Tag: late (page 4 of 17)

Incredible 50-ft dinosaur unearthed by Chinese farmers

This illustration shows what the newly discovered long-necked dinosaur may have looked like.Excerpt from cnn.com Paleontologists have discovered a 50-ft "dragon" dinosaur species in China that may have roamed the earth 160 million years ago in t...

View Article Here Read More

Google Chairman Eric Schmidt: "The Internet Will Disappear"


 


Excerpt from hollywoodreporter.com

Google executive chairman Eric Schmidt on Thursday predicted the end of the Internet as we know it.

At the end of a panel at the World Economic Forum in Davos, Switzerland, where his comments were webcast, he was asked for his prediction on the future of the web. “I will answer very simply that the Internet will disappear,” Schmidt said.

“There will be so many IP addresses…so many devices, sensors, things that you are wearing, things that you are interacting with that you won’t even sense it,” he explained. “It will be part of your presence all the time. Imagine you walk into a room, and the room is dynamic. And with your permission and all of that, you are interacting with the things going on in the room.”

Concluded Schmidt: “A highly personalized, highly interactive and very, very interesting world emerges.”

The panel, entitled The Future of the Digital Economy, also featured Facebook COO Sheryl Sandberg and others.
Earlier in the debate, Schmidt discussed the issue of market dominance. The European Union has been looking at Google’s search market dominance in a long-running antitrust case, and the European parliament late last year even called for a breakup.
“You now see so many strong tech platforms coming, and you are seeing a reordering and a future reordering of dominance or leaders or whatever term you want to use because of the rise of the apps on the smartphone,” Schmidt said Thursday. “All bets are off at this point as to what the smartphone app infrastructure is going to look like” as a “whole new set” of players emerges to power smartphones, which are nothing but super-computers, the Google chairman argued. “I view that as a completely open market at this point.”

Asked about his recent trip to North Korea, Schmidt said the country has many Internet connections through data phones, but there is no roaming and web usage is “heavily supervised.” Schmidt said “it’s very much surveillance of use,” which he said was not good for the country and others.

Sandberg and Schmidt lauded the Internet as an important way to give more people in the world a voice. Currently, only 40 percent of people have Internet access, the Facebook COO said, adding that any growth in reach helps extend people’s voice and increase economic opportunity. “I’m a huge optimist,” she said about her outlook for the industry. “Imagine what we can do” once the world gets to 50 percent, 60 percent and more in terms of Internet penetration.
She cited women as being among the beneficiaries, saying the Internet narrows divides.

Schmidt similarly said that broadband can address governance issues, information needs, personal issues, women empowerment needs and education issues. “The Internet is the greatest empowerment of citizens … in many years,” he said. “Suddenly citizens have a voice, they can be heard.”
During another technology panel at the World Economic Forum on Thursday, Yahoo CEO Marissa Mayer, Liberty Global CEO Mike Fries and others answered questions on the need to regulate privacy standards on the Internet and for tech companies following the Snowden case, the Sony hack and the like.


Mayer said that the personalized Internet “is a better Internet,” emphasizing: “We don’t sell your personal data … We don’t transfer your personal data to third parties.” She said users own their data and need to have control, adding that people give up data to the government for tax assessment, social services and other purposes.
Fries said Liberty Global subscribers view billions of hours of content and generate billions of clicks, but added that “today we do nothing.” He explained: “We generate zero revenue from all of that information.” But he acknowledged that big data was big business for a lot of people.

Both executives said transparency was important to make sure users know privacy standards and the like.

Gunther Oettinger, a conservative German politician serving as the European Union’s commissioner for digital economy and society, said on the panel that “we need a convincing global understanding, we need a UN agency for data protection and security.” Asked what form that “understanding” should have, he said he was looking for “clear, pragmatic, market-based regulation.” Explained Oettinger: “It’s a public-private partnership.”

Fries said such a solution was likely not to happen in the near term, given the size of the EU. “I think it is going to take several years,” he said, adding that some countries’ parliaments would likely take a stab at it.

But he warned that a joint solution would make more sense. “We don’t want Germany to have its own Internet,” Fries said. “Some countries may build their own Internets” and “balkanize” the web, he warned.

Mayer said on the issue of regulation: “I like Tim’s idea better of the beneficent marketplace.” She spoke of fellow panelist and computer specialist Tim Berners-Lee, known as the inventor of the World Wide Web.

Asked how Yahoo stores and handles client records, she said the online giant “changed the way we store and communicate data” after Snowden and also changed encryptions between data centers. And the company protects users through encryption methods, she added. Mayer said that trust and confidence of Yahoo users has rebounded since.

Mayer was also asked what happens if a government asks for a user’s data, a question that has new significance after the recent terrorist attacks in Paris, which have led some to call for increased surveillance powers of the Internet for governments. Mayer said Yahoo always assesses if such a request is reasonable. “We have a very good track record for standing up to what’s not reasonable,” she said.

View Article Here Read More

Banned TED Talk: The Science Delusion ~ Is science way off about the nature of our reality?



The following statement has been posted by Tedstaff at blog.ted.com: "After due diligence, including a survey of published scientific research and recommendations from our Science Board and our community, we have decided that Graham Hancock’s and Rupert Sheldrake’s talks from TEDxWhitechapel should be removed from distribution on the TEDx YouTube channel... All talks on the TEDxTalks channel represent the opinion of the speaker, not of TED or TEDx, but we feel a responsibility not to provide a platform for talks which appear to have crossed the line into pseudoscience.

Response to the TED Scientific Board’s Statement
Rupert Sheldrake
March 18, 2013

I would like to respond to TED’s claims that my TEDx talk “crossed the line into pseudoscience”, contains ”serious factual errors” and makes “many misleading statements.”
This discussion is taking place because the militant atheist bloggers Jerry Coyne and P.Z. Myers denounced me, and attacked TED for giving my talk a platform. I was invited to give my talk as part of a TEDx event in Whitechapel, London, called “Challenging Existing Paradigms.” That’s where the problem lies: my talk explicitly challenges the materialist belief system. It summarized some of the main themes of my recent book Science Set Free (in the UK called The Science Delusion). Unfortunately, the TED administrators have publically aligned themselves with the old paradigm of materialism, which has dominated science since the late nineteenth century.
TED say they removed my talk from their website on the advice of their Scientific Board, who also condemned Graham Hancock’s talk. Hancock and I are now facing anonymous accusations made by a body on whose authority TED relies, on whose advice they act, and behind whom they shelter, but whose names they have not revealed.
TED’s anonymous Scientific Board made three specific accusations:
Accusation 1:“he suggests that scientists reject the notion that animals have consciousness, despite the fact that it’s generally accepted that animals have some form of consciousness, and there’s much research and literature exploring the idea.”
I characterized the materialist dogma as follows: “Matter is unconscious: the whole universe is made up of unconscious matter. There’s no consciousness in stars in galaxies, in planets, in animals, in plants and there ought not to be any in us either, if this theory’s true. So a lot of the philosophy of mind over the last 100 years has been trying to prove that we are not really conscious at all.” Certainly some biologists, including myself, accept that animals are conscious. In August, 2012, a group of scientists came out with an endorsement of animal consciousness in “The Cambridge Declaration on Consciousness”. As Discovery News reported, “While it might not sound like much for scientists to declare that many nonhuman animals possess conscious states, it’s the open acknowledgement that’s the big news here.” (http://news.discovery.com/human/genetics/animals-consciousness-mammals-birds-octopus-120824.htm)
But materialist philosophers and scientists are still in the majority, and they argue that consciousness does nothing – it is either an illusion or an ”epiphenomenon” of brain activity. It might as well not exist in animals – or even in humans. That is why in the philosophy of mind, the very existence of consciousness is often called “the hard problem”.http://en.wikipedia.org/wiki/Hard_problem_of_consciousness
Accusation 2:“He also argues that scientists have ignored variations in the measurements of natural constants, using as his primary example the dogmatic assumption that a constant must be constant and uses the speed of light as example.… Physicist Sean Carroll wrote a careful rebuttal of this point.”
TED’s Scientific Board refers to a Scientific American article that makes my point very clearly: “Physicists routinely assume that quantities such as the speed of light are constant.”
In my talk I said that the published values of the speed of light dropped by about 20 km/sec between 1928 and 1945. Carroll’s “careful rebuttal” consisted of a table copied from Wikipedia showing the speed of light at different dates, with a gap between 1926 and 1950, omitting the very period I referred to. His other reference (http://micro.magnet.fsu.edu/primer/lightandcolor/speedoflight.html) does indeed give two values for the speed of light in this period, in 1928 and 1932-35, and sure enough, they were 20 and 24km/sec lower than the previous value, and 14 and 18 km/sec lower than the value from 1947 onwards.
1926: 299,798
1928: 299,778
1932-5: 299,774
1947: 299,792

In my talk I suggest how a re-examination of existing data could resolve whether large continuing variations in the Universal Gravitational Constant, G, are merely errors, as usually assumed, or whether they show correlations between different labs that might have important scientific implications hitherto ignored. Jerry Coyne and TED’s Scientific Board regard this as an exercise in pseudoscience. I think their attitude reveals a remarkable lack of curiosity.
Accusation 3:“Sheldrake claims to have “evidence” of morphic resonance in crystal formation and rat behavior. The research has never appeared in a peer-reviewed journal, despite attempts by other scientists eager to replicate the work.”
I said, “There is in fact good evidence that new compounds get easier to crystallize all around the world.” For example, turanose, a kind of sugar, was considered to be a liquid for decades, until it first crystallized in the 1920s. Thereafter it formed crystals everyehere. (Woodard and McCrone Journal of Applied Crystallography (1975). 8, 342). The American chemist C. P. Saylor, remarked it was as though “the seeds of crystallization, as dust, were carried upon the winds from end to end of the earth” (quoted by Woodard and McCrone).
The research on rat behavior I referred to was carried out at Harvard and the Universities of Melbourne and Edinburgh and was published in peer-reviewed journals, including the British Journal of Psychology and the Journal of Experimental Biology. For a fuller account and detailed references see Chapter 11 of my book Morphic Resonance (in the US) / A New Science of Life (in the UK). The relevant passage is online here: http://sciencesetfree.tumblr.com/
The TED Scientific Board refers to ”attempts by other scientists eager to replicate the work” on morphic resonance. I would be happy to work with these eager scientists if the Scientific Board can reveal who they are.
This is a good opportunity to correct an oversimplification in my talk. In relation to the dogma that mechanistic medicine is the only kind that really works, I said, “that’s why governments only fund mechanistic medicine and ignore complementary and alternative therapies.” This is true of most governments, but the US is a notable exception. The US National Center for Complementary and Alternative Medicine receives about $130 million a year, about 0.4% of the National Institutes of Health (NIH) total annual budget of $31 billion.
Obviously I could not spell out all the details of my arguments in an 18-minute talk, but TED’s claims that it contains “serious factual errors,” “many misleading statements” and that it crosses the line into “pseudoscience” are defamatory and false.

Click to zoom

View Article Here Read More

Using X-rays, scientists read 2,000 year old scrolls charred by Mount Vesuvius


Mount Vesuvius today



By Amina Khan 
Excerpt from latimes.com

Talk about reading between the lines! Scientists wielding X-rays say they can, for the first time, read words inside the charred, rolled-up scrolls that survived the catastrophic eruption of Mt. Vesuvius nearly two millenniums ago.
Testing the scroll
Researchers Daniel Delattre, left, and Emmanuel Brun observe the scroll before X-ray phase contrast imaging begins. (J. Delattre)
The findings, described in the journal Nature Communications, give hope to researchers who have until now been unable to read these delicate scrolls without serious risk of destroying them.
The scrolls come from a library in Herculaneum, one of several Roman towns that, along with Pompeii, was destroyed when Mt. Vesuvius erupted in AD 79. This library, a small room in a large villa, held hundreds of handwritten papyrus scrolls that had been carbonized from a furnace-like blast of 608-degree-Fahrenheit gas produced by the volcano.

“This rich book collection, consisting principally of Epicurean philosophical texts, is a unique cultural treasure, as it is the only ancient library to survive together with its books,” the study authors wrote. “The texts preserved in these papyri, now mainly stored in the Officina dei Papiri in the National Library of Naples, had been unknown to scholars before the discovery of the Herculaneum library, since they had not been copied and recopied in late Antiquity, the middle ages and Renaissance.”
So researchers have tried every which way to read these rare and valuable scrolls, which could open a singular window into a lost literary past. The problem is, these scrolls are so delicate that it’s nearly impossible to unroll them without harming them. That hasn’t kept other researchers from trying, however – sometimes successfully, and sometimes not.

“Different opening techniques, all less effective, have been tried over the years until the so-called ‘Oslo method’ was applied in the 1980s on two Herculaneum scrolls now in Paris with problematic results, since the method required the rolls to be picked apart into small pieces,” the study authors wrote. (Yikes.)

Any further attempts to physically open these scrolls were called off since then, they said, “because an excessive percentage of these ancient texts was irretrievably lost by the application of such methods.”
This is where a technique like X-ray computed tomography, which could penetrate the rolled scrolls, would come in handy. The problem is, the ancient writers used ink made of carbon pulled from smoke residue. And because the papyrus had been carbonized from the blazing heat, both paper and ink are made of roughly the same stuff. Because the soot-based ink and baked paper have about the same density, until now it’s been practically impossible to tell ink and paper apart.

But a team led by Vito Mocella of the Institute for Microelectronics and Microsystems in Naples, Italy, realized they could use a different technique called X-ray phase-contrast tomography. Unlike the standard X-ray CT scans, X-ray phase-contrast tomography examines phase shifts in the X-ray light as it passes through different structures.
Using the technique, the scientists were able to make out a few words and letters from two scrolls, one of them still rolled.

Reading these scrolls is difficult; computer reconstructions of the rolled scroll reveal that the blast of volcanic material so damaged its once-perfect whorls that its cross section looks like a half-melted tree-ring pattern. The paper inside has been thoroughly warped, and some of the letters on the paper probably distorted almost beyond recognition.
Nonetheless, the researchers were able to read a number of words and letters, which were about 2 to 3 millimeters in size. On an unrolled fragment of a scroll called “PHerc.Paris. 1,” they were able to make up the words for “would fall” and “would say.” In the twisted, distorted layers of the rolled-up papyrus called “PHerc.Paris. 4,” they could pick out individual letters: alpha, nu, eta, epsilon and others.

The letters in “PHerc.Paris. 4” are also written in a distinctive style with certain decorative flourishes that seemed very similar to a scroll called “PHerc. 1471,” which holds a text written by the Epicurean philosopher Philodemus. The researchers think they were written in the second quarter of the first century BC.


Ultimately, the researchers wrote, this work was a proofof concept to give other researchers a safe and reliable way to explore ancient philosophical works that were until now off-limits to them.

View Article Here Read More

Magicians of the Gods: Snapshots of a Work in Progress ~ Graham Hancock


Mohenjo Daro, located in Pakistan 


In late 2015 Graham Hancock will bring out his new book, ‘Magicians of the Gods’, the sequel to his worldwide bestseller ‘Fingerprints of the Gods’. In this lecture, recorded in March 2014 for Alternatives London at Saint James’s Church in Piccadilly, he reviews his past work and shares some of the research for the new book.

Click to zoom

View Article Here Read More

CIA: All Those 1950s UFO Sightings? ‘It Was Us’

Excerpt from usatoday.comMaybe it was a bird. Maybe it was a plane.But it was probably not a UFO.The Central Intelligence Agency had some fun Monday tweeting out its most popular stories of the year.No. 1? "Reports of unusual activity in the skies in t...

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

How to Watch Tonight’s Explosive Geminids Meteor Shower


How to Watch This Week's Big Ass Perseid Meteor Shower


pcmag.com


Thank you, tiny space rocks. Because of you, the entire population of planet Earth will be treated to one of 2014's most spectacular celestial displays. The Geminids meteor shower is the most active of the annual meteor showers—by a long shot—and it's just about to peak.

Tonight, the shower might produce as many as 120 meteors per hour (though back in 2011, the Geminids hit a peak rate of 198 meteors per hour). Compare this count to the second most abundant shower, the Perseids, which take place in late August and top out at around 60 meteors per hour.

Fireball
The annual December display is largely due to asteroid 3200 Phaethon, a three-mile wide chunk of rock that crosses the paths of all the inner rocky planets and travels closer to the sun than any other named asteroid. As ol' 3200 heats up close to the sun during its 1.5-year orbit, it expels materials and forms a trail much like a comet (indeed, it is sometimes referred to as a "rock comet"). But that's not the full story. Recent observations have shown that 3200 mostly expels dust as it is baked by the sun. And while this periodic "dusting" does help replenish the debris field, it's not enough material to account for all the Geminids' activity.

View Article Here Read More

Where does water actually come from? Comet evidence opening floodgates of mystery





Excerpt from slate.com

WE CALL Earth a water world, and that’s pretty fair: Our planet’s surface is 70 per cent covered in it, it makes up a percentage of our air, and there’s even a substantial amount of it mixed in to the planet’s mantle, deep underground. 

But where the heck did it come from?

This is no idle question. We have a lot of water here, and it must have come from somewhere. There are two obvious source — it formed here along with the Earth, or it was brought to Earth from space. Which is the dominant source has been a topic of long and heated debate among astronomers.

The first big science results have just been announced by the European science team working with the Rosetta probe, and, in my opinion, they throw more gasoline on the fire. Measurements made by the probe show that comets like 67P/Churyumov — Gerasimenko — the one Rosetta is orbiting — couldn’t have been the source of our water.

But that hardly helps answer the underlying question! Why not? Ah, the details …

When the Earth formed 4.55 billion years ago (give or take), there was a lot of water in the disk of material swirling around the Sun. Close in to the Sun, where it was warm, that water was a gas, and farther out it formed ice. We see that latter part echoed down through time now in the form of icy moons around the outer planets.

You’d expect water collected on Earth along with everything else (metals, silicates, and so on). When the Earth cooled, a lot of that water bubbled up from the interior or was outgassed by volcanism.

Where does water come from?
Where does water come from? Source: Getty Images
But we have another big source, too: comets. These are dirty snowballs, rock and dust held together by water frozen as ice. They formed farther out in the solar system, where ice was more plentiful. Long ago, just a few hundred million years after Earth formed and started to cool, there was a tremendous flood of comets sent down into the inner solar system, disturbed by the gravitational dance of the outer planets as they slowly settled down into their orbits. This Late Heavy Bombardment, as it’s called, could have supplied all of Earth’s water.

How to tell? Well, it turns out that in this one case, hipsters are right: Locally sourced is measurably different than stuff trucked in.
Water is made up of one oxygen atom and two hydrogen atoms. Hydrogen atoms, it so happens, come in two flavours: The normal kind that has single proton in its nucleus, and a heavier kind called deuterium that has a proton and a neutron (there’s also tritium, with two neutrons, but that’s exceedingly rare). Deuterium is far more rare than the normal kind of hydrogen, but how rare depends on what you look at. The ratio of deuterium to hydrogen in Earth’s water can be different than, say, water in comets, or on Mars.
Note I said, “can be”. We know the ratio differs across the solar system. But suppose we find the same ratio in comets as we do on Earth. That would be powerful evidence that water here began out there. Astronomers have looked at a lot of comets trying to pin down the ratio, and what they’ve found is maddening: Some comets have a ratio very different from Earth’s, and only one (103P/Hartley 2) has a ratio similar to ours.

Jets of material — including water — emanate from comet 67P/Churyumov — Gerasimenko.
Jets of material — including water — emanate from comet 67P/Churyumov — Gerasimenko. Source: AP
Now that’s interesting: 103/P is a Jupiter-family comet, meaning it used to orbit the Sun far out, but dropped into the inner solar system, got its orbit modified by Jupiter, and now has a much shorter path that keeps it in the inner solar system.
Rosetta’s comet, 67/P, is also a Jupiter-family comet. You’d expect them to have roughly similar deuterium/hydrogen ratios.

They don’t. 67/P, according to Rosetta, has three times the deuterium per hydrogen atom as Earth (and 103/P).
What does that mean? It’s not clear, which is why this is maddening. It could be simply that not all Jupiter-family comets have the same ratio; they may all have different origins (born scattered across the solar system, so with different D/H ratios), but now belong to the same family. Or it could mean that 67/P is an oddball, with a much higher ratio than most other comets like it. That would seem unlikely, though, since we’ve studied so few you wouldn’t expect an oddball to be found so easily.

Making things more complicated, some asteroids in the main belt between Mars and Jupiter have water on them, and it appears to have an Earth-like D/H ratio. But we think they have so little water that it would take a lot more of them impacting the early Earth to give us our water than it would comets. That’s possible, but we know lots of comets hit us back then, so it’s still weird that the D/H ratios don’t seem to work out. Still, it’s nice that there could be another potential source to study, and this new Rosetta result does lend credence to the idea that asteroids did the wet work.

So what do comets have to do with it?
So what do comets have to do with it? Source: Getty Images
So if you ask where Earth’s water come from, the answer is: We still don’t know...

View Article Here Read More

SpaceX Will Try to Land Rocket on Floating Ocean Platform

 Excerpt from space.com  SpaceX will apparently attempt something truly epic during next week's cargo launch to the International Space Station. During the Dec. 16 launch from Florida's Cape Canaveral Air Force Station, which will send ...

View Article Here Read More

Very mysterious ancient artifacts unearthed at the Sha’ar Hagolan archeological site ~ Greg Giles

Clay, Neolithic period, Late 7th Millennium B.C.E., From Israel (excavated at Sha'ar Hagolan) On loan from the Israeli Antiquities Authority to the Metropolitan Museum of Art, New York.
Clay, Neolithic period, Late 7th Millennium B.C.E., From Israel (excavated at Sha'ar Hagolan). On loan from the Israeli Antiquities Authority to the Metropolitan Museum of Art, New York.


The Yarmukian culture was a Neolithic culture, the first culture in prehistoric Israel, dating to circa 6400–6000 BC. The archeological site was first discovered in the 1930's, but excavation did not begin until 1949 by a team from the Hebrew University of Jerusalem, led by Moshe Stekelis.  The site was again excavated in 1989–90, 1996–2004), by another team from the same University and led by Yosef Garfinkel . The dig's official website can be found here.  

A large number of extraordinary figurines have been unearthed at this Neolithic site, artifacts that continue to puzzle modern day researchers.  



The official perspective concerning these pieces is that they are 'highly stylized' pieces of art, and may be symbolic of fertility. I will allow you to form your own opinions about these artifacts, but I will say that I feel it is at least possible these pieces are not 'highly stylized'  pieces of art, instead, as remarkable as it may seem, these figurines may have been crafted to depict just what the artists were looking at while they molded clay between their fingers. 
Greg Giles  




 
This is a figurine head, broken off from the rest of the piece.

 
Below is a figurine of what looks very much like a terrier breed of dog. Note this piece does not appear to be stylized at all, but an accurate representation of the popular breed. 

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

Rosetta Mission: European Space Agency Scientists Worry Philae Probe Is Running Out of Battery Power


Philae lander harpooned into comet

Excerpt from online.wsj.com

By Gautam Naik & Robert Wall

Situation Could Mean Early End for Important Experiments on Comet 


Scientists at the European Space Agency fear that the Philae probe now sitting on a comet’s surface may be on the verge of running out of battery power, a scenario that could bring key scientific experiments to a premature end.

The researchers will only know whether the primary batteries have drained or not late Friday, when they try to re-establish a radio link to the probe via Rosetta, a spacecraft in orbit around the comet. The probe and Rosetta can typically communicate twice a day because at other times the orbiter is below the horizon and can’t establish a direct signal.

Scientists are hoping to get contact around 10 p.m. German time, said Stephan Ulamec, who oversees operation for the lander. But if Philae fails to send a signal, he added, it would mean the battery had run out of juice.

The plan was for Philae to do scientific experiments for an initial 2 ½ days on primary battery power and then switch to solar panels that would keep it ticking for another three months. But because of an awkward landing near the face of cliff, the probe’s solar panels are being exposed to far less sunlight than was expected.

Despite the hitch, Philae has already done a significant amount of science on its new home. Its 10 instruments have so far garnered between 80%-90% of the data they were designed to collect, according to Dr. Ulamec.

It has beamed back detailed photographs of the comet’s rough terrain, analyzed the gases, and taken the comet’s temperature. It is now using radio waves to probe the comet’s nucleus and searching for organic molecules on the hostile surface.

Anticipating a possible loss of battery power, ESA scientists activated a drill during their last contact with the lander. The machine is designed to dig up the comet’s subsurface material and rotate it through an onboard oven to investigate its components. 

There may still be a way to extend Philae’s working life. During every 12-hour rotation of the comet, one of the lander’s solar panels is now exposed to an hour and 20 minutes of sunlight, while two other panels get the sun for less than 30 minutes each. 

Provided the signal to Philae can be re-established, scientists said they could rotate the lander slightly so that one of its larger solar panels can catch more sunlight. Another option is to eject the probe from its current location in the hope it lands in a spot where there is more sun.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑