Tag: isn (page 3 of 15)

How Your Mind Affects Your Body

Excerpt from huffingtonpost.comWe are at last beginning to show that there is an intimate and dynamic relationship between what is going on with our feelings and thoughts and what happens in the body. A Time magazine special showed that happiness, h...

View Article Here Read More

13 Things Anyone Who Loves A Highly Sensitive Person Should Know

Excerpt from huffingtonpost.com When I was in kindergarten, a boy in my class tossed my favorite book over our elementary school fence. I remember crying profusely, not because I was sad to see it go, but because I was so furious that he was s...

View Article Here Read More

Could Google’s Project Fi be cable’s answer to wireless?

 Excerpt from cnet.com Google's Project Fi wireless service has the potential to turn the mobile industry on its head. But not in the way you might expect. Last week, Google announce...

View Article Here Read More

Hubble’s Other Telescope And The Day It Rocked Our World

The Hooker 100-inch reflecting telescope at the Mount Wilson Observatory, just outside Los Angeles. Edwin Hubble's chair, on an elevating platform, is visible at left. A view from this scope first told Hubble our galaxy isn't the only one.
The Hooker 100-inch reflecting telescope at the Mount Wilson Observatory, just outside Los Angeles. Edwin Hubble's chair, on an elevating platform, is visible at left. A view from this scope first told Hubble our galaxy isn't the only one.
Courtesy of The Observatories of the Carnegie Institution for Science Collection at the Huntington Library, San Marino, Calif.


Excerpt from hnpr.org

The Hubble Space Telescope this week celebrates 25 years in Earth's orbit. In that time the telescope has studied distant galaxies, star nurseries, planets in our solar system and planets orbiting other stars.

But, even with all that, you could argue that the astronomer for whom the telescope is named made even more important discoveries — with far less sophisticated equipment.

A young Edwin Hubble at Mount Wilson's 100-inch telescope circa 1922, ready to make history.i
A young Edwin Hubble at Mount Wilson's 100-inch telescope circa 1922, ready to make history.
Edwin Hubble Papers/Courtesy of Huntington Library, San Marino, Calif.


In the 1920s, Edwin Hubble was working with the 100-inch Hooker telescope on Mount Wilson, just outside Los Angeles. At the time, it was the largest telescope in the world.

On a chilly evening, I climb up to the dome of that telescope with operator Nik Arkimovich and ask him to show me where Hubble would sit when he was using the telescope. Arkimovich points to a platform near the top of the telescope frame.

"He's got an eyepiece with crosshairs on it," Arkimovich explains. The telescope has gears and motors that let it track a star as it moves across the sky. "He's got a paddle that allows him to make minor adjustments. And his job is to keep the star in the crosshairs for maybe eight hours."

"It's certainly much, much easier today," says John Mulchaey, acting director of the observatories at Carnegie Institution of Science. "Now we sit in control rooms. The telescopes operate brilliantly on their own, so we don't have to worry about tracking and things like this."

Today, astronomers use digital cameras to catch the light from stars and other celestial objects. In Hubble's day, Mulchaey says, they used glass plates.

"At the focus of the telescope you would put a glass plate that has an emulsion layer on it that is actually sensitive to light," he says. At the end of an observing run, the plates would be developed, much like the film in a camera.

The headquarters of the Carnegie observatories is at the foot of Mount Wilson, in the city of Pasadena. It's where Hubble worked during the day.

A century's worth of plates are stored here in the basement. Mulchaey opens a large steel door and ushers me into a room filled with dozens of file cabinets.

"Why don't we go take a look at Hubble's famous Andromeda plates," Mulchaey suggests.

The plates are famous for a reason: They completely changed our view of the universe. Mulchaey points to a plate mounted on a light stand.

"This is a rare treat for you," he says. "This plate doesn't see the light of day very often."


This glass side of a photographic plate shows where Hubble marked novas. The red VAR! in the upper right corner marks his discovery of the first Cepheid variable star — a star that told him the Andromeda galaxy isn't part of our Milky Way.i
This glass side of a photographic plate shows where Hubble marked novas. The red VAR! in the upper right corner marks his discovery of the first Cepheid variable star — a star that told him the Andromeda galaxy isn't part of our Milky Way.
Courtesy of the Carnegie Observatories 
To the untrained eye, there's nothing terribly remarkable about the plate. But Mulchaey says what it represents is the most important discovery in astronomy since Galileo.

The plate shows the spiral shape of the Andromeda galaxy. Hubble was looking for exploding stars called novas in Andromeda. Hubble marked these on the plate with the letter "N."

"The really interesting thing here," Mulchaey says, "is there's one with the N crossed out in red — and he's changed the N to VAR with an exclamation point."

Hubble had realized that what he was seeing wasn't a nova. VAR stands for a type of star known as a Cepheid variable. It's a kind of star that allows you to make an accurate determination of how far away something is. This Cepheid variable showed that the Andromeda galaxy isn't a part of our galaxy.

At the time, most people thought the Milky Way was it — the only galaxy in existence.

"And what this really shows is that the universe is much, much bigger than anybody realizes," Mulchaey says.
It was another blow to our human conceit that we are the center of the universe.

Hubble went on to use the Mount Wilson telescope to show the universe was expanding, a discovery so astonishing that Hubble had a hard time believing it himself.

If Hubble could make such important discoveries with century-old equipment, it makes you wonder what he might have turned up if he'd had a chance to use the space telescope that bears his name.

View Article Here Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here Read More

Astrophysicists create most complete 3-D map of the universe






Excerpt from thespacereporter.com


A team of scientists has created a detailed map of our cosmic “neighborhood” extending nearly two billion lights years in every direction. This 3-D map showing galaxies in their superclusters will aid astrophysicists in better understanding how matter, including dark matter, is distributed in the universe.

According to a Science Daily report, the map indicates the relative concentration of galaxies in different areas, including the largest nearby supercluster called the Shapely Concentration, as well as less explored areas. The scientists found no sign of any pattern in the distribution of matter.

“The galaxy distribution isn’t uniform and has no pattern. It has peaks and valleys much like a mountain range. This is what we expect if the large-scale structure originates from quantum fluctuations in the early universe,” Mike Hudson of the University of Waterloo said in a statement.

 

The researchers hope that a more complete view of the placement and movement of matter will aid in forming predictions about the expansion of the universe. In particular, the team hopes to gain insight into the phenomenon of peculiar velocity – the differences in galactic movement caused by the unevenness in the expansion of the universe. It is thought that the non-uniform movement of galaxies is influenced by dark matter – a form of matter only indirectly detectable through its gravitational influence on light and visible matter.



A cross-section of the cosmic map detailing accumulations of massive clusters. The dark red region is the famous Shapley Concentration, the largest collection of galaxies in the nearby universe.
Hudson et al./University of Waterloo








“A better understanding of dark matter is central to understanding the formation of galaxies and the structures they live in, such as galaxy clusters, superclusters and voids,” said Hudson.

The team plans to continue expanding and detailing the map in collaboration with additional researchers. The team’s work was published in the journal Monthly Notices of the Royal Astronomical Society.

View Article Here Read More

8 Myths About Emotions That Are Holding Us Back

Excerpt from huffingtonpost.comAs a society, we don't talk much about emotions. Conversations tend to focus more on what we're doing or what we're thinking. In fact, most people find it easier to start sentences with, "I think..." instead of "I feel...

View Article Here Read More

Physicists: Black holes don’t erase information




Excerpt from earthsky.org
Since 1975, when Hawking showed that black holes evaporate from our universe, physicists have tried to explain what happens to a black hole’s information.

What happens to the information that goes into a black hole? Is it irretrievably lost? Does it gradually or suddenly leak out? Is it stored somehow? Physicists have puzzled for decades over what they call the information loss paradox in black holes. A new study by physicists at University at Buffalo – published in March, 2015 in the journal in Physical Review Letters – shows that information going into a black hole is not lost at all.

Instead, these researchers say, it’s possible for an observer standing outside of a black hole to recover information about what lies within.

Dejan Stojkovic, associate professor of physics at the University at Buffalo, did the research with his student Anshul Saini as co-author. Stojkovic said in a statement:
According to our work, information isn’t lost once it enters a black hole. It doesn’t just disappear.
What sort of information are we talking about? In principle, any information drawn into a black hole has an unknown future, according to modern physics. That information could include, for example, the characteristics of the object that formed the black hole to begin with, and characteristics of all matter and energy drawn inside.

Stojkovic says his research “marks a significant step” toward solving the information loss paradox, a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time, disappearing from the universe and taking their information with them. 

Disappearing information is a problem for physicists because it’s a violation of quantum mechanics, which states that information must be conserved.
According to modern physics, any information about an astronaut entering a black hole - for example, height, weight, hair color - may be lost.  Likewise, information about he object that formed the hole, or any matter and energy entering the hole, may be lost.  This notion violates quantum mechanics, which is why it's known as the 'black hole information paradox.


According to modern physics, any information related to an astronaut entering a black hole – for example, height, weight, hair color – may be lost. This notion is known as the ‘information loss paradox’ of black holes because it violates quantum mechanics. Artist’s concept via Nature.

Stojkovic says that physicists – even those who believed information was not lost in black holes – have struggled to show mathematically how the information is preserved. He says his new paper presents explicit calculations demonstrating how it can be preserved. His statement from University at Buffalo explained:
In the 1970s, [Stephen] Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it’s possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini’s new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such “correlations” have long been known to exist, but many scientists discounted them as unimportant in the past.
Stojkovic added:
These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference.
Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome.
Artist's impression of a black hole, via Icarus
Artist’s impression of a black hole, via Icarus

Bottom line: Since 1975, when Stephen Hawking and Jacob Bekenstein showed that black holes should slowly radiate away energy and ultimately disappear from the universe, physicists have tried to explain what happens to information inside a black hole. Dejan Stojkovic and Anshul Saini, both of University at Buffalo, just published a new study that contains specific calculations showing that information within a black hole is not lost.

View Article Here Read More

New research shows Universe expansion pace isn’t as fast as assumed earlier



universe


Excerpt from thewestsidestory.net

The Universe is expanding and any student of astronomy will vouch to this fact. However according to a team of astronomers the acceleration of the universe may not be as quick as it was assumed earlier.

A team of astronomers have discovered that certain types of supernova are more varied than earlier thought of and in the process have led to the biggest mystery of the universe-how fast is the universe expanding after the big bang?

Peter A. Milne of the University of Arizona said, “We found that the differences are not random, but lead to separating Ia supernovae into two groups, where the group that is in the minority near us are in the majority at large distances — and thus when the universe was younger, there are different populations out there, and they have not been recognized. The big assumption has been that as you go from near to far, type Ia supernovae are the same. That doesn’t appear to be the case.”
The discovery throws new light on the currently accepted view of the universe expanding at a faster and faster rate pulled apart by an unknown force called dark energy this observation resulted in 2011 Nobel Prize for Physics.
Milne said, “The idea behind this reasoning, is that type Ia supernovae happen to be the same brightness — they all end up pretty similar when they explode. Once people knew why, they started using them as mileposts for the far side of the universe.The faraway supernovae should be like the ones nearby because they look like them, but because they’re fainter than expected, it led people to conclude they’re farther away than expected, and this in turn has led to the conclusion that the universe is expanding faster than it did in the past.”
The researchers felt that the accelerating universe can be explained on the basis of color difference in between two groups of supernova leaving less acceleration than earlier assumed and in the process will require lesser dark energy.

Milne said, “We’re proposing that our data suggest there might be less dark energy than textbook knowledge, but we can’t put a number on it, until our paper, the two populations of supernovae were treated as the same population. To get that final answer, you need to do all that work again, separately for the red and for the blue population.

Type la supernovae are considered as a benchmark for far away sources of light they do have a fraction of variability which has limited our knowledge of the size of the universe.
The distance of objects with the aid of our binocular vision and the best space-based telescopes and most sophisticated techniques works out in the range of ten or twenty thousand light years. 
However as compared to the vastness of space, this is just pea nuts.
For Distances greater than that it is imperative to compare the absolute and observed brightness of well understood objects and to use the difference to determine the object’s distance.

In astronomy it is difficult to find an object of known brightness since there are examples of both bright and dim stars and galaxies. However there is one event which can be used to work out its absolute brightness. Supernovas are the final stages of a dying star and it explodes with such violence, the flash can be seen across the vast universe.

Type la Supernovae occurs in a binary star system when a white dwarf scoops off mass from its fellow star. This reproducible mechanism gives a well determined brightness and therefore scientists term such Type la supernovae as ‘standard candles’.

Astronomers found that the Type la supernovae is so uniform that it has been designated as cosmic beacons and used to assess the depths of the universe. It is now revealed that they fall into different populations and are not very uniform as previously thought. .

View Article Here Read More

How the Secession Movement Could Break Up the U.S.



new U.S. map
Excerpt from charismanews.com  
A new map of the U.S. could include a state called Jefferson, made up of Northern California and Southern Oregon, a new state called Western Maryland and a new state called North Colorado. (CBN)

If you mention the word secession most people think of the South during the Civil War. But today, a new movement is gaining steam because of frustration over a growing, out-of-control federal government.
A number of conservative, rural Americans are taking about seceding and creating their own states, meaning a new map of the United States of America could include the following:
  • A 51st state called Jefferson, made up of Northern California and Southern Oregon
  • A new state called Western Maryland
  • A new state called North Colorado
These are real movements gaining traction with voters across the country. Jeffrey Hare runs the 51st State Initiative in Colorado, an effort to fight an out-of-control legislature trying to ram big government policies down the throats of voters.
"We're at this point of irreconcilable differences," Hare told CBN News.





Secessionist talk has filled town hall meetings and the divide discussed is not just ideological.
"It's predominately left versus right, but it's urban versus rural because you typically find more typical conservative values in rural America," Hare said.
An Attack on Colorado?
That's the crux of the issue. Rural Americans across many states feel they're not being heard. Their laundry list is long and at the top of that list are stricter gun control laws.
According to Weld County, Colo., Sheriff John Cooke, the state legislature is out of control.
"They are out of touch with rural Colorado," he said. "There is an attack on rural Colorado and it's not just on gun control laws. It's on several of the other bills that they passed."
Government mandates on renewable energy, environmental policies restricting oil and gas drilling, and controversial social issues like gay marriage have also led to this divide and talk of secession.
Organizers want to create "North Colorado," an idea that went to voters in 11 counties this past fall. But not everyone in Colorado thinks secession is a great idea.
"I don't think that's necessarily the way to make something happen within the area you live," Colorado resident Greg Howe told CBN News. "You're supposed to work within our electoral services."
The so-called secession movement in Colorado had mixed results this past November. Some counties approved it. Others didn't.
But the organizers of the 51st State Initiative are undaunted, saying this type of movement takes time.
"Movements take a while; education takes time," Hare said. "People do have a hard time saying ,'I want to live in a different state,' even though physically they live in the same house."
"It's hard for them since their lives have been Coloradoans," he explained. "Their whole lives to say that 'I'm going to be a new Coloradoan' or 'I want to live in the state of liberty' or something different."
An 'Amicable' Divorce
That desire for something different can also be felt in Arizona, Michigan, and in Western Maryland where thousands have signed secession petitions.
One website reads, "We intend to exercise our right of self-determination and self-governance to better secure our rights to life, liberty, and the pursuit of happiness."

Scott Strzelczyk, the leader of the Western Maryland movement, is ready to get going.
"If they are not going to listen or take our needs into consideration and govern in a way that's more in accordance with the way we want to be governed we are seeking an amicable divorce," he said.
Meanwhile, in Northern California and Southern Oregon, activists want to come together in the state of "Jefferson."
Their proposed state flag includes two "Xs," representing their feeling of being double-crossed by the state capitals of Sacramento, Calif., and Salem, Ore.
No Small Task
Creating a new state isn't easy. The last time a state actually gave up territory was in 1820, when Maine split from Massachusetts. Since then, additional efforts have been unsuccessful. 
The first step is getting it passed by the state legislature and then the U.S. Congress.
"This is a valid constitutional process that our founding fathers specifically wrote into the Constitution," Hare said. "Well, if they didn't write this into the Constitution to be used, then why did they write it in?"
But supporters have an uphill battle since the media will not be their friend.
"The danger is once the outside media start to grab hold of it, the attention is on the difficulty, the almost impossibility of it happening," professor Derek Everett, with Metropolitan State University in Denver, explained.
Voter 'Disconnect'
State secession proponents, like Roni Bell Sylvester of Colorado, say they will keep fighting because the dismissive attitude of state legislative bodies must end.
"I find the sort of arrogant, dismissive to be further proof as to just how disconnected the urban is from the rural," Sylvester said.
Movements like the one in Colorado and other states could be just the beginning—at least that's the talk at town hall meetings in places like Colorado and elsewhere.
It's called 'voter disconnect" where the people say they've had enough and are crying out for something to be done.
"We, at some point, have to figure out a way to get our point across or at least be able to have a dialogue and not be ignored because you haven't seen anything yet over the next 5 to 10 years," one resident warned at a recent town hall meeting in Colorado.
As for Hare, he said it boils down to one simple concept.
"I think ultimately what people want, whether you look at it from a right or left paradigm, is government to stay out of their business," he said.

View Article Here Read More

Did natural selection make the Dutch the tallest people on the planet?

Dutch national women's field hockey team



Excerpt from news.sciencemag.org
ByMartin Enserink

AMSTERDAM—Insecure about your height? You may want to avoid this tiny country by the North Sea, whose population has gained an impressive 20 centimeters in the past 150 years and is now officially the tallest on the planet. Scientists chalk up most of that increase to rising wealth, a rich diet, and good health care, but a new study suggests something else is going on as well: The Dutch growth spurt may be an example of human evolution in action.
The study, published online today in the Proceedings of the Royal Society B, shows that tall Dutch men on average have more children than their shorter counterparts, and that more of their children survive. That suggests genes that help make people tall are becoming more frequent among the Dutch, says behavioral biologist and lead author Gert Stulp of the London School of Hygiene & Tropical Medicine.

"This study drives home the message that the human population is still subject to natural selection," says Stephen Stearns, an evolutionary biologist at Yale University who wasn't involved in the study. "It strikes at the core of our understanding of human nature, and how malleable it is." It also confirms what Stearns knows from personal experience about the population in the northern Netherlands, where the study took place: "Boy, they are tall."

For many years, the U.S. population was the tallest in the world. In the 18th century, American men were 5 to 8 centimeters taller than those in the Netherlands. Today, Americans are the fattest, but they lost the race for height to northern Europeans—including Danes, Norwegians, Swedes, and Estonians—sometime in the 20th century.

Just how these peoples became so tall isn't clear, however. Genetics has an important effect on body height: Scientists have found at least 180 genes that influence how tall you become. Each one has only a small effect, but together, they may explain up to 80% of the variation in height within a population. Yet environmental factors play a huge role as well. The children of Japanese immigrants to Hawaii, for instance, grew much taller than their parents. Scientists assume that a diet rich in milk and meat played a major role.

The Dutch have become so much taller in such a short period that scientists chalk most of it up to their changing environment. As the Netherlands developed, it became one of the world's largest producers and consumers of cheese and milk. An increasingly egalitarian distribution of wealth and universal access to health care may also have helped.

Still, scientists wonder whether natural selection has played a role as well. For men, being tall is associated with better health, attractiveness to the opposite sex, a better education, and higher income—all of which could lead to more reproductive success, Stulp says.
Yet studies in the United States don't show this. Stulp's own research among Wisconsinites born between 1937 and 1940, for instance, showed that average-sized men had more children than shorter and taller men, and shorter women had more children than those of average height. Taken together, Stulp says, this suggests natural selection in the United States pulls in the opposite direction of environmental factors like diet, making people shorter instead of taller. That may explain why the growth in average American height has leveled off.

Stulp—who says his towering 2-meter frame did not influence his research interest—wondered if the same was true in his native country. To find out, he and his colleagues turned to a database tracking key life data for almost 100,000 people in the country's three northern provinces. The researchers included only people over 45 who were born in the Netherlands to Dutch-born parents. This way, they had a relatively accurate number of total children per subject (most people stop having children after 45) and they also avoided the effects of immigration.

In the remaining sample of 42,616 people, taller men had more children on average, despite the fact that they had their first child at a higher age. The effect was small—an extra 0.24 children at most for taller men—but highly significant. (Taller men also had a smaller chance of remaining childless, and a higher chance of having a partner.)  The same effect wasn't seen in women, who had the highest reproductive success when they were of average height.  The study suggests this may be because taller women had a smaller chance of finding a mate, while shorter women were at higher risk of losing a child.

Because tall men are likely to pass on the genes that made them tall, the outcome suggests that—in contrast to Americans—the Dutch population is evolving to become taller, Stulp says. "This is not what we've seen in other studies—that's what makes it exciting," says evolutionary biologist Simon Verhulst of the University of Groningen in the Netherlands, who was Stulp's Ph.D. adviser but wasn't involved in the current study. Verhulst points out that the team can't be certain that genes involved in height are actually becoming more frequent, however, as the authors acknowledge.

The study suggests that sexual selection is at work in the Dutch population, Stearns says: Dutch women may prefer taller men because they expect them to have more resources to invest in their children. But there are also other possibilities. It could be that taller men are more resistant to disease, Stearns says, or that they are more likely to divorce and start a second family. "It will be a difficult question to answer.”

Another question is why tall men in Holland are at a reproductive advantage but those in the United States are not. Stulp says he can only speculate. One reason may be that humans often choose a partner who's not much shorter or taller than they are themselves. Because shorter women in the United States have more children, tall men may do worse than those of average height because they're less likely to partner with a short woman.

In the end, Stearns says, the advantage of tall Dutchmen may be only temporary. Often in evolution, natural selection will favor one trend for a number of generations, followed by a stabilization or even a return to the opposite trend. In the United States, selection for height appears to have occurred several centuries ago, leading to taller men, and then it stopped. "Perhaps the Dutch caught up and actually overshot the American men," he says.

View Article Here Read More

Was Roswell UFO Crash A Secret Nazi Aircraft?

 Excerpt from  huffingtonpost.comThe Roswell, New Mexico, UFO crash of 1947 was the result of -- here it comes, wait for it -- top secret Nazi technology. No alien spacecraft, no alien bodies, but an aircraft called the "Bell" (depicted ab...

View Article Here Read More

Does the Past Exist Yet? Evidence Suggests Your Past Isn’t Set in Stone


thumbnail



Excerpt from robertlanza.com
By Robert Lanza 

Recent discoveries require us to rethink our understanding of history. “The histories of the universe,” said renowned physicist Stephen Hawking “depend on what is being measured, contrary to the usual idea that the universe has an objective observer-independent history.”

Is it possible we live and die in a world of illusions? Physics tells us that objects exist in a suspended state until observed, when they collapse in to just one outcome. Paradoxically, whether events happened in the past may not be determined until sometime in your future – and may even depend on actions that you haven’t taken yet.

In 2002, scientists carried out an amazing experiment, which showed that particles of light “photons” knew — in advance — what their distant twins would do in the future. They tested the communication between pairs of photons — whether to be either a wave or a particle. Researchers stretched the distance one of the photons had to take to reach its detector, so that the other photon would hit its own detector first. The photons taking this path already finished their journeys — they either collapse into a particle or don’t before their twin encounters a scrambling device.
Somehow, the particles acted on this information before it happened, and across distances instantaneously as if there was no space or time between them. They decided not to become particles before their twin ever encountered the scrambler. It doesn’t matter how we set up the experiment. Our mind and its knowledge is the only thing that determines how they behave. Experiments consistently confirm these observer-dependent effects.

More recently (Science 315, 966, 2007), scientists in France shot photons into an apparatus, and showed that what they did could retroactively change something that had already happened. As the photons passed a fork in the apparatus, they had to decide whether to behave like particles or waves when they hit a beam splitter. 
Later on – well after the photons passed the fork – the experimenter could randomly switch a second beam splitter on and off. It turns out that what the observer decided at that point, determined what the particle actually did at the fork in the past. At that moment, the experimenter chose his history.

Of course, we live in the same world. Particles have a range of possible states, and it’s not until observed that they take on properties. So until the present is determined, how can there be a past? According to visionary physicist John Wheeler (who coined the word “black hole”), “The quantum principle shows that there is a sense in which what an observer will do in the future defines what happens in the past.” Part of the past is locked in when you observe things and the “probability waves collapse.” But there’s still uncertainty, for instance, as to what’s underneath your feet. If you dig a hole, there’s a probability you’ll find a boulder. Say you hit a boulder, the glacial movements of the past that account for the rock being in exactly that spot will change as described in the Science experiment.

But what about dinosaur fossils? Fossils are really no different than anything else in nature. For instance, the carbon atoms in your body are “fossils” created in the heart of exploding supernova stars. 
Bottom line: reality begins and ends with the observer. “We are participators,” Wheeler said “in bringing about something of the universe in the distant past.” Before his death, he stated that when observing light from a quasar, we set up a quantum observation on an enormously large scale. It means, he said, the measurements made on the light now, determines the path it took billions of years ago.

Like the light from Wheeler’s quasar, historical events such as who killed JFK, might also depend on events that haven’t occurred yet. There’s enough uncertainty that it could be one person in one set of circumstances, or another person in another. Although JFK was assassinated, you only possess fragments of information about the event. But as you investigate, you collapse more and more reality. According to biocentrism, space and time are relative to the individual observer – we each carry them around like turtles with shells.

History is a biological phenomenon — it’s the logic of what you, the animal observer experiences. You have multiple possible futures, each with a different history like in the Science experiment. Consider the JFK example: say two gunmen shot at JFK, and there was an equal chance one or the other killed him. This would be a situation much like the famous Schrödinger’s cat experiment, in which the cat is both alive and dead — both possibilities exist until you open the box and investigate.

“We must re-think all that we have ever learned about the past, human evolution and the nature of reality, if we are ever to find our true place in the cosmos,” says Constance Hilliard, a historian of science at UNT. Choices you haven’t made yet might determine which of your childhood friends are still alive, or whether your dog got hit by a car yesterday. In fact, you might even collapse realities that determine whether Noah’s Ark sank. “The universe,” said John Haldane, “is not only queerer than we suppose, but queerer than we can suppose.”

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑