Tag: international (page 3 of 10)

Spacecraft Falls From Orbit Over the Pacific, Russia Says






Excerpt from nytimes.com

CAPE CANAVERAL, Fla. — An unmanned Russian spaceship loitering in orbit after a failed cargo run to the International Space Station plunged into Earth's atmosphere late on Thursday, the Russian space agency reported.

The capsule, loaded with more than three tons of food, fuel and supplies for the station crew, fell from orbit at 10:04 p.m. Eastern time, the Russian space agency, Roscosmos, said in a statement.
At the time, the Progress-59 spacecraft was flying over the central Pacific Ocean, the statement said.

Most of the spacecraft was expected to burn up during its high-speed descent through the atmosphere, but small pieces of the structure could have survived and splashed down in the ocean.
“Only a few small pieces of structural elements could reach the planet's surface,” Roscosmos said in a statement earlier Thursday — similar to what happens at the end of routine Progress cargo missions.

The freighter was launched on April 28 from the Baikonur Cosmodrome in Kazakhstan, but never made to the station, a $100 billion research laboratory that flies about 250 miles above the earth.

Ground controllers lost contact with the Progress spaceship shortly after it separated from the upper stage of its Soyuz rocket about nine minutes after launch.

An investigation into the failed mission is underway, Roscosmos said. Russia has flown 62 Progress spacecraft to the station to deliver modules and cargo, two of which were not successful.
Various versions of the Progress freighters have been flying since 1978, supporting previous Soviet-era stations including Salyut 6, Salyut 7 and Mir. The capsules are designed to burn up in the atmosphere after delivering their cargo.

The United States hired privately owned Space Exploration Technologies, or SpaceX, and Orbital ATK to fly cargo to the station after the space shuttles were retired in 2011. SpaceX's missions have all been successful.

Orbital lost a cargo ship in October after a failed launch. Europe flew five ATV freighters to the station, all successfully, but has no plans to fly more. Japan is preparing for its fifth HTV cargo flight in August.

View Article Here Read More

A COURSE IN MIRACLES INTERNATIONAL – The Advent Of A Great Awakening – Episode II

A COURSE IN MIRACLES INTERNATIONAL The Advent Of A Great AwakeningTeachers Convention, BarcelonaEpisode IIThe Teachers Convention Serieswww.themasterteacher.tv

View Article Here Read More

A COURSE IN MIRACLES INTERNATIONAL – The Advent Of A Great Awakening – Episode I

A COURSE IN MIRACLES INTERNATIONAL The Advent Of A Great AwakeningTeachers Convention, BarcelonaEpisode IThe Teachers Convention Serieswww.themasterteacher.tv

View Article Here Read More

What Everyone Needs To Know About Anxiety

Excerpt from huffingtonpost.comThink you can spot someone with anxiety in a crowd?The disorder, which touches 18 percent of American adults, is one of the most common mental health issues in the world. It can affect your teachers, your loved ones, yo...

View Article Here Read More

Could Google’s Project Fi be cable’s answer to wireless?

 Excerpt from cnet.com Google's Project Fi wireless service has the potential to turn the mobile industry on its head. But not in the way you might expect. Last week, Google announce...

View Article Here Read More

‘Hats Off’ To HATS-6b: Discovery of ‘puffy’ new planet brings scientists closer to finding new life in outer space

An artist's impression of the planet HATS-6b, orbiting the star, HATS-6. (Supplied: ANU) Excerpt from abc.net.au A "puffy" new planet orbiting a small, cool star has been discovered 500 light years away from Earth, by a team of scientists c...

View Article Here Read More

"Catastrophic end" for out-of-control space cargo ship ~ Video from Spacecraft Cockpit

Excerpt from cbsnews.com A Russian Progress cargo ship bound for the International Space Station spun out of control Tuesday. Engineers were unable to direct the wayward ship and soon gave up any hope that it would be able to dock t...

View Article Here Read More

Cosmic tsunamis can regenerate ‘dead’ galaxies






Excerpt from thespacereporter.com



Astronomers have recently discovered that giant cosmic shockwaves emanating from colliding galaxy clusters are capable of jumpstarting new star generation.

According to a Nature World News report, galaxies are often clustered into groups containing “red and dead” galaxies that stopped forming new stars long ago. Scientists now believe that these “dead” galaxies can be brought back to “life” by colossal cosmic tsunamis.

To uncover this phenomenon, an international team of researchers observed how galaxy clusters can absorb smaller clusters much as a growing city absorbs its suburbs. When galaxy clusters collide during this absorption process, a huge shockwave of energy is created. This shockwave can re-energize the star formation process, causing dormant galaxies to begin producing new stars again.

Scientists from the University of Lisbon and Leiden Observatory came to this conclusion after studying the merging galaxy cluster officially known as CIZA J2242.8+5301 and affectionately known as the “Sausage.” The Sausage cluster, located 2.3 billion light-years away, showed evidence of its dormant galaxies coming to life with a new round of star formation.

“We assumed that the galaxies would be on the sidelines for this act, but it turns out they have a leading role. The comatose galaxies in the Sausage cluster are coming back to life, with stars forming at a tremendous rate. When we first saw this in the data, we simply couldn’t believe what it was telling us,” Andra Stroe of Liden Observatory said in a statement.The researchers are observing an event that actually unfolded one billion years ago, when the 6-million-mph shockwave spread out from the collision of the clusters. The team believes that the new star formation was instigated by the shockwave’s affect on galactic gas.

“Much like a teaspoon stirring a mug of coffee, the shocks lead to turbulence in the galactic gas. These then trigger an avalanche-like collapse, which eventually leads to the formation of very dense, cold gas clouds, which are vital for the formation of new stars,” Stroe said.

Despite the vigorous production of new stars in this instance, the team believes that, after the initial effects of the tsunami take place, the galaxies fall to an even deeper state of dormancy than before.

David Sobral of the University of Lisbon explains that “star formation at this rate leads to a lot of massive, short-lived stars coming into being, which explode as supernovae a few million years later. The explosions drive huge amounts of gas out of the galaxies and with most of the rest consumed in star formation, the galaxies soon run out of fuel. If you wait long enough, the cluster mergers make the galaxies even more red and dead – they slip back into a coma and have little prospect of a second resurrection.”

The study was published in the journal Monthly Notices of the Royal Astronomical Society.

View Article Here Read More

Explosive Culprit? Russian Fireball’s Origins Found


A photograph of the Annama meteorite fireball over Russia's Kola Peninsula.



Excerpt from space.com

A crackling fireball that exploded over Russia last year appears to share an orbit with a huge asteroid discovered in October 2014, a new study reports.

The Kola fireball was spotted on April 19, 2014, as it lit up the night sky above the Kola Peninsula near the Finnish-Russian border. Its orbit is "disturbingly similar" to the asteroid 2014 UR116, slated to pass by the moon in 2017, the study authors said.
Camera observations by the Finnish Fireball Network, which monitors the sky for meteors and fireballs, and video from eyewitnesses helped scientists recreate the meteoroid's trajectory and hunt down meteorite fragments on the ground. 


Josep Maria Trigo-Rodríguez, a researcher at the Institute of Space Sciences in Barcelona, Spain, led the international team of scientists who analyzed the meteorite's orbit. They calculated the fireball's size and path through Earth's atmosphere by examining its flight and the meteorite's final impact site. A computer model based on these figures was used to estimate the space rock's orbital path. 

The 1,100-pound (500 kilogram) meteorite is an ordinary H5 chondrite, a type of stony meteorite responsible for 31 percent of Earth's impacts. The fragments are called the "Annama meteorite" because the meteorite fell near the Annama River in Russia.

Annama meteorite

The precise detective works suggests the fireball escaped from the innermost region of the asteroid belt, the study researchers reported. The rock has an elliptical orbit that is typical of the Apollo family of near-Earth orbiting asteroids, and it likely came from the same broad source region as the Lost City, Peekskill and Buzzard Coulee meteorites, the researchers said.

The researchers compared the Annama meteorite's orbit with known near-Earth asteroids (there are more than 1,500). Of 12 potential matches, by far the closest match was with the asteroid 2014 UR116, they said.

The findings were published April 7 in the journal Monthly Notices of the Royal Astronomical Society.

The new report does not suggest that asteroid 2014 UR116 flung the Annama meteorite directly at Earth. However, the two bodies could be related. Scientists think that streams of asteroid fragments — such as the remnants of interstellar collisions — can sail on nearly identical orbits. Tidal forces may stretch out these rocky debris patches over time. Asteroids may also fragment from the stress of passing near the planets, the researchers noted.

"The tidal effect on an asteroid, which rapidly rotates under the gravitational field of a planet, can fragment these objects or release large rocks from its surface, which could then become dangerous projectiles at a local scale, such as the one that fell in Chelyabinsk, Russia," Trigo-Rodríguez said in a statement.

Asteroid 2014 UR116, discovered by Russian scientists on Oct. 27, 2014, measures 1,312 feet (400 meters) across, but does not pose an impact danger to Earth, according to NASA.

View Article Here Read More

Chicxulub Dinosaur-Killer Asteroid Impact To Be Probed For Answers To Extinction Mysteries

Excerpt from techtimes.comScientists are seeking a core sample from the Chicxulub crater that marks the remains of an asteroid impact which ended the age of the dinosaurs nearly 66 million years ago.That geological feature will be probed by scientist...

View Article Here Read More

Is In-Flight Refueling Coming to Commercial Airlines?




Excerpt from space.com

This article was originally published on The Conversation. The publication contributed this article to Space.com's Expert Voices: Op-Ed & Insights.

There’s real pressure on the aviation industry to introduce faster, cheaper and greener aircraft, while maintaining the high safety standards demanded of airlines worldwide.

Airlines carry more than three billion passengers each year, which presents an enormous challenge not only for aircraft manufacturers but for the civil aviation infrastructure that makes this extraordinary annual mass-migration possible. Many international airports are close to or already at capacity. The International Air Transport Association (IATA) has estimated that, without intervention, many global airports – including major hubs such as London Heathrow, Amsterdam Schiphol, Beijing and Dubai – will have run out of runway or terminal capacity by 2020. 


The obvious approach to tackling this problem is to extend and enlarge airport runways and terminals – such as the long-proposed third runway at London Heathrow. However there may be other less conventional alternatives, such as introducing in-flight refuelling for civil aircraft on key long-haul routes. Our project, Research on a Cruiser-Enabled Air Transport Environment (Recreate), began in 2011 to evaluate whether this was something that could prove a viable, and far cheaper, solution.

If in-flight refuelling seems implausible, it’s worth remembering that it was first trialed in the 1920s, and the military has continued to develop the technology ever since. The appeal is partly to reduce the aircraft’s weight on take-off, allowing it to carry additional payload, and partly to extend its flight range. Notably, during the Falklands War in 1982 RAF Vulcan bombers used in-flight refuelling to stage what was at the time the longest bombing mission ever, flying 8,000 miles non-stop from Ascension Island in the South Atlantic to the Falklands and back.

Reducing take-off weight could offer many benefits for civilian aircraft too. Without the need to carry so much fuel the aircraft can be smaller, which means less noise on take-off and landing and shorter runways. This opens up the network of smaller regional airports as new potential sites for long-haul routes, relieving pressure on the major hubs that are straining at the seams.

There are environmental benefits too, as a smaller, lighter aircraft requires less fuel to reach its destination. Our initial estimates from air traffic simulations demonstrate that it’s possible to reduce fuel burn by up to 11% over today’s technology by simply replacing existing global long-haul flight routes with specifically designed 250-seater aircraft with a range of 6,000nm after one refuelling – roughly the distance from London to Hong Kong. This saving could potentially grow to 23% with further efficiencies, all while carrying the same number of passengers the same distance as is possible with the current aircraft fleet, and despite the additional fuel burn of the tanker aircraft.

Tornado fighter jets in-flight refuel
Imagine if these Tornado fighter jets were 250-seater passenger aircraft and you’ve got the idea.

However, this is not the whole picture – in-flight refuelling will require the aerial equivalent of petrol stations in order to deliver keep passenger aircraft in the sky. With so much traffic it simply wouldn’t be possible to refuel any aircraft any time, anywhere it was needed. The location of these refuelling zones, coupled with the flight distance between the origin and destination airports can greatly affect the potential benefits achievable, possibly pulling flights away from their shortest route, and even making refuelling on some routes impossible – if for example the deviation to the nearest refuelling zone meant burning as much fuel as would have been saved.

Safety and automation

As with all new concepts – particularly those that involve bringing one aircraft packed with people and another full of fuel into close proximity during flight – it’s quite right to ask whether this is safe. To try and answer this question, the Dutch National Aerospace Laboratory and German Aerospace Centre used their flight simulators to test the automated in-flight refuelling flight control system developed as part of the Recreate project.

One simulator replicated the manoeuvre from the point of view of the tanker equipped with an in-flight refuelling boom, the other simulated the aircraft being refuelled mid-flight. Critical test situations such as engine failure, high air turbulence and gusts of wind were simulated with real flight crews to assess the potential danger to the operation. The results were encouraging, demonstrating that the manoeuvre doesn’t place an excessive workload on the pilots, and that the concept is viable from a human as well as a technical perspective.

So far we’ve demonstrated the potential aerial refuelling holds for civilian aviation, but putting it into practice would still pose challenges. Refuelling hubs would need to be established worldwide, shared between airlines. There would need to be fundamental changes to airline pilot training, alongside a wider public acceptance of this departure from traditional flight operations.

However, it does demonstrate that, in addition to all the high-tech work going into designing new aircraft, new materials, new engines and new fuels, the technology we already have offers solutions to the long-term problems of ferrying billions of passengers by air around the world.

View Article Here Read More

NASA submarine to Study Planet Saturn Moon Titan’s Sea





dailysciencejournal.com 

An animated and dramatic 3D video released by NASA has revealed the international space agency plans of exploring the depths of largest sea on the Titan, Kraken Mare.

NASA is planning to launch a submarine in the Kraken Mare Sea with an aim of studying the depth.

Titan is one of the 62 moons of the planet Saturn. Titan has its own and interesting atmosphere compared to other 61. 



Click to zoom


A spacecraft named Cassini has been trying to study the Titan’s atmosphere since 2004. Most of the area of the moon Titan is covered by large bodies of methane and ethane in liquid form.

The submarine will definitely help more compared to Cassini spacecraft to measure and map the shorelines or sea.

While releasing the video the scientists from NASA has stated that the submarine will definitely help in exploring the history of the moon’s climatic conditions and could provide major breakthroughs among the discoveries made till date.

View Article Here Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑