Tag: largest (page 2 of 7)

Say NO to Tiny Houses and Big Bullsh… ~ Greg Giles

Living the 'New' American DreamIn the days and on into the years ahead, you will not be able to get through a day without being subjected to an array of media articles, television shows, and all types of advertising for tiny houses, an alleged organi...

View Article Here Read More

The sun unleashes its biggest flare of the year




Excerpt from dailytimes.com.pk

The sun has unleashed its most powerful flare of the year causing radio blackouts throughout the Pacific region.

The enormous X-class solar flare peaked at 6:11pm ET yesterday from a sunspot called Active Region 2339 (AR2339).

Solar flares are powerful bursts of radiation that, when intense enough, can disturb the atmosphere in the layer where GPS and communications signals travel - and scientists say they could get more powerful in the future.

This latest flare is classified as an X2.7. X-class denotes the most intense flares, while the number provides more information about its strength.

Despite the recent radio blackouts, scientists say the flare is unlikely to cause any further major issues here on Earth.

‘Given the impulsive nature of this event, as well as the source location on the eastern limb of the sun, we are not expecting a radiation storm at Earth,’ scientists with the U.S. Space Weather Prediction Center (SWPC) in Boulder, Colorado.

‘We will be on the lookout for new imagery from the Nasa Soho [Solar and Heliospheric Observatory] mission to determine if there was an associated coronal mass ejection (CME) with this event,’ they added.

‘Given the same logic above, however, we do not expect there to be one that would impact Earth.’

Yesterday Kazunari Shibata, an astrophysicist from Kyoto University in Japan, said the sun has the potential to unleash a flare of such a magnitude that it would be larger than anything humans have ever seen.

At the Space Weather Workshop in Colorado, Shibata said ‘superflares,’ that contain energy 1,000 times larger than what we have seen could be on their way.

He said there is evidence of this happening every 800 to 5,000 years on Earth,

Scientists say such a solar ‘super-storm’ would pose a ‘catastrophic’ and ‘long-lasting’ threat to life on Earth.

A superflare would induce huge surges of electrical currents in the ground and in overhead transmission lines, causing widespread power outages and severely damaging critical electrical components.

The largest ever solar super-storm on record occurred in 1859 and is known as the Carrington Event, named after the English astronomer Richard Carrington who spotted the preceding solar flare.

This massive CME released about 1022 kJ of energy - the equivalent to 10 billion Hiroshima bombs exploding at the same time - and hurled around a trillion kilos of charged particles towards the Earth at speeds of up to 3000 km/s.

However, its impact on the human population was relatively benign as our electronic infrastructure at the time amounted to no more than about 124,000 miles (200,000 km) of telegraph lines.

Nasa has also released incredible footage showing the sun unleashing a huge lick of plasma that increased the star’s visible hemisphere by almost half.

The solar filament, which exploded on April 28 and 29, was suspended above the sun due to strong magnetic fields that pushed outwards.

Solar astronomers around the world had their eyes on this unusually large filament and kept track as it erupted.

Nasa’s animation involves images taken from the orbiting Solar and Heliospheric Observatory using its Large Angle Spectrometric Coronagraph.

The diameter of the animation is about 30 million miles (45 million km) at the distance of the sun, or half of the diameter of the orbit of Mercury.

The white circle in the centre of the round disk represents the size of the sun, which is being blocked by the telescope in order to see the fainter material around it.

View Article Here Read More

Could Google’s Project Fi be cable’s answer to wireless?

 Excerpt from cnet.com Google's Project Fi wireless service has the potential to turn the mobile industry on its head. But not in the way you might expect. Last week, Google announce...

View Article Here Read More

Hubble’s Other Telescope And The Day It Rocked Our World

The Hooker 100-inch reflecting telescope at the Mount Wilson Observatory, just outside Los Angeles. Edwin Hubble's chair, on an elevating platform, is visible at left. A view from this scope first told Hubble our galaxy isn't the only one.
The Hooker 100-inch reflecting telescope at the Mount Wilson Observatory, just outside Los Angeles. Edwin Hubble's chair, on an elevating platform, is visible at left. A view from this scope first told Hubble our galaxy isn't the only one.
Courtesy of The Observatories of the Carnegie Institution for Science Collection at the Huntington Library, San Marino, Calif.


Excerpt from hnpr.org

The Hubble Space Telescope this week celebrates 25 years in Earth's orbit. In that time the telescope has studied distant galaxies, star nurseries, planets in our solar system and planets orbiting other stars.

But, even with all that, you could argue that the astronomer for whom the telescope is named made even more important discoveries — with far less sophisticated equipment.

A young Edwin Hubble at Mount Wilson's 100-inch telescope circa 1922, ready to make history.i
A young Edwin Hubble at Mount Wilson's 100-inch telescope circa 1922, ready to make history.
Edwin Hubble Papers/Courtesy of Huntington Library, San Marino, Calif.


In the 1920s, Edwin Hubble was working with the 100-inch Hooker telescope on Mount Wilson, just outside Los Angeles. At the time, it was the largest telescope in the world.

On a chilly evening, I climb up to the dome of that telescope with operator Nik Arkimovich and ask him to show me where Hubble would sit when he was using the telescope. Arkimovich points to a platform near the top of the telescope frame.

"He's got an eyepiece with crosshairs on it," Arkimovich explains. The telescope has gears and motors that let it track a star as it moves across the sky. "He's got a paddle that allows him to make minor adjustments. And his job is to keep the star in the crosshairs for maybe eight hours."

"It's certainly much, much easier today," says John Mulchaey, acting director of the observatories at Carnegie Institution of Science. "Now we sit in control rooms. The telescopes operate brilliantly on their own, so we don't have to worry about tracking and things like this."

Today, astronomers use digital cameras to catch the light from stars and other celestial objects. In Hubble's day, Mulchaey says, they used glass plates.

"At the focus of the telescope you would put a glass plate that has an emulsion layer on it that is actually sensitive to light," he says. At the end of an observing run, the plates would be developed, much like the film in a camera.

The headquarters of the Carnegie observatories is at the foot of Mount Wilson, in the city of Pasadena. It's where Hubble worked during the day.

A century's worth of plates are stored here in the basement. Mulchaey opens a large steel door and ushers me into a room filled with dozens of file cabinets.

"Why don't we go take a look at Hubble's famous Andromeda plates," Mulchaey suggests.

The plates are famous for a reason: They completely changed our view of the universe. Mulchaey points to a plate mounted on a light stand.

"This is a rare treat for you," he says. "This plate doesn't see the light of day very often."


This glass side of a photographic plate shows where Hubble marked novas. The red VAR! in the upper right corner marks his discovery of the first Cepheid variable star — a star that told him the Andromeda galaxy isn't part of our Milky Way.i
This glass side of a photographic plate shows where Hubble marked novas. The red VAR! in the upper right corner marks his discovery of the first Cepheid variable star — a star that told him the Andromeda galaxy isn't part of our Milky Way.
Courtesy of the Carnegie Observatories 
To the untrained eye, there's nothing terribly remarkable about the plate. But Mulchaey says what it represents is the most important discovery in astronomy since Galileo.

The plate shows the spiral shape of the Andromeda galaxy. Hubble was looking for exploding stars called novas in Andromeda. Hubble marked these on the plate with the letter "N."

"The really interesting thing here," Mulchaey says, "is there's one with the N crossed out in red — and he's changed the N to VAR with an exclamation point."

Hubble had realized that what he was seeing wasn't a nova. VAR stands for a type of star known as a Cepheid variable. It's a kind of star that allows you to make an accurate determination of how far away something is. This Cepheid variable showed that the Andromeda galaxy isn't a part of our galaxy.

At the time, most people thought the Milky Way was it — the only galaxy in existence.

"And what this really shows is that the universe is much, much bigger than anybody realizes," Mulchaey says.
It was another blow to our human conceit that we are the center of the universe.

Hubble went on to use the Mount Wilson telescope to show the universe was expanding, a discovery so astonishing that Hubble had a hard time believing it himself.

If Hubble could make such important discoveries with century-old equipment, it makes you wonder what he might have turned up if he'd had a chance to use the space telescope that bears his name.

View Article Here Read More

Astrophysicists create most complete 3-D map of the universe






Excerpt from thespacereporter.com


A team of scientists has created a detailed map of our cosmic “neighborhood” extending nearly two billion lights years in every direction. This 3-D map showing galaxies in their superclusters will aid astrophysicists in better understanding how matter, including dark matter, is distributed in the universe.

According to a Science Daily report, the map indicates the relative concentration of galaxies in different areas, including the largest nearby supercluster called the Shapely Concentration, as well as less explored areas. The scientists found no sign of any pattern in the distribution of matter.

“The galaxy distribution isn’t uniform and has no pattern. It has peaks and valleys much like a mountain range. This is what we expect if the large-scale structure originates from quantum fluctuations in the early universe,” Mike Hudson of the University of Waterloo said in a statement.

 

The researchers hope that a more complete view of the placement and movement of matter will aid in forming predictions about the expansion of the universe. In particular, the team hopes to gain insight into the phenomenon of peculiar velocity – the differences in galactic movement caused by the unevenness in the expansion of the universe. It is thought that the non-uniform movement of galaxies is influenced by dark matter – a form of matter only indirectly detectable through its gravitational influence on light and visible matter.



A cross-section of the cosmic map detailing accumulations of massive clusters. The dark red region is the famous Shapley Concentration, the largest collection of galaxies in the nearby universe.
Hudson et al./University of Waterloo








“A better understanding of dark matter is central to understanding the formation of galaxies and the structures they live in, such as galaxy clusters, superclusters and voids,” said Hudson.

The team plans to continue expanding and detailing the map in collaboration with additional researchers. The team’s work was published in the journal Monthly Notices of the Royal Astronomical Society.

View Article Here Read More

NASA wants your vote on Ceres’ mysterious bright spots

NASA wants your vote on Ceres’ bright spots

The nature of the bright spots has yet to be elucidated.




Excerpt from thespacereporter.com

NASA’s Jet Propulsion Laboratory has set up a website at which members of the public can register their votes as to the identify of the strange and unexpected bright spots seen on Ceres by the Dawn probe. Although Dawn will study the spots in much greater detail in the near future, having just assumed its first scientific orbit, in the meantime the nature of spots in anyone’s guess. This author voted for “ice”.

It seems ice is the most popular possibility so far, with 33 percent of the vote. The next most popular choice is “other”, with 28 percent. “Volcano” and “geyser” both have 11 percent, “salt deposit” has nine percent, and “rock” has eight percent.

At about 590 miles in diameter, Ceres is the largest body in the asteroid belt between the orbits of Mars and Jupiter. Dawn had imaged Ceres’s surface throughout its approach. Dawn entered orbit of Ceres on March 6, the first spacecraft to orbit a dwarf planet. From 2011 to 2012, Dawn also orbited the asteroid Vesta, the second-most massive body in the asteroid belt. Having studied both Vesta and Ceres, Dawn is the first spacecraft in history to orbit two extraterrestrial objects. Dawn’s investigations of Vesta and Ceres will shed light on the early evolution of our solar system; both bodies represent incipient planets, gravitationally perturbed early in their formation.

“The approach imaging campaign has completed successfully by giving us a preliminary, tantalizing view of the world Dawn is about to start exploring in detail. It has allowed us to start asking some new and intriguing questions,” said Marc Rayman, Dawn’s mission director and chief engineer at the JPL, in a separate NASA statement.

View Article Here Read More

Seattle Company Raises Minimum Wage to $70,000 a Year For All Employees!






Excerpt from nytimes.com

The idea began percolating, said Dan Price, the founder of Gravity Payments, after he read an article on happiness. It showed that, for people who earn less than about $70,000, extra money makes a big difference in their lives.

His idea bubbled into reality on Monday afternoon, when Mr. Price surprised his 120-person staff by announcing that he planned over the next three years to raise the salary of even the lowest-paid clerk, customer service representative and salesman to a minimum of $70,000.

“Is anyone else freaking out right now?” Mr. Price asked after the clapping and whooping died down into a few moments of stunned silence. “I’m kind of freaking out.”

If it’s a publicity stunt, it’s a costly one. Mr. Price, who started the Seattle-based credit-card payment processing firm in 2004 at the age of 19, said he would pay for the wage increases by cutting his own salary from nearly $1 million to $70,000 and using 75 to 80 percent of the company’s anticipated $2.2 million in profit this year.

Employees reacting to the news. The average salary at Gravity Payments had been $48,000 year. Credit Matthew Ryan Williams for The New York Times

The paychecks of about 70 employees will grow, with 30 ultimately doubling their salaries, according to Ryan Pirkle, a company spokesman. The average salary at Gravity is $48,000 year.

Mr. Price’s small, privately owned company is by no means a bellwether, but his unusual proposal does speak to an economic issue that has captured national attention: The disparity between the soaring pay of chief executives and that of their employees.

The United States has one of the world’s largest pay gaps, with chief executives earning nearly 300 times what the average worker makes, according to some economists’ estimates. That is much higher than the 20-to-1 ratio recommended by Gilded Age magnates like J. Pierpont Morgan and the 20th century management visionary Peter Drucker.

“The market rate for me as a C.E.O. compared to a regular person is ridiculous, it’s absurd,” said Mr. Price, who said his main extravagances were snowboarding and picking up the bar bill. He drives a 12-year-old Audi, which he received in a barter for service from the local dealer.

“As much as I’m a capitalist, there is nothing in the market that is making me do it,” he said, referring to paying wages that make it possible for his employees to go after the American dream, buy a house and pay for their children’s education.

Under a financial overhaul passed by Congress in 2010, the Securities and Exchange Commission was supposed to require all publicly held companies to disclose the ratio of C.E.O. pay to the median pay of all other employees, but it has so far failed to put it in effect. Corporate executives have vigorously opposed the idea, complaining it would be cumbersome and costly to implement.

Mr. Price started the company, which processed $6.5 billion in transactions for more than 12,000 businesses last year, in his dorm room at Seattle Pacific University with seed money from his older brother. The idea struck him a few years earlier when he was playing in a rock band at a local coffee shop. The owner started having trouble with the company that was processing credit card payments and felt ground down by the large fees charged.

When Mr. Price looked into it for her, he realized he could do it more cheaply and efficiently with better customer service.

The entrepreneurial spirit was omnipresent where he grew up in rural southwestern Idaho, where his family lived 30 miles from the closest grocery store and he was home-schooled until the age of 12. When one of Mr. Price’s four brothers started a make-your-own baseball card business, 9-year-old Dan went on a local radio station to make a pitch: “Hi. I’m Dan Price. I’d like to tell you about my brother’s business, Personality Plus.”

His father, Ron Price, is a consultant and motivational speaker who has written his own book on business leadership.

Dan Price came close to closing up shop himself in 2008 when the recession sent two of his biggest clients into bankruptcy, eliminating 20 percent of his revenue in the space of two weeks. He said the firm managed to struggle through without layoffs or raising prices. His staff, most of them young, stuck with him.

Aryn Higgins at work at Gravity Payments in Seattle. She and her co-workers are going to receive significant pay raises. Credit Matthew Ryan Williams for The New York Times

Mr. Price said he wasn’t seeking to score political points with his plan. From his friends, he heard stories of how tough it was to make ends meet even on salaries that were still well-above the federal minimum of $7.25 an hour.

“They were walking me through the math of making 40 grand a year,” he said, then describing a surprise rent increase or nagging credit card debt.

“I hear that every single week,” he added. “That just eats at me inside.”

Mr. Price said he wanted to do something to address the issue of inequality, although his proposal “made me really nervous” because he wanted to do it without raising prices for his customers or cutting back on service.

Of all the social issues that he felt he was in a position to do something about as a business leader, “that one seemed like a more worthy issue to go after.”

He said he planned to keep his own salary low until the company earned back the profit it had before the new wage scale went into effect.

Hayley Vogt, a 24-year-old communications coordinator at Gravity who earns $45,000, said, “I’m completely blown away right now.” She said she has worried about covering rent increases and a recent emergency room bill.

“Everyone is talking about this $15 minimum wage in Seattle and it’s nice to work someplace where someone is actually doing something about it and not just talking about it,” she said.

The happiness research behind Mr. Price’s announcement on Monday came from Angus Deaton and Daniel Kahneman, a Nobel Prize-winning psychologist. They found that what they called emotional well-being — defined as “the emotional quality of an individual’s everyday experience, the frequency and intensity of experiences of joy, stress, sadness, anger, and affection that make one’s life pleasant or unpleasant” — rises with income, but only to a point. And that point turns out to be about $75,000 a year.

Of course, money above that level brings pleasures — there’s no denying the delights of a Caribbean cruise or a pair of diamond earrings — but no further gains on the emotional well-being scale.
As Mr. Kahneman has explained it, income above the threshold doesn’t buy happiness, but a lack of money can deprive you of it.
Phillip Akhavan, 29, earns $43,000 working on the company’s merchant relations team. “My jaw just dropped,” he said. “This is going to make a difference to everyone around me.”

At that moment, no Princeton researchers were needed to figure out he was feeling very happy.

View Article Here Read More

Guiding Our Search for Life on Other Earths


The James Webb Telescope


Excerpt from space.com

A telescope will soon allow astronomers to probe the atmosphere of Earthlike exoplanets for signs of life. To prepare, astronomer Lisa Kaltenegger and her team are modeling the atmospheric fingerprints for hundreds of potential alien worlds. Here's how:
The James Webb Space Telescope, set to launch in 2018, will usher a new era in our search for life beyond Earth. With its 6.5-meter mirror, the long-awaited successor to Hubble will be large enough to detect potential biosignatures in the atmosphere of Earthlike planets orbiting nearby stars.
And we may soon find a treasure-trove of such worlds. The forthcoming exoplanet hunter TESS (Transiting Exoplanet Survey Satellite), set to launch in 2017, will scout the entire sky for planetary systems close to ours. (The current Kepler mission focuses on more distant stars, between 600 and 3,000 light-years from Earth.) 

Astronomer Lisa Kaltenegger




While TESS will allow for the brief detection of new planets, the larger James Webb will follow up on select candidates and provide clues about their atmospheric composition. But the work will be difficult and require a lot of telescope time.
"We're expecting to find thousands of new planets with TESS, so we'll need to select our best targets for follow-up study with the Webb telescope," says Lisa Kaltenegger, an astronomer at Cornell University and co-investigator on the TESS team.
To prepare, Kaltenegger and her team at Cornell's Institute for Pale Blue Dots are building a database of atmospheric fingerprints for hundreds of potential alien worlds. The models will then be used as "ID cards" to guide the study of exoplanet atmospheres with the Webb and other future large telescopes.
Kaltenegger described her approach in a talk for the NASA Astrobiology Institute's Director Seminar Series last December.
"For the first time in human history, we have the technology to find and characterize other worlds," she says. "And there's a lot to learn."

Detecting life from space  

In its 1990 flyby of Earth, the Galileo spacecraft took a spectrum of sunlight filtered through our planet's atmosphere. In a 1993 paper in the journal Nature, astronomer Carl Sagan analyzed that data and found a large amount of oxygen together with methane — a telltale sign of life on Earth. These observations established a control experiment for the search of extraterrestrial life by modern spacecraft.
"The spectrum of a planet is like a chemical fingerprint," Kaltenegger says. "This gives us the key to explore alien worlds light years away."
Current telescopes have picked up the spectra of giant, Jupiter-like exoplanets. But the telescopes are not large enough to do so for smaller, Earth-like worlds. The James Webb telescope will be our first shot at studying the atmospheres of these potentially habitable worlds.
Some forthcoming ground-based telescopes — including the Giant Magellan Telescope (GMT), planned for completion in 2020, and the European Extremely Large Telescope (E-ELT), scheduled for first light in 2024 — may also be able to contribute to that task. [The Largest Telescopes on Earth: How They Compare]
And with the expected discovery by TESS of thousands of nearby exoplanets, the James Webb and other large telescopes will have plenty of potential targets to study. Another forthcoming planet hunter, the Planetary Transits and Oscillations of stars (PLATO), a planned European Space Agency mission scheduled for launch around 2022-2024, will contribute even more candidates.
However, observation time for follow-up studies will be costly and limited.
"It will take hundreds of hours of observation to see atmospheric signatures with the Webb telescope," Kaltenegger says. "So we'll have to pick our targets carefully."

Giant Magellan Telescope
Set to see its first light in 2021, The Giant Magellan Telescope will be the world’s largest telescope.

Getting a head start

To guide that process, Kaltenegger and her team are putting together a database of atmospheric fingerprints of potential alien worlds. "The models are tools that can teach us how to observe and help us prioritize targets," she says.
To start, they have modeled the chemical fingerprint of Earth over geological time. Our planet's atmosphere has evolved over time, with different life forms producing and consuming various gases. These models may give astronomers some insight into a planet's evolutionary stage.
Other models take into consideration the effects of a host of factors on the chemical signatures — including water, clouds, atmospheric thickness, geological cycles, brightness of the parent star, and even the presence of different extremophiles.
"It's important to do this wide range of modeling right now," Kaltenegger said, "so we're not too startled if we detect something unexpected. A wide parameter space can allow us to figure out if we might have a combination of these environments."
She added: "It can also help us refine our modeling as fast as possible, and decide if more measurements are needed while the telescope is still in space. It's basically a stepping-stone, so we don't have to wait until we get our first measurements to understand what we are seeing. Still, we'll likely find things we never thought about in the first place."
 

A new research center

The spectral database is one of the main projects undertaken at the Institute for Pale Blue Dots, a new interdisciplinary research center founded in 2014 by Kaltenegger. The official inauguration will be held on May 9, 2015.
"The crux of the institute is the characterization of rocky, Earth-like planets in the habitable zone of nearby stars," Kaltenergger said. "It's a very interdisciplinary effort with people from astronomy, geology, atmospheric modeling, and hopefully biology."
She added: "One of the goal is to better understand what makes a planet a life-friendly habitat, and how we can detect that from light years away. We're on the verge of discovering other pale blue dots. And with Sagan's legacy, Cornell University is a really great home for an institute like that."

View Article Here Read More

Did natural selection make the Dutch the tallest people on the planet?

Dutch national women's field hockey team



Excerpt from news.sciencemag.org
ByMartin Enserink

AMSTERDAM—Insecure about your height? You may want to avoid this tiny country by the North Sea, whose population has gained an impressive 20 centimeters in the past 150 years and is now officially the tallest on the planet. Scientists chalk up most of that increase to rising wealth, a rich diet, and good health care, but a new study suggests something else is going on as well: The Dutch growth spurt may be an example of human evolution in action.
The study, published online today in the Proceedings of the Royal Society B, shows that tall Dutch men on average have more children than their shorter counterparts, and that more of their children survive. That suggests genes that help make people tall are becoming more frequent among the Dutch, says behavioral biologist and lead author Gert Stulp of the London School of Hygiene & Tropical Medicine.

"This study drives home the message that the human population is still subject to natural selection," says Stephen Stearns, an evolutionary biologist at Yale University who wasn't involved in the study. "It strikes at the core of our understanding of human nature, and how malleable it is." It also confirms what Stearns knows from personal experience about the population in the northern Netherlands, where the study took place: "Boy, they are tall."

For many years, the U.S. population was the tallest in the world. In the 18th century, American men were 5 to 8 centimeters taller than those in the Netherlands. Today, Americans are the fattest, but they lost the race for height to northern Europeans—including Danes, Norwegians, Swedes, and Estonians—sometime in the 20th century.

Just how these peoples became so tall isn't clear, however. Genetics has an important effect on body height: Scientists have found at least 180 genes that influence how tall you become. Each one has only a small effect, but together, they may explain up to 80% of the variation in height within a population. Yet environmental factors play a huge role as well. The children of Japanese immigrants to Hawaii, for instance, grew much taller than their parents. Scientists assume that a diet rich in milk and meat played a major role.

The Dutch have become so much taller in such a short period that scientists chalk most of it up to their changing environment. As the Netherlands developed, it became one of the world's largest producers and consumers of cheese and milk. An increasingly egalitarian distribution of wealth and universal access to health care may also have helped.

Still, scientists wonder whether natural selection has played a role as well. For men, being tall is associated with better health, attractiveness to the opposite sex, a better education, and higher income—all of which could lead to more reproductive success, Stulp says.
Yet studies in the United States don't show this. Stulp's own research among Wisconsinites born between 1937 and 1940, for instance, showed that average-sized men had more children than shorter and taller men, and shorter women had more children than those of average height. Taken together, Stulp says, this suggests natural selection in the United States pulls in the opposite direction of environmental factors like diet, making people shorter instead of taller. That may explain why the growth in average American height has leveled off.

Stulp—who says his towering 2-meter frame did not influence his research interest—wondered if the same was true in his native country. To find out, he and his colleagues turned to a database tracking key life data for almost 100,000 people in the country's three northern provinces. The researchers included only people over 45 who were born in the Netherlands to Dutch-born parents. This way, they had a relatively accurate number of total children per subject (most people stop having children after 45) and they also avoided the effects of immigration.

In the remaining sample of 42,616 people, taller men had more children on average, despite the fact that they had their first child at a higher age. The effect was small—an extra 0.24 children at most for taller men—but highly significant. (Taller men also had a smaller chance of remaining childless, and a higher chance of having a partner.)  The same effect wasn't seen in women, who had the highest reproductive success when they were of average height.  The study suggests this may be because taller women had a smaller chance of finding a mate, while shorter women were at higher risk of losing a child.

Because tall men are likely to pass on the genes that made them tall, the outcome suggests that—in contrast to Americans—the Dutch population is evolving to become taller, Stulp says. "This is not what we've seen in other studies—that's what makes it exciting," says evolutionary biologist Simon Verhulst of the University of Groningen in the Netherlands, who was Stulp's Ph.D. adviser but wasn't involved in the current study. Verhulst points out that the team can't be certain that genes involved in height are actually becoming more frequent, however, as the authors acknowledge.

The study suggests that sexual selection is at work in the Dutch population, Stearns says: Dutch women may prefer taller men because they expect them to have more resources to invest in their children. But there are also other possibilities. It could be that taller men are more resistant to disease, Stearns says, or that they are more likely to divorce and start a second family. "It will be a difficult question to answer.”

Another question is why tall men in Holland are at a reproductive advantage but those in the United States are not. Stulp says he can only speculate. One reason may be that humans often choose a partner who's not much shorter or taller than they are themselves. Because shorter women in the United States have more children, tall men may do worse than those of average height because they're less likely to partner with a short woman.

In the end, Stearns says, the advantage of tall Dutchmen may be only temporary. Often in evolution, natural selection will favor one trend for a number of generations, followed by a stabilization or even a return to the opposite trend. In the United States, selection for height appears to have occurred several centuries ago, leading to taller men, and then it stopped. "Perhaps the Dutch caught up and actually overshot the American men," he says.

View Article Here Read More

NASA submarine to Study Planet Saturn Moon Titan’s Sea





dailysciencejournal.com 

An animated and dramatic 3D video released by NASA has revealed the international space agency plans of exploring the depths of largest sea on the Titan, Kraken Mare.

NASA is planning to launch a submarine in the Kraken Mare Sea with an aim of studying the depth.

Titan is one of the 62 moons of the planet Saturn. Titan has its own and interesting atmosphere compared to other 61. 



Click to zoom


A spacecraft named Cassini has been trying to study the Titan’s atmosphere since 2004. Most of the area of the moon Titan is covered by large bodies of methane and ethane in liquid form.

The submarine will definitely help more compared to Cassini spacecraft to measure and map the shorelines or sea.

While releasing the video the scientists from NASA has stated that the submarine will definitely help in exploring the history of the moon’s climatic conditions and could provide major breakthroughs among the discoveries made till date.

View Article Here Read More

Why Luke Skywalker’s binary sunset may be real after all






Excerpt from csmonitor.com

Researchers have found Jupiter-scale gas giants orbiting binary stars and estimate that Earth-like planets orbiting binary stars could be as numerous as rocky planets orbiting single-star systems.


For all the sci-fi charm of watching a pair of suns sink below a distant horizon on a planet in a galaxy far, far away, conventional wisdom has held that binary-star systems can't host Earth-scale rocky planets.

As the two stars orbit each other like square-dance partners swinging arm in arm, regular variations in their gravitational tug would disrupt planet formation at the relatively close distances where rocky planets tend to appear.

Not so fast, say two astrophysicists. They argue that only are Tatooine-like planets likely to be out there. They could be as numerous as rocky planets orbiting single-star systems – which is to say, there could be large number of them.

Building rocky planets in a binary system not only is possible, it's "not even that hard," says Scott Kenyon, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who along with University of Utah astrophysicist Benjamin Bromley performed the calculations.
Researchers have found Jupiter-scale gas giants orbiting binary stars and have estimated that such gas giants are likely to be as common in binary systems as they are in systems with a single star.
"If that's true, then Earth-like planets around binaries are just as common as Earth-like planets around single stars," Dr. Kenyon says. "If they're not common, that tells you something about how they form or how they interact with the star over billions of years."

The modeling study grew out of work the two researchers were undertaking to figure out how the dwarf planet Pluto and its largest moon Charon manage to share space with four smaller moons that orbit the two larger objects. 

Pluto and Charon form a binary system that early in its history saw the two objects graze each other to generate a ring of dust that would become the additional moons.

The gravity the surrounding dust felt as Pluto and Charon swung about their shared center of mass would vary with clock-like precision.

Conventional wisdom held that this variable tug would trigger collisions at speeds too fast to allow the dust and larger chunks to merge into ever larger objects.

Kenyon and Dr. Bromley found that, in fact, the velocities would be smaller than people thought – no greater than the speeds would be around a single central object, where velocities are slow enough to allow the debris to bump gently and merge to build ever-larger objects.

They recognized that binary stars hosting planets are essentially scaled-up versions of the Pluto-Charon system. So they applied their calculations to a hypothetical binary star system with a circumstellar disk of dust and debris.

"The modest jostling in these orbits is the same modest jostling you'd get around a single star," Kenyon says, allowing rocky inner planets to form.

As for the Jupiter- or Neptune-scale planets found around binary stars, they would have formed farther out and migrated in over time, the researchers say, since there is too little material within the inner reaches of a circumstellar disk to build giant planets.

The duo's calculations imply that as more planets are discovered orbiting binary stars, a rising number of Tatooines will be among them. 

Tatooine "was science fiction," Kenyon says. But "it's not so far from science reality."

View Article Here Read More

Largest ever asteroid impact found in Australia

Scientists in Australia have discovered what they say is the largest asteroid impact area ever found. Excerpt from bbc.comThe 400-kilometre (250-mile) wide area is buried deep in the earth's crust and consists of two separate impact scars.The...

View Article Here Read More

Confirmed: Jupiter’s moon Ganymede has a salt water ocean

GanymedeExcerpt from latimes.comAstronomers have found the most conclusive evidence yet that a large watery ocean lies beneath the surface of Jupiter's moon Ganymede.Scientists have suspected for decades that a subterranean ocean ...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑