator Catherine Johnson, geophysicist at the University of British Columbia in Vancouver, that it was possible the magnetic field has been active under constant conditions, though she suspects it might also oscillate over time, like Earth’s. Information for the time period between 4 billion years ago and present day is sparse, though Johnson added that additional research is in the pipeline.
Johnson was pleased, however, with the insight offered into Mercury’s formation provided by these new magnetic clues. Magnetism on a planetary scale typically indicates a liquid metal interior. Since Mercury is so tiny, scientists originally believed that its center would be solid, due to the rate of cooling. The presence of liquid in the planet’s center suggests other materials’ presence, which would lower the freezing point. This suggests that a totally solid core would be unlikely.
Mercury’s magnetic field offers valuable insight into the formation of the planet, the solar system, and even the universe. Magnetism on Mercury indicates that it has a liquid iron core, according to Messenger lead scientist Sean Solomon of Columbia University.

View Article Here Read More

See Saturn moon’s ‘soda ocean’ shooting to surface in sheets

 Excerpt from  cnet.comEnceladus may have a warm ocean beneath its icy surface, but it may also be shooting through that crust in big sheets, perhaps filled with sea monkeys.       We already know that Saturn's ...

View Article Here Read More

A super-hot super-Earth spotted 40 light-years away

An artist's depiction of the exoplanet 55 Cancri E with its molten surface exposed on the left, and covered in gas and ash on the right. (NASA/JPL - Caltech/R.Hurt)Excerpt from latimes.comScientists have found an extreme planet where the atmospheric ...

View Article Here Read More

Mysterious Glow Detected At Center Of Milky Way Galaxy

In this image, the magenta color indicates the mysterious glow detected by NASA's NuSTAR space telescope.Excerpt from huffingtonpost.com A mysterious glow has been observed at the center of the Milky Way, and scientists are struggling to figure o...

View Article Here Read More

High School students spots relic of ancient sun with super wide orbit



Pulsars are types of neutron stars; the dead relics of massive stars. What sets pulsars apart from regular neutron stars is that they’re highly magnetized, and rotating at enormous speeds.

Excerpt from uncovercalifornia.com

A Pulsar with the widest orbit around a neutron star has been discovered by a team of high school students and the discovery has been confirmed by astronomers. High School students from many states who participated in NSF-funded educational outreach program have found the pulsar after analyzing data from Robert C. Byrd Green Bank Telescope (GBT).

In a research paper accepted by the Astrophysical Journal, lead author Joe Swiggum, a graduate student in physics and astronomy at West Virginia University in Morgantown, said, “Pulsars are some of the most extreme objects in the universe. The students' discovery shows one of these objects in a really unique set of circumstances.”

The object has been codenamed PSR J1930-1852 by astronomers. It was discovered in 2012 by Cecilia McGough from Strasburg High School in Virginia and De'Shang Ray from Paul Laurence Dunbar High School in Baltimore, Maryland.

The discovery of a pulsar with extra wide orbit could help in understanding the concepts behind binary neutron star systems. Nearly 10 percent of known pulsars are in binary systems with most of them orbiting white dwarf companion stars. The Pulsar has been found with the widest separation from the other star in the binary neutron system.

During Pulsar Search Collaboratory (PSC) workshop in summer, students who are interested in analyzing survey data collected by Green Bank Telescope (GBT), spend weeks in checking data plots and searching for unique signatures of pulsars.

The Pulsar Search Collaboratory is a joint venture between the National Radio Astronomy Observatory and West Virginia University which offers real research opportunity to students.

View Article Here Read More

Could Google’s Project Fi be cable’s answer to wireless?

 Excerpt from cnet.com Google's Project Fi wireless service has the potential to turn the mobile industry on its head. But not in the way you might expect. Last week, Google announce...

View Article Here Read More

6 Natural Solutions To Decontaminate Soil

Marco Torres, Prevent DiseaseWith a progressively educated population becoming more aware of the inherent dangers of the conventional food supply, urban farming has become hugely popular. However, more people are also becoming aware of contaminated soil and how heavy metals pose potential risks to their food crops. As backyard gardening continues to explode in popularity, we must ask how contaminated is our soil?Many municipalities in many countries are embracing urban agri [...]

View Article Here Read More

‘Hats Off’ To HATS-6b: Discovery of ‘puffy’ new planet brings scientists closer to finding new life in outer space

An artist's impression of the planet HATS-6b, orbiting the star, HATS-6. (Supplied: ANU) Excerpt from abc.net.au A "puffy" new planet orbiting a small, cool star has been discovered 500 light years away from Earth, by a team of scientists c...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑