Tag: interact (page 1 of 5)

YOU ARE IN THE MIDST OF A SPIRITUAL REVOLUTION ~ ARCHANGEL MICHAEL LM-06-2018 ✔

https://www.starquestmastery.com/single-post/2018/05/30/YOU-ARE-IN-THE-MIDST-OF-A-SPIRITUAL-REVOLUTION
https://www.starquestmastery.com
RonnaStar@earthlink.net

YOU ARE IN THE MIDST OF A SPIRITUAL REVOLUTION
June 1, 2018

View Article Here Read More

Entry Protocols Update

Entry Protocols blog post has triggered strong reactions and so it requires an update.First, it was never claimed that pre-Event entries into the Resistance will happen. It was stated that they may, or may not happen. Entry protocols were given to the ...

View Article Here Read More

Göbekli Tepe: The Burying Of An Ancient Megalithic Site

Dr. Rita Louise, GuestWhy Did Our Ancestors Inter This Ancient Massive Architectural Wonder?Located at the highest point of the Germus range in the southeastern Anatolia region of Turkey is the mysterious site of Göbekli Tepe. Excavations at Göbekli Tepe commenced in 1995 after German archaeologist Klaus Schmidt realized what was thought to be a Byzantine cemetery was actually a prehistoric site. Schmidt quickly unearthed a number of T-shaped pillars, which set th [...]

View Article Here Read More

Take a Spaceship Journey to Arp. 273 ~ Hubble Zoom

Arp 273 is a group of galaxies which interact with each other.  The constellation is 300 million light years away from Earth in the constellation Andromeda. The Andromeda galaxy is also located in the Andromeda constellation. The larger of th...

View Article Here Read More

Circus Lion Freed From Cage Feels Earth Beneath His Paws For The First Time ~ Heartwrenching Video!




Will

Excerpt from thedodo.com
By Stephen Messenger

Footage shared this week by the Rancho dos Gnomos Santuário in Brazil shows the thrilling moment a lion named Will experiences, for the first time, the feeling of soil and grass beneath his feet.

Prior to being rescued and taken to the sanctuary, Will had been forced to perform with a traveling circus. For 13 long years, the lion had been confined to a cramped cage and denied any semblance of a normal existence. 

Within seconds of his release, Will can be seen eagerly running his paws through the soft soil — tragically, a foreign material for a creature who, up until then, had known only cold metal floors. 

Will's reaction to the grass that covers his sprawling new home is equally ecstatic. Despite his age, advanced for his species, the lion rolls around like a happy cub discovering life's simple pleasures. 

But perhaps the most touching part of Will's transition into his new sanctuary can be seen in this moment of repose, as if most impressed not by the feeling of dirt or grass, but by a newfound sense of peace. 

This scene, filmed in 2006 though released this week to the public, was only the beginning. In 2011, Will passed away of old age, but not before finally learning what it meant to be a lion. 

"He had five years of tranquility before he died. Here he had the opportunity to interact with other lions. He loved to lie in grass and look at the sky," sanctuary founder Marcos Pompeo told The Dodo. "He was a very happy lion."

Watch the video of Will's release in its entirety below:



  Click to zoom

View Article Here Read More

How Your Mind Affects Your Body

Excerpt from huffingtonpost.comWe are at last beginning to show that there is an intimate and dynamic relationship between what is going on with our feelings and thoughts and what happens in the body. A Time magazine special showed that happiness, h...

View Article Here Read More

NASA application grants general public the opportunity to explore the surface of Vesta

NASA's Dawn spacecraft visited Vesta for a year before continuing on to Ceres (Image: NASA/JPL-Caltech) Excerpt from gizmag.comNASA has released a browser-based application that allows citizen scientists to explore the surface of the asteroid V...

View Article Here Read More

Why Luke Skywalker’s binary sunset may be real after all






Excerpt from csmonitor.com

Researchers have found Jupiter-scale gas giants orbiting binary stars and estimate that Earth-like planets orbiting binary stars could be as numerous as rocky planets orbiting single-star systems.


For all the sci-fi charm of watching a pair of suns sink below a distant horizon on a planet in a galaxy far, far away, conventional wisdom has held that binary-star systems can't host Earth-scale rocky planets.

As the two stars orbit each other like square-dance partners swinging arm in arm, regular variations in their gravitational tug would disrupt planet formation at the relatively close distances where rocky planets tend to appear.

Not so fast, say two astrophysicists. They argue that only are Tatooine-like planets likely to be out there. They could be as numerous as rocky planets orbiting single-star systems – which is to say, there could be large number of them.

Building rocky planets in a binary system not only is possible, it's "not even that hard," says Scott Kenyon, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who along with University of Utah astrophysicist Benjamin Bromley performed the calculations.
Researchers have found Jupiter-scale gas giants orbiting binary stars and have estimated that such gas giants are likely to be as common in binary systems as they are in systems with a single star.
"If that's true, then Earth-like planets around binaries are just as common as Earth-like planets around single stars," Dr. Kenyon says. "If they're not common, that tells you something about how they form or how they interact with the star over billions of years."

The modeling study grew out of work the two researchers were undertaking to figure out how the dwarf planet Pluto and its largest moon Charon manage to share space with four smaller moons that orbit the two larger objects. 

Pluto and Charon form a binary system that early in its history saw the two objects graze each other to generate a ring of dust that would become the additional moons.

The gravity the surrounding dust felt as Pluto and Charon swung about their shared center of mass would vary with clock-like precision.

Conventional wisdom held that this variable tug would trigger collisions at speeds too fast to allow the dust and larger chunks to merge into ever larger objects.

Kenyon and Dr. Bromley found that, in fact, the velocities would be smaller than people thought – no greater than the speeds would be around a single central object, where velocities are slow enough to allow the debris to bump gently and merge to build ever-larger objects.

They recognized that binary stars hosting planets are essentially scaled-up versions of the Pluto-Charon system. So they applied their calculations to a hypothetical binary star system with a circumstellar disk of dust and debris.

"The modest jostling in these orbits is the same modest jostling you'd get around a single star," Kenyon says, allowing rocky inner planets to form.

As for the Jupiter- or Neptune-scale planets found around binary stars, they would have formed farther out and migrated in over time, the researchers say, since there is too little material within the inner reaches of a circumstellar disk to build giant planets.

The duo's calculations imply that as more planets are discovered orbiting binary stars, a rising number of Tatooines will be among them. 

Tatooine "was science fiction," Kenyon says. But "it's not so far from science reality."

View Article Here Read More

Rare & severe geomagnetic storm enables Aurora Borealis to be seen from U.S. tonight

Excerpt from mashable.com Thanks to a rare, severe geomagnetic storm, the Northern Lights may be visible on Tuesday night in areas far to the south of its typical home in the Arctic.  The northern tier of the U.S., from Washington State to Michiga...

View Article Here Read More

Every Black Hole Contains a New Universe


At the center of spiral galaxy M81 is a supermassive black hole about 70 million times more massive than our sun.



Excerpt from insidescience.org
A physicist presents a solution to present-day cosmic mysteries.



By: 
Nikodem Poplawski, Inside Science Minds Guest Columnist



(ISM) -- Our universe may exist inside a black hole. This may sound strange, but it could actually be the best explanation of how the universe began, and what we observe today. It's a theory that has been explored over the past few decades by a small group of physicists including myself. 
Successful as it is, there are notable unsolved questions with the standard big bang theory, which suggests that the universe began as a seemingly impossible "singularity," an infinitely small point containing an infinitely high concentration of matter, expanding in size to what we observe today. The theory of inflation, a super-fast expansion of space proposed in recent decades, fills in many important details, such as why slight lumps in the concentration of matter in the early universe coalesced into large celestial bodies such as galaxies and clusters of galaxies.
But these theories leave major questions unresolved. For example: What started the big bang? What caused inflation to end? What is the source of the mysterious dark energy that is apparently causing the universe to speed up its expansion?
The idea that our universe is entirely contained within a black hole provides answers to these problems and many more. It eliminates the notion of physically impossible singularities in our universe. And it draws upon two central theories in physics.
Nikodem Poplawski displays a "tornado in a tube." The top bottle symbolizes a black hole, the connected necks represent a wormhole and the lower bottle symbolizes the growing universe on the just-formed other side of the wormhole. Credit: Indiana University
In this picture, spins in particles interact with spacetime and endow it with a property called "torsion." To understand torsion, imagine spacetime not as a two-dimensional canvas, but as a flexible, one-dimensional rod. Bending the rod corresponds to curving spacetime, and twisting the rod corresponds to spacetime torsion. If a rod is thin, you can bend it, but it's hard to see if it's twisted or not.

The first is general relativity, the modern theory of gravity. It describes the universe at the largest scales. Any event in the universe occurs as a point in space and time, or spacetime. A massive object such as the Sun distorts or "curves" spacetime, like a bowling ball sitting on a canvas. The Sun's gravitational dent alters the motion of Earth and the other planets orbiting it. The sun's pull of the planets appears to us as the force of gravity.

The second is quantum mechanics, which describes the universe at the smallest scales, such as the level of the atom. However, quantum mechanics and general relativity are currently separate theories; physicists have been striving to combine the two successfully into a single theory of "quantum gravity" to adequately describe important phenomena, including the behavior of subatomic particles in black holes.
A 1960s adaptation of general relativity, called the Einstein-Cartan-Sciama-Kibble theory of gravity, takes into account effects from quantum mechanics. It not only provides a step towards quantum gravity but also leads to an alternative picture of the universe. This variation of general relativity incorporates an important quantum property known as spin. Particles such as atoms and electrons possess spin, or the internal angular momentum that is analogous to a skater spinning on ice.

Spacetime torsion would only be significant, let alone noticeable, in the early universe or in black holes. In these extreme environments, spacetime torsion would manifest itself as a repulsive force that counters the attractive gravitational force coming from spacetime curvature. As in the standard version of general relativity, very massive stars end up collapsing into black holes: regions of space from which nothing, not even light, can escape.
Here is how torsion would play out in the beginning moments of our universe. Initially, the gravitational attraction from curved space would overcome torsion's repulsive forces, serving to collapse matter into smaller regions of space. But eventually torsion would become very strong and prevent matter from compressing into a point of infinite density; matter would reach a state of extremely large but finite density. As energy can be converted into mass, the immensely high gravitational energy in this extremely dense state would cause an intense production of particles, greatly increasing the mass inside the black hole.
The increasing numbers of particles with spin would result in higher levels of spacetime torsion. The repulsive torsion would stop the collapse and would create a "big bounce" like a compressed beach ball that snaps outward. The rapid recoil after such a big bounce could be what has led to our expanding universe. The result of this recoil matches observations of the universe's shape, geometry, and distribution of mass.
In turn, the torsion mechanism suggests an astonishing scenario: every black hole would produce a new, baby universe inside. If that is true, then the first matter in our universe came from somewhere else. So our own universe could be the interior of a black hole existing in another universe. Just as we cannot see what is going on inside black holes in the cosmos, any observers in the parent universe could not see what is going on in ours.
The motion of matter through the black hole's boundary, called an "event horizon," would only happen in one direction, providing a direction of time that we perceive as moving forward. The arrow of time in our universe would therefore be inherited, through torsion, from the parent universe.
Torsion could also explain the observed imbalance between matter and antimatter in the universe. Because of torsion, matter would decay into familiar electrons and quarks, and antimatter would decay into "dark matter," a mysterious invisible form of matter that appears to account for a majority of matter in the universe.
Finally, torsion could be the source of "dark energy," a mysterious form of energy that permeates all of space and increases the rate of expansion of the universe. Geometry with torsion naturally produces a "cosmological constant," a sort of added-on outward force which is the simplest way to explain dark energy. Thus, the observed accelerating expansion of the universe may end up being the strongest evidence for torsion.
Torsion therefore provides a theoretical foundation for a scenario in which the interior of every black hole becomes a new universe. It also appears as a remedy to several major problems of current theory of gravity and cosmology. Physicists still need to combine the Einstein-Cartan-Sciama-Kibble theory fully with quantum mechanics into a quantum theory of gravity. While resolving some major questions, it raises new ones of its own. For example, what do we know about the parent universe and the black hole inside which our own universe resides? How many layers of parent universes would we have? How can we test that our universe lives in a black hole?
The last question can potentially be investigated: since all stars and thus black holes rotate, our universe would have inherited the parent black hole’s axis of rotation as a "preferred direction." There is some recently reported evidence from surveys of over 15,000 galaxies that in one hemisphere of the universe more spiral galaxies are "left-handed", or rotating clockwise, while in the other hemisphere more are "right-handed", or rotating counterclockwise. In any case, I believe that including torsion in geometry of spacetime is a right step towards a successful theory of cosmology.

View Article Here Read More

Did European scientists find dark-matter signal buried in X-rays?


Dark matter findings XMM-Newton
This illustration shows the ESA's XMM-Newton space telescope. Using X-ray data collected by the telescope, scientists say they may have identified a dark-matter signal. (D. Ducros / European Space Agency)


Excerpt from latimes.com

Scientists say they may have discovered a possible dark matter signal coded in the X-rays emanating from two bright objects in the sky. 

The findings, set to be published next week in Physical Review Letters, could offer tangible evidence for the existence of dark matter -- and help researchers build new tools to search for and study this mysterious stuff.

When it comes to matter in the universe, dark matter is like a backroom political power broker: You never see it, but behind the scenes, it’s been throwing its weight around. The effects of its gravitational influence can be seen in the large-scale structures of the cosmos. Dark matter makes up about 84.5% of the matter in the universe while all the stuff we actually see -- stars, galaxies, planets, ourselves -- makes up the remaining 15.5%.* The enormous galaxies and clusters of galaxies that populate the universe are bantamweights compared to the massive, unseen dark matter ‘halos’ that anchor them.
Dark matter’s formidable gravitational influence is the only way that the strange stuff can be detected, because it’s invisible -- it does not interact with light. Physicists have no idea what it’s made of, although they’ve looked for it by building detectors in underground former gold mines, sending satellites into space and other methods. 

But now, a team led by researchers at Leiden University in the Netherlands and the École Polytechnique Fédérale de Lausanne in Switzerland say they’ve discovered a signal that could be a sign of dark matter. 

The scientists looked at X-ray emissions coming from the Andromeda galaxy and the Perseus galaxy cluster, collected by the European Space Agency’s XMM-Newton space telescope. After accounting for all the light particles (called photons) emanating from known sources in the Andromeda galaxy, they were left with a strange set of photons that had no known source. The found the same light signature emanating from the Perseus cluster. And when they turned their attention to the Milky Way, they found signs of this signal in our home galaxy, as well.
“It is consistent with the behavior of a line originating from the decay of dark matter particles,” the authors wrote in a pre-print of the study.

This weird light signal, they think, could be coming from the destruction of a hypothetical particle called a sterile neutrino (which, if it exists, might help explain dark matter). But it's going to take a lot of follow-up study to determine whether this signal is a scientific breakthrough or an anomalous blip.

View Article Here Read More

The World is Not Enough: A New Theory of Parallel Universes is Proposed



Excerpt from universetoday.com

by Tim Reyes



Do we exist in a space and time shared by many worlds? And are all these infinite worlds interacting? A new theory of everything is making the case.

Imagine if you were told that the world is simple and exactly as it seems, but that there is an infinite number of worlds just like ours.

They share the same space and time, and interact with each other.
These worlds behave as Newton first envisioned, except that the slightest interactions of the infinite number create nuances and deviations from the Newtonian mechanics. What could be deterministic is swayed by many worlds to become the unpredictable.

This is the new theory about parallel universes explained by Australian and American theorists in a paper published in the journal Physics Review X. Called  the “Many Interacting Worlds” theory (MIW), the paper explains that rather than standing apart, an infinite number of universes share the same space and time as ours.

They show that their theory can explain quantum mechanical effects while leaving open the choice of theory to explain the universe at large scales. This is a fascinating new variant of Multiverse Theory that, in a sense, creates not just a doppelganger of everyone but an infinite number of them all overlaying each other in the same space and time.


Rather than island universes as proposed by other theories, Many Interacting Worlds (MIW) proposes many all lying within one space and time. (Photo Credit: Public Domain)
Rather than island universes as proposed by other multiverse theories, Many Interacting Worlds (MIW) proposes many all lying within one space and time.

Cosmology is a study in which practitioners must transcend their five senses. Einstein referred to thought experiments, and Dr. Stephen Hawking — surviving and persevering despite having ALS — has spent decades wondering about the Universe and developing new theories, all within his mind.

The “Many Interacting Worlds” theory, presented by Michael Hall and Howard Wiseman from Griffith University in Australia, and Dirk-André Deckert from the University of California, Davis, differs from previous multiverse theories in that the worlds — as they refer to universes — coincide with each other, and are not just parallel. 

The theorists explain that while the interactions are subtle, the interaction of an infinite number of worlds can explain quantum phenomena such as barrier tunneling in solid state electronics, can be used to calculate quantum ground states, and, as they state, “at least qualitatively” reproduce the results of the double-slit experiment.

Schrödinger, in explaining his wave function and the interaction of two particles (EPR paradox) coined the term “entanglement”. In effect, the MIW theory is an entanglement of an infinite number of worlds but not in terms of a wave function. The theorists state that they were compelled to develop MIW theory to eliminate the need for a wave function to explain the Universe. It is quite likely that Einstein would have seen MIW as very appealing considering his unwillingness to accept the principles laid down by the Copenhagen interpretation of Quantum Theory.

While MIW theory can reproduce some of the most distinctive quantum phenomena, the theorists emphasize that MIW is in an early phase of development. They state that the theory is not yet as mature as long-standing unification theories. In their paper, they use Newtonian physics to keep their proofs simple. Presenting this new “many worlds” theory indicates they had achieved a level of confidence in its integrity such that other theorists can use it as a starter kit – peer review but also expand upon it to explain more worldly phenomena.



Two of the perpetrators of the century long problem of unifying General Relativity Theory and Quantum Physics, A. Einstein, E. Schroedinger.
Two of the perpetrators of the century-long problem of unifying General Relativity Theory and Quantum Physics – Albert Einstein, Erwin Schroedinger.

The theorists continue by expounding that MIW could lead to new predictions. If correct, then new predictions would challenge experimentalists and observers to recreate or search for the effects.
Such was the case for Einstein’s Theory of General Relativity. For example, the bending of the path of light by gravity and astronomer Eddington’s observing starlight bending around Sun during a total Solar Eclipse. Such new predictions and confirmation would begin to stand MIW theory apart from the many other theories of everything.

Multiverse theories have gained notoriety in recent years through the books and media presentations of Dr. Michio Kaku of the City College of New York and Dr. Brian Greene of Columbia University, New York City. Dr. Green presented a series of episodes delving into the nature of the Universe on PBS called “The Fabric of the Universe” and “The Elegant Universe”. The presentations were based on his books such as “The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos.”

Hugh Everett’s reinterpretation of Dr. Richard Feynman’s cosmological theory, that the world is a weighted sum of alternative histories, states that when particles interact, reality bifurcates into a set of parallel streams, each being a different possible outcome. In contrast to Feynmann’s theory and Everett’s interpretation, the parallel worlds of MIW do not bifurcate but simply exist in the same space and time.  MIW’s parallel worlds are not a consequence of “quantum behavior” but are rather the drivers of it.


Professor Howard Wiseman, Director of Griffith University's Centre for Quantum Dynamics and coauthor of the paper on the "Many Interacting World" theory. (Photo Credit: Griffith University)
Professor Howard Wiseman, Director of Griffith University’s Centre for Quantum Dynamics and coauthor of the paper on the “Many Interacting World” theory. (Photo Credit: Griffith University)

Hall states in the paper that simple Newtonian Physics can explain how all these worlds evolve. This, they explain, can be used effectively as a first approximation in testing and expanding on their theory, MIW. Certainly, Einstein’s Special and General Theories of Relativity completes the Newtonian equations and are not dismissed by MIW. However, the paper begins with the simpler model using Newtonian physics and even explains that some fundamental behavior of quantum mechanics unfolds from a universe comprised of just two interacting worlds.

So what is next for the Many Interacting Worlds theory? Time will tell. Theorists and experimentalists shall begin to evaluate its assertions and its solutions to explain known behavior in our Universe. With new predictions, the new challenger to Unified Field Theory (the theory of everything) will be harder to ignore or file away with the wide array of theories of the last 100 years. Einstein’s theories began to reveal that our world exudes behavior that defies our sensibility but he could not accept the assertions of Quantum Theory. Einstein’s retort to Bohr was “God does not throw dice.” The MIW theory of Hall, Deckert, and Wiseman might be what Einstein was seeking until the end of his life. In titling this review of their theory as “The World is not Enough,” I would also add that their many interacting worlds is like a martini shaken but not stirred.
References: Quantum Phenomena Modeled by Interactions between Many Classical Worlds

View Article Here Read More

Quantum Mechanics Breakthrough Enables Photon Interaction ~ May lead to computer ‘light’ chips ~ Greg Giles

Artist's conception of a computer chip made of light In quantum mechanics, photons cannot interact with each other in free space. Light waves have only freely passed through each other without changing their state or path, until now. Vienna Univ...

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑